
Developing Secure Reliable Infrastructures for Web Services

Priya Narasimhan
Institute of Software Research International

School of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213-3891

priya@cs.cmu.edu

Web Services represent the next generation of enterprise in-
frastructures for the exchange of information and services
across the Internet. The power of Web Services lies in their
ability to abstract away platform- and language-specific de-
tails of service implementations, to expose service inter-
faces, or contracts, and to allow these self-contained self-
describing services to be registered, published and dis-
covered dynamically across the Internet. Exploiting the
service contracts, developers can assemble powerful dis-
tributed Web-based applications using a combination of re-
mote services, local services, and custom code. By using
ubiquitous (HTTP, XML) and interoperable (SOAP) pro-
tocols, the client for a Web Service can be written in any
language, and can run on any platform.

These advantages allow for simplified application com-
plexity, and savings in terms of development and deploy-
ment time and cost. The dynamic grid of Web Services
facilitates the rapid deployment of evolving enterprise in-
terfaces and offerings. With this rich set of capabilities,
along with protocols like SOAP, Web Services promise to
be the ”glue” for business-to-business enterprise interac-
tions of the future.

However, the Web Services of today do not as yet in-
corporate QoS system properties, or ”-ilities”, such as reli-
ability and security. Furthermore, the Internet, in its role as
the underlying communication medium for Web Service in-
teractions, is inherently unreliable, and has been known to
exhibit system failures due to crashes and security attacks.
In fact, HTTP is both the greatest strength and the great-
est weakness (from a reliability perspective) of Web Ser-
vices. Enterprises are already starting to deploy Web Ser-
vices, even without sufficient security and reliability. With
downtime being prohibitive in terms of cost and loss of
reputation, and with faults and security breaches becoming
increasingly unacceptable, the serious and widespread de-
ployment of Web Services, in the absence of security and
reliability guarantees, will not be realized.

This research exploits Web Services as the vehicle for
exploring thecomposition of reliability and security for

wide-area dynamic Internet-based systems. The focus in on
understanding thetrade-offsinvolved in composing diverse
system properties (such as security and reliability), and at
identifying any fundamental security or reliability concerns
in today’s Web Services.

Challenges
Web Services are intrinsically dynamic in nature because
they represent an enterprise’s product/service offerings over
the web. In contrast to traditional client-server applica-
tions, the clients of Web Services can compose a number
of Web Services (hosted potentially by different enterprises
across the Internet) to form their own applications. No guar-
antees can be made about the dependability of the result-
ing application consisting of multiple Web Services, each
with its own degree of reliability and security. The unre-
liability of any one of the Web Services used by this ap-
plication could lead to the downfall of all of the others,
even if they happen to be reliable. Thus, because these
Web Service-based applications can straddle multiple enter-
prises, we must deal with, and reconcile, the reliability and
security mechanisms/infrastructures/policies/guarantees of
each individual enterprise involved in the application.

Upgrades are natural occurrences in the life cycle of
any software. The composable nature of Web Services can
cause the upgrade of an enterprise’s Web Service to have
far-reaching (and possible adverse) impacts across the In-
ternet. Upgrading a Web Service requires reliable secure
mechanisms, across the wide-area Internet, for client/user
tracking, service uptime and usage monitoring, manage-
ment of distributed state, change propagation to remote
sites, coordination of resulting changes and side-effects to
other Web Services, etc. This dynamic element (i:e:, run-
time discovery and late binding, continuously evolving in-
terfaces and offerings) of Web Services make the problems
of dependability challenging, and far more interesting than
conventional client-server enterprise systems.

Because Web Services are aimed at eliminating the
boundaries of typical enterprise computing by opening up



enterprises to each other, it is possible for enterprises to
invoke, and interact with, Web Services outside their fire-
walls. For instance, the client-side composition of multiple
Web Services typically occurs outside the firewalls of enter-
prises. Thus, even if a single Web Service might be secure
within its own firewall, there are no such guarantees about
a collection of Web Services used by an application. Thus,
the very potential of Web Services also makes them more
vulnerable from a security standpoint.

Providing dependability in the face of an unbounded
asynchronous communication medium like the Internet, is a
challenge. There are distinct technical problems: (i) to pro-
vide availability so that there are always multiple copies, or
replicas, of a Web Service that can provide the same func-
tionality, with adequate response time, and (ii) to keep these
replicas consistent in state so that there is no loss of data if
any one of these replicas fails, (iii) to know what has oc-
curred, what is yet to occur, and what parts of the system
have been modified, in the event of a fault, (iv) to ensure that
critical parts of the system are not compromised in the event
of a malicious attack, (v) to ensure the reconciliation of di-
verse security mechanisms and policies of the constituent
Web Services within an application. Above all of these,
there is an over-arching goal to ensure that the client of the
Web Service is not exposed to, and does not have to deal
with, the security and reliability problems; thus, the client
has to continue to perceive continuous uptime of the Web
Service, and to be shielded transparently from the occur-
rence of faults or attacks.

Currently, the only attempts to make Web Services se-
cure and reliable involve modifying the SOAP headers to
carry additional information. For Web Services to be truly
secure and reliable, there need to exist additional mecha-
nisms that guarantee the

� Reliable secure messaging across the Internet, even as
servers crash and as sites become disconnected

� Management of a Web Service’s state to protect the
application from loss of either data or processing, in
the event of both faults or service upgrades, and

� Secure composition, outside the enterprise firewall, of
remote Web Services,

� End-to-end reliability of an application that is com-
posed of a grid of multiple remote Web Services, each
with its own degree of reliability,

� Both reliability and security, even as the implementa-
tions and interfaces of an application’s constituent Web
Services are dynamically evolving, and

� Identification, and resolution, of the trade-offs that oc-
cur between and security and reliability themselves.

Combining Reliability and Security
Building infrastructures that must provide both reliability
and security simultaneously to the application poses signif-

icant research problems. In most cases, from the perspec-
tives of both the application and the infrastructure, security
and reliability do not always make a good ”marriage”1.

Reliability necessitates replicating entities, and distribut-
ing the replicas across distinct processors, in order to avoid
a single point of failure. However, the physical distribu-
tion of objects or components merely aggravates the secu-
rity problems within the system: as the number of replicas
of a component increases, the reliability of the component
increases, but so does the number of ways in which the in-
tegrity or confidentiality of the data can be compromised.
Also, the more distributed the replicas, the more reliable a
system becomes, but the more vulnerable it is to security
attacks. Reconciling such securityvs: reliability conflicts
is non-trivial because it involves an in-depth understand of
system-level issues, security and reliability principles, and
the implications on end-to-end application behavior.

One strategy is to fragment the data or state of a Web
Service in reasonable ways, and to scatter the fragments re-
dundantly across a number of replicas. The idea is that each
replica, even if compromised, contains only a small piece of
the information and, by itself, cannot be used to deduce the
entire state of the system. This becomes more challenging
as Web Services are dynamically changing in state, func-
tionality and behavior, and as they are used as remote run-
time pieces of a larger application.

The interesting questions worth answering are: (i) in
how many different ways can a service be fragmented so
that each ”slice” does not reveal too much if compromised,
(ii) what is the minimum number of such ”slices” which,
when compromised, can be used to deduce the entire ser-
vice, (iii) how many replicas of each ”slice” should we em-
ploy, (iv) how do we detect, and handle, the situation where
a replica has been maliciously compromised, and then starts
to diverge in state and in behavior from the other copies of
the ”slice”, and (v) how do the “slices” of one Web Service
combine with those of others within an application?

Conclusion
This research exploits Web Services for exploring the com-
position of reliability and security for wide-area dynamic
Internet-based systems, with the aim of identifying and re-
solving the trade-offs involved in composing diverse system
properties (such as security and reliability). Web Services
are particularly interesting because they are Internet-based
systems that are dynamic, constantly evolving, and involve
the composition of multiple remote services within a single
application.

1This is evident from the specifications for Fault-Tolerant CORBA and
CORBA’s Security Service - both were independently developed, and are
effective on their own. However, it is simply not possible to build a secure
fault-tolerant CORBA system through the straightforward combination of
both specifications.


