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1. INTRODUCTION 
VP is a MATLAB solver for the problem of spatial variation prediction described in [1]. The problem 

can be illustrated by the example in Fig.1. The spatial variation can be exactly characterized by 
measuring the performance of interest at all possible sampling locations, as shown in Fig.1 (a). To save 
the testing cost, it is possible to only measure a small subset of all locations, as shown in Fig.1 (b). Then, 
VP can be utilized to reconstruct the spatial variation from these partial measurements, and the output is 
the predicted performance at all locations, as shown in Fig.1 (c). 
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(a)                                                (b)                                               (c) 

Fig.1 An illustration of the spatial variation prediction problem. (a) The true spatial variation obtained 
by measuring all sampling locations. (b) A subset of the measurements. (c) Reconstructed spatial 
variation from the measurements in (b). 
 
2. THE VP SOLVER 

The VP solver file contained in this package is solve_vp.m. The input to solve_vp.m is a list of 
partial measurements like Fig.1 (b), and the output is the reconstructed spatial variation like Fig.1 (c). In 
the following, we denote the number of measurements as M, the maximum x-coordinate as P and the 
maximum y-coordinate as Q, which are consistent with the definitions in [1]. 

 
2.1 Input Arguments 
• SampleData:       

A size-M column vector specifying the measured performances 
• SampleX:           

A size-M column vector specifying x-coordinates of the measurements. 
• SampleY:           

A size-M column vector specifying y-coordinates of the measurements. The first three input 
arguments are used to define the partial measurement data. For example, if the 5-th measurement data 
is take at the location (3, 4) and the performance is 6.2, we will have SampleData(5)=6.2, 
SampleX(5)=3, SampleY(5)=4. 
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• DataFlag:           
A P-by-Q matrix specifying the locations of all possible sampling locations. If DataFlag(i, j)=1, it 

means (i, j) is a valid measurement location. Invalid locations will have DataFlag(i, j)=0. For 
example, in the wafer in Fig.1 (a), (5, 2) is a valid measurement location and (5, 1) is invalid. 
Therefore, we need to set DataFlag(5, 2)=1 and DataFlag(5, 1)=0 when performing any spatial 
variation prediction using this dataset. 

• noise (optional):           
A boolean variable specifying whether measurement data contain significant independent random 

variation, which appears as noise in spatial variation prediction. The default value of this variable is 
false, and this option is suggested when it is known that the independent random variation is at least 
one magnitude less than the spatially correlated variation in the measurement data. When noise is set 
to true, VP will internally run cross-validation to determine the amount of noise, which may improve 
the prediction accuracy at the cost of a few hundred times additional computation time. 
 

2.2 Output Arguments 
• PerfEst:           

A P-by-Q matrix with the recovered spatial variation by VP. PerfEst has the same dimension with the 
input argument DataFlag. If DataFlag(i, j)=0, PerfEst(i, j) will be filled with NaN. Otherwise, 
PerfEst(i, j) is the predicted performance at (i, j). Note that if noise is set to true, for locations that are 
already measured, the predicted performance is not necessarily equal to the measured performance 
because the independent variation is automatically subtracted. 
 
3. THE VP TESTER 

If measurement data at all locations (e.g. Fig.1 (a)) are known in advance, and the user simply wants 
to test the accuracy of VP on a known dataset (e.g. compare Fig.1 (c) with Fig.1 (a)), a utility function 
that helps this process is test_vp.m. This function takes all measurement data as an input, samples a 
subset of these data, performs spatial variation prediction and calculates the prediction error by 
comparing the prediction with the actual data. 

 
3.1 Input Arguments 
• PerfData:       

A P-by-Q matrix specifying the measured performances at all locations. Its format is the same the 
PerfEst defined in Section 2.2: PerfData(i, j)=NaN means (i, j) is not a valid measurement location, 
otherwise PerfData(i, j) is the measured performance at location (i, j). 

• NumExp:           
The number of measurements used for spatial variation prediction. If the parameters SampleX and 

SampleY are not specified, the program will automatically select NumExp points from all points in 
PerfData by Latin Hypercube Sampling [2]. 

• noise (optional): 
   The same as the noise parameter in Section 2.1. 

• SampleX (optional):           
The same as the SampleX parameter in Section 2.1. 

• SampleY (optional):           
The same as the SampleY parameter in Section 2.1. If SampleX and SampleY are both specified, 

they will override the automatic sample generation. 
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3.2 Output Arguments 
• error: 

The average error for the prediction calculated by Eq.(18) in [1]. 
• PerfEst:           

The same as the PerfEst parameter in Section 2.2. 
 

4. EXAMPLES 
Two examples are included in the VP package to illustrate how to use the code. These two examples 

use a synthetic dataset as shown in Fig.1 (a) to experiment on the two functions in Section 2 and Section 
3 respectively. 

 
4.1 Example 1 

example1.m illustrates the usage of the solve_vp function. In the following we will go through this 
example in detail. 
 

Example 1 first loads the dataset from example1.mat. The variables contained in the dataset include 
SampleData, SampleX, SampleY, DataFlag and PerfData. These variables have the same meaning as 
explained in Section 2-3. A graphical representation of these variables can be found in Fig.1 (a)-(b). 
 
load example1; 

 
Next, solve_vp is called to recover the spatial variation from partial measurements. The recovered 

spatial variation is stored in PerfEst. 
 
PerfEst = solve_vp(SampleData,SampleX,SampleY,DataFlag); 
 
 Finally, we use MATLAB commands to plot Fig.1 (a) and Fig.1 (c) as visual representations of the 
spatial variation, from PerfData and PerfEst respectively.  
 
TrueData = zeros(19,20); 
TrueData(1:18,1:19) = PerfData; 
EstData = zeros(19,20); 
EstData(1:18,1:19) = PerfEst; 
  
figure(1); 
pcolor(TrueData'); 
xlabel('X Axis'); 
ylabel('Y Axis'); 
caxis([4 8]); 
title('True wafer map'); 
  
figure(2); 
pcolor(EstData'); 
xlabel('X Axis'); 
ylabel('Y Axis'); 
caxis([4 8]); 
title('Estimated wafer map by 50 samples'); 
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4.2 Example 2 
example2.m illustrates the usage of the test_vp function. In the following we will go through this 

example in detail. 
 
Example 2 first loads the dataset from example2.mat. This dataset only contains one variable, 

PerfData, which is the measured performances at all locations. A graphical representation of it can be 
found in Fig.1 (a). 

 
load example2; 
rand('state',1); 
 

Next, the average error of spatial variation prediction is tested with different number of sampling 
points ranging from 20 to 100. Note that it is not necessary to specify the locations of sampling points. 
 
for i = 20:10:100 
    error(i) = test_vp(PerfData,i); 
end 
 
 In the end, the curve of relative error vs number of samples is plotted. 
 
figure(1); 
plot(20:10:100,error(20:10:100),'-bo','linewidth',2); 
xlabel('Number of Samples'); 
ylabel('Relative Error'); 
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