
Retrofitting Networked Applications to
Add Autonomic Reconfiguration∗

Michael G. Merideth and Priya Narasimhan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

{mgm, priya}@cs.cmu.edu

ABSTRACT
To reduce user maintenance is an important goal for appli-
cations that must dynamically adapt based on their environ-
ments. There are many existing popular applications that
lack support for this autonomic reconfiguration, but that
are beginning to be used in these dynamic environments,
in which they must update themselves frequently; not all
of these applications will be completely redesigned and re-
developed in order to support autonomic features. In this
paper, we explore how to retrofit pre-existing networked ap-
plications to add support for autonomic reconfiguration. To
illustrate our methods, we retrofit a popular open-source in-
trusion detection system, Snort, to enable it to reconfigure
itself using online program updates and information about
its environment.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—software co-
nfiguration management ; K.6.3 [Management of Com-
puting and Information Systems]: Software Manage-
ment—software maintenance; C.2.4 [Computer-Commu-
nication Networks]: Distributed Systems—distributed ap-
plications; C.4 [Computer-Communication Networks]:
Performance of Systems—reliability, availability, and ser-
viceability ; C.2.0 [Computer-Communication Network-
s]: General—security and protection

General Terms
Design, Management, Reliability, Security

Keywords
Autonomic, reconfiguration, intrusion detection, software
upgrades

∗This work is supported by the Army Research Office
through grant number DAAD19-02-1-0389 (“Perpetually
Available and Secure Information Systems”) to the Cen-
ter for Computer and Communications Security at Carnegie
Mellon University.

c©ACM, 2005. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. This
version contains minor updates and corrections. Original paper published
in and presented at ICSE 2005 Workshop on Design and Evolution of
Autonomic Application Software (DEAS 2005), May 21, 2005, St. Louis,
Missouri, USA.

1. INTRODUCTION
As administrative costs begin to dominate the costs of soft-
ware acquisitions, there is a great deal of interest in software
with autonomic [14] capabilities. How software can best act
autonomically is an area of active research [1, 13]. This
leads to another important problem—there are a variety of
popular open-source networked applications in wide use that
are unlikely to be completely redesigned and redeveloped in
order to support autonomic features. As the capability for
these applications to configure and reconfigure themselves
sees increasing demand, these applications will instead need
to be retrofitted with autonomic capabilities.

Retrofitting autonomic capabilities onto applications need
not be done in an ad-hoc fashion. We believe that there are
principles and techniques that can be used to address com-
monalities within classes of applications to allow autonomic
features to be cleanly added. There is a substantial body
of work on building software that has the capability to up-
date itself without incurring downtime [25, 2]; this capability
shows promise in being used as a building block toward au-
tonomic computing [4]. For self-updating to be useful, the
software must be aware of alternate configurations, and may
need to be able to determine the best configuration itself.
The new configuration should be checked for suitability be-
fore the reconfiguration [16], and potentially rolled-back in
the event of a problem after the reconfiguration.

In our exploration of autonomic reconfiguration, Network
Intrusion Detection Systems (NIDSs) [19], which are an im-
portant class of application software in many networks, prove
to be an interesting experimental case-study for a number of
reasons. First, NIDSs currently lack support for autonomic
reconfiguration. Second, from a configuration standpoint,
one of the most interesting properties of a NIDS is that it
must be reconfigured frequently to incorporate new ways to
recognize new security problems; if a NIDS is not recon-
figured, its utility actually decreases with time. Third, as
we describe in Section 2.1.2, a reconfiguration process that
requires downtime can result in additional vulnerabilities.
Fourth, the configuration of a NIDS is very environment-
dependent—no single configuration is best for all environ-
ments; this presents a problem because the environment can
change continually. Finally, frequent reconfiguration of a
NIDS may be also desirable in a number of new intrusion-
detection usage models, which we discuss in Section 2.2.



As a case study, we introduce Flexiphant, a novel unified sys-
tem architecture for retrofitting a NIDS to add support for
dynamic reconfiguration that may enable it to meet the us-
age requirements of tomorrow. Flexiphant consists of mech-
anisms to gather configuration parameters about the net-
work, to generate new system configurations based on these
parameters, and to perform the reconfiguration of the NIDS
dynamically, in a dependable, online fashion automatically,
in response to a variety of administrator-tunable triggers. A
NIDS enhanced with Flexiphant can reconfigure itself with
targeted, more resource-conserving configurations that can
allow it to perform better than before by (1) reducing its
resource consumption (resulting in a lessened chance of er-
ror or failure), and (2) prioritizing the alerts it produces to
increase its utility to the end-user.

The remainder of the paper is organized as follows. In
Section 2, we discuss the characteristics and limitations of
NIDSs that make them a good candidate class of application
for incorporating autonomic capabilities. In Section 3, we
present our case-study, Flexiphant, an architecture for retro-
fitting a NIDS with support for autonomic reconfiguration.1

Section 4 discusses open research questions, while Section 5
presents related work. Finally, Section 6 concludes.

2. TARGET APPLICATION (NIDSs)
Network Intrusion Detection Systems (NIDSs) [19] are an
important component of modern network security. NIDSs
provide the critical security function of detecting attacks
and compromises on a network. When configured properly,
they provide early warnings of potential system compro-
mises. Yet, they suffer from two related problems: high
resource requirements, and the generation of unnecessarily
large numbers of alerts. We propose that these problems are
due in part to static, over-generalized system configurations
that do not take into account the actual network services
that need to be protected from attack; a NIDS capable of
reconfiguring itself would not suffer from these limitations.

2.1 Limitations in Configuration
2.1.1 Choosing a Configuration
Most deployed NIDSs are signature-based, so they require a
rule database that relates known attack signatures to rules
for classifying and taking action on any malicious network
traffic. Because new attacks emerge rapidly, this database
must be updated frequently with signatures and rules for
these new attacks.

The configuration of a NIDS specifies which rules in its data-
base are active; if a rule is not active, then the NIDS does
not have to watch for the attacks that would trigger only
that rule. In common patterns of usage, when new rules
and signatures are introduced, the NIDS administrator must
decide which rules apply to the local network, and update
the rules configuration, possibly using tools, e.g., [22, 27],
to help merge the new rules into the existing configuration.

1While the details of the internal workings of NIDSs in Sec-
tions 2 and 3 might seem application-specific and peripheral
to the theme of the paper, these details are crucial to un-
derstanding how we added reconfigurability to an existing
application. Additionally, these details provide insight into
how we propose to build on this knowledge to handle other
networked applications.

Consider the task of keeping the rules configuration of a
NIDS ideal and up-to-date. Initially, the administrator must
choose an appropriate starting configuration for the NIDS;
the simplest thing to do is to enable all of the default rules
with little regard as to the actual services on the network.
This conservative approach may require unnecessarily or un-
manageably high resource requirements, and may in fact
overlook certain unusual services that are on the network
but that are unlikely to be covered by a generic, default
configuration.

To err on the side of safety, network administrators may be
tempted to enable alerts for many more services than neces-
sary. For example, a NIDS may be configured to monitor for
FTP, HTTP, and Telnet attacks; yet, if no FTP, HTTP, or
Telnet services are present on the network, the overhead of
checking network traffic for the signatures of these attacks
may be unnecessary and may result in alerts for attacks
that (although potentially real) are necessarily ineffectual
as there are no services for them to compromise.

In this case, erring on the side of safety can cause two types
of problems. First, it has been shown that high workloads
can cause a NIDS to miss attacks and even to crash [20].
Because a NIDS is typically required to process network
traffic in real-time, and because network buffers are finite,
extensive monitoring in heavy traffic can cause a NIDS to
ignore important network traffic. Second, a high volume of
alerts can make the job of the network administrator much
harder, as it becomes more difficult to separate the impor-
tant alerts from those that are less critical. Alerts for at-
tacks on non-existent services may likely be considered to be
of lower priority than alerts for attacks on real (and vulner-
able) services. However, if there is no correlation between
the services actually deployed on the network, and the at-
tack traffic on the network, establishing such priorities is
non-trivial.

2.1.2 Effecting a Configuration
It is perhaps surprising to note that certain widely-deployed
modern NIDSs require a period of downtime for routine
maintenance/reconfiguration. The current state of the prac-
tice for updating the popular open-source NIDS known as
Snort [26] to defend against new attacks is to download the
new rules and signatures, merge them into the current data-
base, update the configuration manually, and restart the
Snort process in order for the updates to take effect.

Unfortunately, this type of naive approach to performing
reconfiguration can result in unexpected vulnerabilities [17].
Many modern NIDSs track various types of connection state
in addition to performing stateless packet analysis. This
connection-state tracking helps defend against a class of at-
tacks that specifically targets the inherent lack of “memory”
of stateless NIDSs.

Additionally, NIDSs fail-open: attacks can occur even if the
NIDS is down. This is because NIDSs typically passively
monitor network traffic, meaning that they analyze the traf-
fic, but generally do not attempt to modify or filter it. This
passive monitoring has the advantage that it is minimally
intrusive because it does not affect the flow of network traf-
fic. However, it also means that if a NIDS crashes or is down



for updates, the network will continue to function without
the monitoring and protection provided by the NIDS.

Thus, one can see that the criticality of NIDSs, combined
with the facts that they fail-open and may be subject to ad-
ditional vulnerabilities caused by downtime, means that any
successful reconfiguration strategy must minimize the NIDS
downtime required. The Flexiphant technique described in
this paper meets this requirement by providing autonomic,
live (or online) NIDS reconfiguration based on changing re-
quirements and changing environmental characteristics.

2.2 Arguing for Autonomic Reconfiguration
The set of services run on most networks is not static; this is
particularly true of wireless and ad hoc networks. Therefore,
a static configuration may not be appropriate over time, as
new systems are added to the network, and existing systems
are removed from the network. The new systems may intro-
duce new services that are not accounted for by the current
NIDS configuration, and the removed systems may remove
the only instances of certain services on the network. In
both cases, the NIDS should be reconfigured.

The NIDS itself may move to a new environment. For ex-
ample, a network administrator could install a NIDS onto
a mobile device, such as a laptop, and use it to patrol dif-
ferent areas of a wireless network. In this scenario, resource
constraints such as the reduced processing power and lim-
ited battery life of the mobile device would further suggest
a need for reconfiguration into precise, minimal configura-
tions.

Administrator preferences may change. A network admin-
istrator who has just installed new HTTP servers may be
concerned mostly with any attacks targeting these servers,
but, if the servers prove resilient over time, the administra-
tor may become more concerned with other attacks, e.g.,
FTP attacks.

3. CASE STUDY: FLEXIPHANT
In this section, we present Flexiphant, a novel unified system
architecture for retrofitting a Network Intrusion Detection
System to add support for dynamic reconfiguration. Using
Flexiphant, it is possible to create NIDSs that are capa-
ble of dynamically modifying their own rule configurations,
both at deployment time and at run time, in order to de-
fend against changing security risks and changing resource
constraints.

The features of Flexiphant that are described in this sec-
tion handle three important challenges in retrofitting a net-
worked application to add support for autonomic reconfigu-
ration: (1) they provide a way for the application to gather
information about the state of its surroundings; (2) they
provide a way to determine a new configuration; and (3)
they provide a mechanism for this new configuration to be
swapped into the system, without requiring that the system
be restarted.

As discussed in Section 2.2, it may be desirable to trig-
ger reconfiguration based on a number of factors, including
changes in active services, changes in available resources,
and changes in administrator preferences. All of these sce-

Reconfigure

Generate
Scan

Publish

Publish

Scan

Repository

NIDS

Config.

Hosts

(a) (b) (c)

Figure 1: The Flexiphant system architecture.

narios require dynamic reconfiguration support for deter-
mining the services on the network and for using this infor-
mation to reconfigure the NIDS dynamically.

3.1 Flexiphant System Architecture
In this section, we present the Flexiphant system architec-
ture as a concrete example of a way to retrofit a specific
networked application, i.e., a NIDS, with support for auto-
nomic reconfiguration. A Flexiphant-enabled NIDS contin-
ually analyzes its environment at runtime and dynamically
reconfigures itself to work best in that environment.

Figure 1 presents the system architecture of Flexiphant: (a)
Flexiphant analyzes its environment to collect data about
the services that are available (and, therefore, potentially
vulnerable) on the network, and holds and indexes this data
in a service repository; (b) Flexiphant uses the informa-
tion from its service repository to create new configurations
based on administrator preferences; and (c) it dynamically
reconfigures the running NIDS without incurring downtime.
This three-stage process can be repeated throughout the life
cycle of the Flexiphant system. These steps are described
in this section in greater detail.

3.2 Gathering Configuration Parameters
Flexiphant basis its reconfiguration decisions partially on
the set of services that are actually running on its network.
Therefore, for a Flexiphant-enabled system to tune its con-
figuration dynamically and effectively, it must collect data
about these services. Flexiphant uses two complementary
techniques to perform this data collection: in service scan-
ning, the service repository scans for updates periodically;
in service publishing, the servers on the network publish to
the service repository information about the services that
they host. Flexiphant stores the information that it collects
in its service repository.

Service Scanning: Flexiphant can identify machines and
determine the services that are running on these machines
through network scanning tools like nmap [21]. The nmap
tool can perform both TCP and UDP scans to determine
the active services and the operating systems that run on a
network of machines. This provides one way to determine



classes of active services (for example, FTP or WWW ser-
vices) on the network, to determine the program name and
version of many of the services, and to determine the num-
ber of machines running these services. This information is
useful in its own right, but can be further refined through
banner grabbing [24] to determine the actual services run-
ning in cases where nmap cannot reliably do so.

Service scanning can be viewed as a form of polling that re-
quires active, periodic work by Flexiphant. Like any polling
system, there is a tradeoff between how frequently to poll
(scan), and how often the data (the list of running services)
changes. If used as the sole means by which to obtain service
data, this polling might present a challenge to scalability.

Service Publishing: Service publishing is a complemen-
tary alternative to service scanning. It relies on the network
hosts to send information to Flexiphant about the services
they run. Each host must have installed on it a Flexiphant
publisher program, which can use host-specific techniques
for determining available services. For example, on a Win-
dows system, the Flexiphant publisher can make use of the
Windows Registry and the Services list to determine not
only the services that are currently running, but also those
that are configured or registered to run and that therefore
might be expected to run in the near future.

Service publishing faces some inherent reliability and secu-
rity challenges. The Flexiphant publisher program on any
given end host might be disabled either by a crash or by an
end-user who either attempts to remove the program or to
block it (e.g., through the use of a personal firewall product)
from accessing the network. It also might be modified or re-
placed in an attempt to provide Flexiphant with misleading
information.

The Flexiphant Service Repository: In Flexiphant, the
service information obtained through scanning and publish-
ing is accumulated, indexed, and stored in a central location
called the Flexiphant service repository. This repository is
queried during the process of creating new system configura-
tions. Storing the data in a central database has the advan-
tage that the data can be readily shared with components
other than Flexiphant that might need access to it. Much
of the service data used by Flexiphant may already be gath-
ered on some networks for other purposes, such as security
auditing. In such situations, Flexiphant can be configured
to use the existing data or to augment it where desirable.

3.3 Determining the Configuration
Flexiphant uses the configuration-parameter information to
create new configurations. It uses its general information
about the types of services running on the network in order
to categorize coarsely the categories of rules that should be
configured to run. This can allow Flexiphant to disable or
lower the priority of large groups of rules in batches. The de-
tailed information that Flexiphant gathers through service
banner-grabbing and service publishing, about the services
that are running or which may potentially run, can be used
to tune further the configuration.

Flexiphant takes additional factors into consideration when
assigning priorities. These factors include the importance of

Use New RulesUse New Rules

QUIESCENT
STATE

Quiesce

QUIESCENT
STATE

Quiesce

Quiescent Point
load rules
swap rules

Quiescent Point
load config.
swap config.

NORMAL
STATE

NORMAL
STATE

Normal Snort
get packets

analyze packets

Normal Snort
get packets

analyze packets

INTERRUPT
STATE

SIGUSR2
signal

SIGUSR2 Handler
breakloop()

set reload flag

INTERRUPT
STATE

SIGUSR2
signal

SIGUSR2 Handler
breakloop()

set reload flag

Figure 2: Elephant Reload implementation.

the particular service to the network, the importance of the
machine on which the service is running (e.g., an important
server machine vs. a user’s desktop), and factors commonly
taken into account by NIDSs like the potential severity of
the attack method.

By design, Flexiphant can create intermediate configuration
scripts that are not specific to any one NIDS in as much as
possible. It then translates these scripts into configuration
information for any of a variety of NIDSs. This feature can
allow for multiple NIDS versions to be reconfigured to work
on the same network.

3.4 Performing Reconfiguration
To perform dynamic reconfiguration, Flexiphant must be
able to load new configurations as they become available,
while maintaining data-integrity and state-consistency. Flex-
iphant uses the Elephant Reload algorithm [17] to perform
the actual system reconfiguration in a live, online fashion.
In the original Elephant system, the network administrator
assembles a new rule configuration and manually instructs
Elephant to reconfigure the NIDS. Flexiphant instead auto-
nomically determines the best new rule configuration, and
uses Elephant Reload to instruct the running NIDS to reload
its rule configuration in response to environmental triggers
that can be tuned by the administrator, substituting the
newly generated configuration for the old without incurring
downtime or losing state.

As seen in Figure 2, the Elephant Reload algorithm works
as follows: first, it finds a quiescent point in the NIDS,
i.e., a point where the rules loaded by the current NIDS-
configuration are not in use; next, it loads the rules required
by the new NIDS-configuration into memory; and, finally, it
replaces the current rules with the new rules. From an ap-
plication consistency standpoint, it is important that the
reconfiguration be applied at a quiescent point in order to
avoid the possibility of network traffic being checked par-
tially using the old configuration and partially using the
new configuration.

4. LOOKING FORWARD
In presenting Flexiphant, we focus on three steps of an auto-
nomic reconfiguration process: gathering information about



the environment, determining the new configuration, and
applying the new configuration. We outline here other activ-
ities, including validating the new configuration, that form
our future work.

Validating the Reconfiguration
There are questions about the benefit of each new configura-
tion: is the system actually more reliable or more secure af-
ter each successive reconfiguration? How do we ensure that
the reconfiguration itself does not degrade the resilience of
the entire system? How do we know that the reconfiguration
did not violate any quality-of-service requirements expected
of the system?

Self-Stabilization
There is a set of questions related to how best to tune the
system. While the process of reconfiguration should provide
benefits in terms of resource usage and alert generation, re-
configuration itself requires time and resources. If reconfig-
uration is triggered too often, how is the system to stabilize?
As the set of services on the network changes, there may be
latency between the changes and the reconfiguration that
is triggered by those changes. As the environment changes,
the goal of reconfiguration may change accordingly; there-
fore, the autonomic reconfiguration functionality may need
to be able to reconfigure itself.

Dependable Reconfiguration
The reconfiguration process itself needs to be reliable. Cur-
rently, the reconfiguration process in Flexiphant is atomic—
if the NIDS crashes during reconfiguration, its configuration
will still be consistent upon restart. Whether other net-
worked applications can be made to share this trait is a
subject of further investigation. We also have not imple-
mented support for rolling-back configuration changes that
prove problematic. Replication is frequently declared to be
a solution for classes of reliability problems in networked ap-
plications; in the case of NIDSs, replication may not be the
answer for reliable reconfiguration [17].

Transparent Reconfiguration
The availability of the source-code for our case-study appli-
cation allows us to manipulate the internal behavior of the
application directly. Specifically, as described in [17], finding
a safe quiescent point is facilitated by the event-loop driven,
single-threaded architecture of Snort, our case-study target
application. Future work may consider retrofitting applica-
tions for which the source code is not available; this would
necessitate treating the application as a black-box.

5. RELATED WORK
There has been a great deal of recent interest in autonomic
computing [14]. This can be seen in the proceedings of re-
cent workshops and conferences in the area, e.g., [1, 13].
Research has focused on many areas of autonomic comput-
ing, including how to verify that a new configuration will
not be problematic [16], how to choose the best adaptation
from a set of possibilities [10, 23], and how to use software
architecture for self-adaptation [8]. There has also been at-
tention focused on how to take research technologies and
make them adoptable for industrial use [6]; our work here
seeks to do that for autonomic reconfiguration.

One of the most widely researched areas in software recon-
figuration is software upgrading, which is surveyed by Aj-
mani [2] and Segal and Frieder [25]. In our case-study, we
use Elephant Reload [17] to perform autonomic reconfigu-
ration. Elephant Reload is similar to techniques for live
software upgrades, but less complex because it is a solu-
tion specific to NIDSs that takes advantage of the fact that
the rule configuration can be separated from any code that
maintains state.

Our method of determining when it is safe to apply the new
configuration relies on determining when the application is
quiescent. Kramer and Magee [15] provides a fundamental
definition of quiescence as the property that “[a] node is not
within a transaction and will neither receive nor initiate any
new transactions”. The system presented in [15] relies on
application nodes to become quiescent when instructed to,
and provides an algorithm for moving a group of nodes into
a quiescent state within a bounded period of time. Bidan
et al. [7] follows [15], but attempts to minimize impact on
concurrency by reducing the number of nodes that must be
made quiescent at any one time; the technique is restricted
to systems built from multi-threaded nodes, and works by
passivating only a part of each node. In the Eternal Sys-
tem [18, 29], object quiescence is defined as any state in
which the object is not executing any of its methods. Eternal
guarantees distributed consistency by providing an atomic
switch-over operation, which mandates the quiescence of all
objects involved in the switch-over.

We make use of Elephant Reload to detect and enforce qui-
escence. There have been a number of other techniques
introduced for finding quiescence. Both PODUS [25] and
ABACUS [3], which operate at the procedure granularity-
level, recognize quiescence by determining when a procedure
is inactive. Gagliardi et al. [9] assumes that a module is qui-
escent when it has no IPCs outstanding, and requires that
each module notify a third party component of any IPCs it is
issuing. Hauptmann and Wasel [11] provides tools for locat-
ing potential quiescent points, but requires the programmer
to associate explicity the quiscent points in the old and new
versions. POLYLITH [12] provides mechanisms to export
the state of a non-quiescent process; in this way the pro-
grammer need not identify quiescent points, but still must
explicitly name reconfiguration points.

There has been work done on tools for offline management
of the NIDS rule and signature updates that become avail-
able when new attacks are discovered. Oinkmaster [22] and
SnortCenter [27] provide ways to download rule updates for
Snort and to merge the new rules into the current rule config-
uration in an offline fashion. They do not provide any mech-
anism for applying the updates to a running Snort process,
and they do not provide support for autonomically creating
new rule configurations.

Axent NetProwler [5] is a commercial NIDS that can scan
the network for services and automatically apply rule up-
dates without needing to be restarted. However, the inter-
nal details of NetProwler have not been released publicly,
and the configuration/reconfiguration step requires that the
administrator manually choose the services to protect; Net-
Prowler does not autonomically reconfigure itself. Snort-



Rules [28] is a small program for Snort that uses nmap [21]
to determine the ports on the network that are active, and to
allow the rules configuration to be filtered based on the list
of active ports. SnortRules might serve as an initial imple-
mentation of the service scanning and configuration-filtering
portions of Flexiphant.

6. SUMMARY AND FUTURE WORK
In this paper, we have argued that there will be a growing
demand for autonomic software, and that existing software
will have to be retrofitted to meet the demand. To learn
lessons in retrofitting an existing application to add support
for dynamic autonomic reconfiguration, we have presented
a case-study.

Our case-study introduces Flexiphant, a novel unified sys-
tem architecture for retrofitting a NIDS with support for
dynamic reconfiguration that may enable it to meet the us-
age requirements of tomorrow. Flexiphant consists of mech-
anisms to catalog the services on a network, to generate new
system configurations based on this catalog, and to perform
the reconfiguration of the NIDS dynamically, in a depend-
able, online fashion automatically, in response to a variety
of administrator-tunable triggers.

Our current research prototype of the Flexiphant system has
enabled us to understand some of the challenges involved
in retrofitting a pre-existing networked application to add
autonomic reconfiguration. Our next steps will involve ad-
dressing some of the open research questions that we have
outlined, particularly for other networked, and perhaps dis-
tributed, applications.

7. REFERENCES
[1] ACM SIGSOFT Workshop on Self-Managing Systems

(WOSS04).
http://www.cs.cmu.edu/∼garlan/woss04/,
October/November 2004.

[2] S. Ajmani. A review of software upgrade techniques
for distributed systems. http:
//pmg.csail.mit.edu/∼ajmani/papers/review.pdf,
August 2002.

[3] K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson.
Dynamic function placement for data-intensive cluster
computing. In USENIX 2000 Annual Technical
Conference, pages 307–322, San Diego, CA, June 2000.

[4] J. Appavoo, K. Hui, C. A. N. Soules, R. W.
Wisniewski, D. M. D. Silva, O. Krieger, D. J.
Edelsohn, M. A. Auslander, B. Gamsa, G. R. Ganger,
P. McKenney, M. Ostrowski, B. Rosenburg,
M. Stumm, and J. Xenidis. Enabling autonomic
behavior in systems software with hot-swapping. IBM
Systems Journal, 42(1), 2003.

[5] Axent Netprowler.
http://www.c2000.com/products/sec netp.htm,
February 2005.

[6] R. Balzer, M. Litoiu, H. A. Müller, D. B. Smith,
M.-A. Storey, S. R. Tilley, and K. Wong. Fourth
International Workshop on Adoption-Centric Software

Engineering. In Workshop at the 26th IEEE/ACM
International Conference on Software Engineering
(ICSE 2004), Edinburgh, Scotland, May 2004.

[7] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A
dynamic reconfiguration service for CORBA. In
Fourth International Conference on Configurable
Distributed Systems, pages 35–42, Annapolis, MD,
June 1998. IEEE Computer Society Press.

[8] S.-W. Cheng, A.-C. Huang, D. Garlan, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based self
adaptation with reusable infrastructure. IEEE
Computer, 37(10), October 2004.

[9] M. Gagliardi, R. Rajkumar, and L. Sha. Designing for
evolvability: Building blocks for evolvable real-time
systems. In IEEE Real-Time Technology and
Applications Symposium, pages 100–109, Boston, MA,
June 1996.

[10] D. Garlan, V. Poladian, B. Schmerl, and J. P. Sousa.
Task-based self-adaptation. In ACM SIGSOFT 2004
Workshop on Self-Managing Systems (WOSS’04),
Newport Beach, CA, 2004.

[11] S. Hauptmann and J. Wasel. On-line maintenance
with on-the-fly software replacement. In 3rd
International Conference on Configurable Distributed
Systems, pages 70–80, Annapolis, MD, May 1996.

[12] C. Hofmeister and J. Purtilo. Dynamic reconfiguration
in distributed systems: Adapting software modules for
replacement. In 13th International Conference on
Distributed Computing Systems, pages 101–110,
Pittsburgh, PA, May 1993.

[13] IEEE First International Conference on Autonomic
Computing (ICAC-04).
http://www.caip.rutgers.edu/∼eparashar/ac2004/,
May 2004.

[14] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, pages 41–50,
January 2003.

[15] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE
Transactions on Software Engineering,
16(11):1293–1306, 1990.

[16] S. McCamant and M. D. Ernst. Predicting problems
caused by component upgrades. In 10th European
Software Engineering Conference and the 11th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, pages 287–296, Helsinki, Finland, 2003.

[17] M. G. Merideth and P. Narasimhan. Elephant:
Network intrusion detection systems that don’t forget.
In Hawaii International Conference on System
Sciences (HICSS-38), Big Island, HI, January 2005.

[18] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan,
L. A. Tewksbury, and V. Kalogeraki. Eternal: Fault
tolerance and live upgrades for distributed object
systems. In DISCEX Information Survivability
Conference, pages 184–196, Hilton Head, SC, January
2000.



[19] B. Mukherjee, L. T. Heberlein, and K. N. Levitt.
Network intrusion detection. IEEE Network,
8(3):26–41, May/June 1994.

[20] D. Newman, J. Snyder, and R. Thayer. Crying wolf:
False alarms hide attacks. Network World, June 2002.

[21] Nmap free security scanner for network exploration
and hacking. http://www.insecure.org/nmap/,
February 2005.

[22] Oinkmaster. http://oinkmaster.sourceforge.net/,
October 2004.

[23] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw.
Dynamic configuration of resource-aware services. In
26th International Conference on Software
Engineering (ICSE’04), Edinburgh, Scotland, May
2004.

[24] G. K. S. McClure, J. Scambray. Hacking Exposed.
McGraw-Hill, fourth edition, 2003.

[25] M. Segal and O. Frieder. On-the-fly Program
Modification: Systems for Dynamic Updating. IEEE
Software, 10(2):53– 65, 1993.

[26] Snort. http://www.snort.org, February 2005.

[27] SnortCenter - Snort Management Console.
http://users.pandora.be/larc/, February 2005.

[28] SnortRules. http://www.andrew.cmu.edu/user/
rdanyliw/snort/snortrules.html, February 2005.

[29] L. Tewksbury, L. Moser, and P. Melliar-Smith. Live
upgrades of CORBA applications using object
replication. In IEEE International Conference on
Software Maintenance, Florence, Italy, November
2001.


