
To appear in the proceedings of the 38th Hawaii International Conference on System Sciences (HICSS-38). January, 2005.

Elephant: Network Intrusion Detection Systems that Don’t Forget

Michael G. Merideth and Priya Narasimhan
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA, USA
{mgm, priya}@cs.cmu.edu

Abstract

Modern Network Intrusion Detection Systems (NIDSs)
maintain state that helps them accurately detect attacks.
Because most NIDSs are signature-based, it is critical to
update their rule-sets frequently; unfortunately, doing so
can result in downtime that causes state to be lost,
leading to vulnerabilities of attack misclassification. In
this paper, we show that such vulnerabilities do exist and
provide a way to avoid them. Using the open-source
NIDS Snort, we present Elephant, an approach and
implementation for updating rule-sets that provides a way
to cause Snort to enter a safe quiescent point, load the
new rules into memory, and remove the old rules from
memory—all while preserving the state that is required to
make sure that the NIDS does not miss attacks. We
provide a critique and performance evaluation of our
technique.

1. Introduction

Network Intrusion Detection Systems (NIDSs) [4]
provide the critical security function of detecting attacks
and compromises on a network. As NIDS technology
improves, the reliance on NIDSs will likely increase.
Most commercial NIDSs are signature-based, so they
require a database of attack signatures (for detecting
network-based attacks) and a corresponding rule database
(for classifying and taking action on any malicious
network traffic). Because new attacks emerge rapidly,
these databases must be updated frequently with
signatures and rules for the new attacks.

Many modern NIDSs track various types of
connection-state, as discussed in Section 3, in addition to
performing stateless packet analysis. This state is often
associated with various protocols (such as TCP, HTTP,
and FTP) and helps the NIDS avoid the possibility of
misclassifying packets that are sent using these protocols.
This state tracking helps defend against a class of attacks
that specifically targets the inherent lack of “memory” of
stateless NIDSs.

The need to update the rule and signature databases
conflicts with the desire to have the NIDS running all of

the time on the network. Any scheduled downtime
incurred in updating the rules reduces the NIDS’s online
availability. As we discuss in Section 10.1, simply
replicating the NIDS does not necessarily reconcile this
conflict or solve this problem.

NIDSs are often deployed such that they passively
monitor network traffic on a network segment. Passive
monitoring means that the NIDS might analyze the traffic,
but does not attempt to modify or filter it. This passive
monitoring has the advantage that it is minimally
intrusive because it does not affect the flow of network
traffic. However, this also means that NIDSs fail-open:
attacks can occur even if the NIDS is down. If a NIDS
crashes or is down for updates, the network will continue
to function without the monitoring and protection
provided by the NIDS.

The current state of the practice for updating the
signatures and rules in the popular open-source NIDS
known as Snort [11] (discussed further in Section 4), is to
download or create rule and signature updates, merge
them into the current databases using a rule-management
tool like Oinkmaster [6], and restart the NIDS in order
for the updates to take effect.

The problem with this update strategy is that it does
not account for the state tracking that is performed by the
NIDS. The NIDS might be optimized to restart very
quickly, so a restart might add only a negligible amount
of downtime in terms of number of seconds. However, if
the state that the NIDS maintains is not retained over a
restart, the NIDS may misclassify or entirely ignore
important attack traffic once it is restarted.

In this paper, we demonstrate a timing vulnerability
introduced whenever the rules of the NIDS are updated in
a manner that does not preserve the state of the NIDS.
We present Elephant Reload as a way to prevent these
attacks through no-restart, state-preserving NIDS rule
updating. We present an implementation for Snort called
Elephant STR, an empirical evaluation, and a critical
discussion of the related issues.

The organization of this paper is as follows. We begin
by discussing our assumptions. Section 3 discusses the
reasons that modern NIDSs maintain state. In Section 4,
we present the vulnerability that is created by using
restart as a mechanism for rule updating. Section 5

presents the current techniques for reloading Snort’s
rules, and Section 6 presents our alternative model and
algorithm for online rule updating. We present an
implementation for our model and a performance
evaluation of it in Sections 7 and 8. Section 9 presents
potential enhancements to our implementation, while
Section 10 considers insights and lessons learned from
our experience. Section 11 is devoted to related work,
and Section 12 concludes the paper.

2. Assumptions

When we discuss the availability of a NIDS, we are
concerned with online availability. This means that we
are concerned with cases in which the desired behavior of
the NIDS is real-time intrusion-detection performed on
live network traffic. In certain situations, NIDSs may be
used to analyze network-traffic traces that were captured
to a file; we consider this to be offline processing.

Our strategy of performing online rule and signature
updates does not mean that the updates must be
performed automatically—it means simply that the NIDS
does not need to be restarted to take advantage of the
updates.

We assume that the rule updates are valid. Current
best practices for updating the rules and signatures dictate
that the updated databases should be tested (statically or
dynamically) before use in a production system [2].
Before updating the NIDS using Elephant Reload, this
testing can still be performed.

In this paper, we focus on only one particular source
of potential downtime: the need to update the rule and
attack signatures to account for new attacks. However,
there are many sources of potential scheduled and
accidental downtime for deployed NIDSs. For example,
in certain cases, the NIDS may crash, the machine it runs
on may crash, its network connection may fail, or a new
version of the NIDS might need to replace the current
version.

Our experiments and implementation are based on the
popular open-source network intrusion detection system,
Snort [11]. Where we can generalize our findings and
experience to another NIDS like Bro [7], or to NIDSs as a
class of systems, we do so through the use of the term
NIDS; where our experience relates directly to Snort, we
use the word Snort in place of NIDS.

3. The State Maintained by Modern NIDSs

The Snot [14] and Stick [3] attacks were developed to
overwhelm stateless NIDSs. These attacks function by
generating packets that are expected to trigger alerts by
the NIDS. These attacks seek to cause so many alerts that
valid attack traffic will be able to slip by unnoticed in the

noise; this heavy volume of alerting can even cause a
NIDS to crash under the load of analyzing each packet
and producing the corresponding alerts [5].

To create a high volume of misleading traffic, Snot
and Stick generate and send packets with no regard to
TCP connection state. Skipping the TCP connection
establishment step helps this type of attack for the
following reasons: (1) it saves on the time-overhead
involved in creating a connection, (2) it does not require
the existence of a TCP server to which to connect, (3) the
attacker can spoof the source IP address because no
response is expected, and (4) the attacker can continue to
send bad traffic without concern that the connection
might be closed or reset by the server.

Modern NIDSs maintain state in order to thwart
attacks like Snot and Stick. This state allows a NIDS to
discard the types of attack packets generated by Snot or
Stick preemptively without actually examining the
contents of the packets. In particular, stateful NIDSs
typically assume that it is safe to discard packets that are
not sent over an established TCP connection.

Working from the assumption that it is reasonable to
discard TCP packets that are not part of an established
TCP connection, a stateful NIDS attempts to track the
connection state of each of the end-hosts on its network
segment. The NIDS watches for occurrences of the TCP
three-way handshake, which indicates that a TCP
connection was successfully established between a client
machine and a server machine (one or the other of which
is on the NIDS’s network). The NIDS simply drops any
TCP traffic that does not occur over an established TCP
connection that it knows about. For accurate attack
detection, it is important that the connection state on the
NIDS stays in sync with the actual TCP connections that
it watches.

By automatically dropping traffic that is not sent over
a legitimate TCP connection, the NIDS avoids the
problem of generating alerts for pseudo-attack traffic that
will have no effect on end-hosts. The assumption that
this behavior is safe is based on the fact that, in general,
the TCP protocol stack of the target server will also
discard these packets; therefore, this traffic will not be
able to exploit any potential vulnerability in the server.
Additionally, the traffic might not be handled by any
target server at all—the Snot attack tool can be
configured to send TCP packets to random host addresses
within a network without regard as to whether the target
hosts exist.

4. Vulnerability in Snort

Snort uses a single set of rules that acts as both the
signature database and the rule database. Snort was
introduced in 1998, and originally provided only stateless
intrusion detection. TCP session-tracking was added to

Snort in 2001 with the introduction of the stream4
preprocessor. According to the release documentation,
stream4 is capable of stateful inspection for upwards of
32,000 simultaneous TCP connections [13].

All active Snort preprocessors have the opportunity to
act on packets before the packets are sent to the stateless
detection engine. These preprocessors maintain
individual state databases for a variety of purposes such
as packet-fragment reassembly, TCP session inspection,
TCP session reassembly, and application protocol
tracking. The current version of Snort (2.1.2) ships with
12 preprocessors (based on an examination of the
preprocessor source code directory). Of these, 5
preprocessors (frag2, stream4, http_inspect, rpc_decode,
and bo) are enabled by default. These preprocessors can
be quite complex; for example, the stream4 preprocessor
implementation file contains 4980 lines of commented C
code.

Snort contains a vulnerability based on the interaction
between its TCP connection-tracking and its rule updating
that can be exploited when Snort is restarted after a rule
update. Despite the relatively complex state tracking
performed by the preprocessors, the support for updating
Snort’s rule-set is very minimalist. As discussed in
Section 5, the current procedure for updating Snort’s rule-
set is to restart Snort after downloading the new rules.
The problem is that Snort loses its state during the restart.

When configured to defend against the Snot and Stick
attacks, Snort uses the stream4 preprocessor to drop
packets that appear to have been sent outside of a valid
TCP connection. When restarted, Snort loses the state
maintained by its preprocessors, including the state about
the TCP connections that are active on its network.
Because of this, Snort will simply discard any packets—
even actual attack packets—that are sent over TCP
connections that were established before it was restarted,
even if it knew about the TCP connections before it was
restarted.

4.1 Demonstration of the Vulnerability

We now show that this vulnerability does exist in Snort.
In order to demonstrate the vulnerability, we first require
a tool that sends attack traffic over established TCP
connections. The previously mentioned Snot tool reads
publicly available Snort rule files and generates packets
that specifically target those rules in order to trigger
alerts. However, in its present form, Snot does not
attempt to establish a TCP connection before sending
TCP packets.

We use a version of the Snot 0.92a tool, which we
have modified in a manner that we describe next; we refer
to our modified version of Snot as TCPSnot. Unlike
Snot, our TCPSnot tool does establish a TCP connection
before sending attack traffic so that, as discussed in

Section 3, the traffic that it generates should not be
discarded by a NIDS that is configured properly for TCP
state tracking. TCPSnot uses the stream socket interface
instead of the raw socket interface that is employed by the
standard Snot tool. The use of the stream socket interface
makes TCPSnot somewhat less flexible than Snot in that
TCPSnot cannot forge or modify parts of the TCP or IP
headers. Creating a more flexible version of TCPSnot
could be achieved by lower-level modifications to the
kernel.

To demonstrate the vulnerability, we perform an
experiment consisting of two trial runs. In both runs, we
use identical Snort configurations that track TCP
connection state. With Snort already running, we have
TCPSnot establish a connection to a server on the Snort
server’s network, pause for a fixed length of time (at least
the length of time required to reboot Snort), and then send
an attack packet that should trigger an alert by Snort,
based on its current rule-set.

The two runs are depicted in Figure 1. During both
runs, TCPSnot establishes a TCP connection to the end
host (t0-t2), a fact that Snort records at t3. In Run B,
Snort is restarted at t4 and finishes restarting at t5. At t6,
the attacker sends an attack packet. In Run A, Snort
correctly recognizes the attack as occurring over a TCP
connection, so it generates an alert at t7. But in Run B,
Snort fails to do so because it has lost its state; Snort will
also ignore any subsequent attack packets sent over this
TCP connection.

The two runs differ as follows:

1. In Run A, we do not restart Snort. As expected,

Snort detects the attack packet and generates the
expected alert.

Syn

Syn/Ack

Ack Attack

Attacker

End Host

Snort
(Run A)

Snort
(Run B)

t0 t1 t2 t4 t5 t6 t7t3

Alert

Restart No Alert

X

XX

Figure 1. Two trial runs that together illustrate
the vulnerability in Snort using TCPSnot.

2. In Run B, we restart Snort (using the Snort Reload
technique that is discussed in Section 5) after
TCPSnot has established a connection to the server.
Once Snort has finished restarting, TCPSnot sends
the attack packet. As predicted, Snort fails to
generate an alert for this packet.

The cause for this misleading behavior is clear: Snort

has lost its state after its restart.

5. Current Snort Rule Updating

In order to update its rules, Snort is typically restarted
using one of two techniques, which we refer to as Snort
Restart and Snort Reload. Both techniques result in a loss
of state that can lead to the vulnerability discussed in
Section 4.

Snort Restart is characterized by a manual two-step
approach. The current Snort process is manually shut
down, a new Snort process is then manually started.
These two steps require operating-system-provided
facilities, such as a way to terminate the current Snort
process and a way to launch a new Snort process.

Snort Reload is similar to Snort Restart, but it is done
in memory, automatically by Snort, and uses only a single
process. Under Snort Reload, the Snort process first calls
the Snort shutdown routines, but does not terminate.
Instead, once the shutdown routines have completed, the
process uses the POSIX execv() call (or execvp(),
depending on configuration options) to replace the
current Snort process image with a newly started, clean
Snort image.

To perform a Snort Reload, the administrator sends a
SIGHUP signal to the Snort process; Snort treats the
SIGHUP signal as an indication that it should restart
itself. Snort Reload does not work in its current state if
Snort is run in a chroot jail or if it is set to run without the
privileges of the super user.

6. Elephant Online Rule Updating

From an architectural standpoint, as discussed in Section
4, Snort is designed so that its intrusion detection engine
(the place where the rules and attack signatures are used)
is stateless, while its preprocessors may maintain state. It
is this characteristic that can make online rule updating
relatively straightforward. We are only updating rules—
we are not updating the runtime state, the code that acts
on that state, nor the interfaces to that code.

Our basic algorithm, which we call Elephant Reload,
for updating the rules, is as follows: first, find a quiescent
point, i.e., a point where the rules are not in use; next,
load the new rules into memory; and, finally, replace the
current rules with the new rules.

From an application consistency standpoint, it is
important that the rule update be applied at a quiescent
point in order to avoid the possibility of packets being
checked partially using the old rule-set and partially using
the new rule-set. From an implementation standpoint,
applying the rule update at a quiescent point makes it
much simpler to avoid stale runtime references to old
rules that could be cached while the rules are in use.

7. Elephant STR Implementation

In order to implement Elephant Reload for Snort, we need
the following: (1) a way for the administrator to signal
that the rules should be updated, (2) a quiescent point, (3)
a way to load the rules into memory, and (4) a way to
remove the old rules from memory. As we will see in this
section, Snort provides us (1–3) with relative ease, but (4)
poses more challenges.

As seen in Figure 2, the modified running Snort
system can be in one of three states: the
NORMAL_STATE, in which Snort executes as it did
without modification; the INTERRUPT_STATE, which
is the direct consequence of a request for rule reloading
and which flags the need for a rule update; or the
QUIESCENT_STATE, where the rule-set is not being
accessed and where the rule updates can therefore safely
occur.

We have created an implementation of Elephant
Reload for Snort 2.1.2 that we call Elephant STR (single-
threaded reload). Snort is single-threaded by design; the
Snort developers have stated that this is, in part, because
of a desire to retain platform portability [9]. Therefore,
Elephant STR does not rely on the addition of any new
threads (hence the STR). In Section 9, we propose more
complex implementation variants of Elephant Reload,
such as one that uses multiple threads, and another that
does an in-memory merge of the current and new rules in
order to reduce memory overhead. Here, we discuss only
the Elephant STR implementation.

7.1 Requesting the Reload

We require a way to signal that Snort should reload its
rule-set. It would be possible to implement this in a
number of ways, including having Snort listen for special
network traffic, having Snort listen on a socket, or by
using the UNIX Signal API.

Of these options, we feel that the UNIX Signal API
[15] provides the most direct and natural interface for
sending “commands” to Snort, when given a finite, small
set of commands. An added benefit is that this behavior
fits naturally with Snort—indeed, Snort already handles a
number of signals; for example, Snort currently catches
SIGUSR1 for displaying statistics about packet
processing.

The SIGUSR2 signal is reserved for application-
designated purposes, although it is only rarely used by
applications. Using the UNIX Signal API, we modify
Snort by adding a SIGUSR2 handler that treats the
SIGUSR2 signal as a request to reload the rule-set. We
adhere to Snort’s source-code conventions of allowing
nested signals and disallowing recursive signal handlers
(i.e., those caused by the same signal).

For Elephant STR, we cannot use this new SIGUSR2
handler as the point at which actually to reload the rules
because Snort may not be quiescent when the handler is
invoked. UNIX signal handlers asynchronously interrupt
the executing application code, so it is possible that the
SIGUSR2 handler would interrupt the detection
processing in which the rule-set is being used. Even if we
did not care about this level of consistency (in which not
even a single packet can be partially processed by both
rule-sets), we still could not use the signal handler as the
quiescent point to load new rules, because, under UNIX,
it is not safe to allocate heap memory in a signal handler
[15].

For these reasons, we use the SIGUSR2 signal handler
as the INTERRUPT_STATE, which asynchronously
indicates that we would like the rule-set to be reloaded,
but we defer the rule updating to a truly quiescent point.

7.2 Quiescent Point

The point at which we reload the rules must be a
quiescent point in which the rule-set is not being used.
Finding a quiescent point may seem complex, but our
implementation makes it straightforward. We take
advantage of the fact that Snort is single-threaded in order
to know that Snort is not using the rule-set at the point
where we perform our rule updates.

For our purposes, the point at which Snort is about to
check for the arrival of a new network packet is a
quiescent point. Snort spends the majority of its time,
after initialization, in a loop reading packets, as they
arrive on the network interface, and processing these
packets, one at a time, in the Snort preprocessors and
detection engine. Because Snort is single threaded, while
it is waiting in this loop for a packet to arrive, it is
necessarily not processing any packets.

In order to take advantage of this quiescent point, we
must be able to insert our own code for the
implementation of the QUIESCENT_STATE, where the
rule updating can be safely performed. We do this by
programming Snort to exit from the packet-reading loop
when a rule update request has been signaled (using the
mechanism described in Section 7.1). We then have
Snort enter the QUIESCENT_STATE, immediately
following its exit from the loop, to perform the rule
update. Because the loop may exit for a variety of
reasons (including errors and application termination), we
have Snort check that the exit from the loop was the result
of a request for a rule update.

The standard implementation of Snort’s packet-
reading loop uses the libpcap [16] packet capture library,
specifically the pcap_loop() function. This function reads
from a network interface and sends the packets that it
reads to a pre-specified handler function; in this case, the
handler function starts the Snort packet analysis. In
addition to watching for packets on the network interface,
pcap_loop() also checks a flag; if this flag is set, then
pcap_loop() exits. The flag is set by calling the function
pcap_breakloop().

The flow of actions required to reach the
QUIESCENT_STATE is as follows. The administrator
sends a SIGUSR2 signal to Snort. This causes Snort to
enter the INTERRUPT_STATE, call pcap_breakloop(),

SIGUSR2 Handler
breakloop()
set reload flag

Normal Snort
get packets
analyze packets

Quiescent Point
load rules
swap rules

NORMAL_STATE

(a)
QUIESCENT_STATE

(c)

INTERRUPT_STATE

(b)

SIGUSR2 Signal Quiesce

Use New Rules

Figure 2. Elephant Reload Implementation (Elephant STR).

and set a reload flag indicating that a rule update has been
requested by the administrator. On the basis of the loop
interrupt and the reload flag, Snort enters the
QUIESCENT_STATE and starts the reloading process
before retrieving another packet for processing. Either
before or after the rules are reloaded, the memory for the
current rule-set can be de-allocated.

7.3 Loading the New Rules

In the QUIESCENT_STATE, we piece together parts of
the built-in initialization code from Snort in order to load
the new rules into memory after first deleting references
to the old rules.

We must modify the default rule-parsing functionality
somewhat in order to disable certain types of actions that
can be triggered by parsing the rule file. In particular,
given Snort’s current architecture, certain actions, such as
initializing the preprocessors, can be done only once per
run; however, the rule-file may contain directives that
specify that preprocessors should be loaded. We modify
Snort’s parser to ignore these directives during a rule
update in a way that we believe does not affect the
loading of the rules.

7.4 Removing the Old Rules

Unfortunately, Snort is not designed to de-allocate the
memory for its current rule-set. This task is left for the
operating system when the Snort process terminates.
This, coupled with the fact that there are no memory de-
allocation routines pre-coded into Snort, makes de-
allocating the memory a somewhat involved task as the
rules are stored in memory in multiple chains (for faster
indexing). For our purposes in this paper, memory de-
allocation is relatively unimportant, so our code does not
currently de-allocate the memory for the old rule-set.

7.5 Putting it All Together

Figure 3 contrasts the steps required for Elephant STR
with the steps required for Snort Reload. Elephant STR
consists of four high-level steps: (1) the user signals a
rule-reload request by sending a SIGUSR2 signal to
Snort; (2) this causes the packet-reading loop to exit (after
waiting to finish processing the current packet, if there is
one); (3) Elephant STR then loads the new rules; and (4)
resumes packet processing.

Snort Reload, on the other hand, requires six high-
level steps: (1) the user signals a rule-reload request by
sending a SIGHUP signal to Snort; (2) this causes Snort
to execute its shutdown routines; (3) once the shutdown
routines are complete, Snort calls execv() to overwrite its
current process image with a new one; (4) Snort
initializes the new process image (as it would on initial
startup); (5) Snort then loads the new rules; and (6)
begins packet processing. The state of the Snort process
is lost during steps (2) and (3).

8. Performance Evaluation

Although our primary goal in implementing Elephant
Reload is to avoid the vulnerability described in Section
4, it is also the case that, as seen in this section, our
Elephant STR implementation can result in improved
performance in terms of the time required for rule
reloading.

In this section, we compare Elephant STR to the Snort
Reload technique introduced in Section 5. We do not
evaluate the Snort Restart technique introduced in that
section because Snort Restart requires manual
intervention by either the administrator or a script running
on behalf of the administrator. The way in which this
intervention is done would vary from site to site. Given
the intervention, we would expect Snort Restart to
perform like Snort Reload in the best case, and to perform
worse than Snort Reload in the common case.

We also do not evaluate the technique that we discuss
in Section 10.1, which involves starting a second Snort
process before shutting down the first process. This
technique should lead to different performance impacts;
in particular, we would expect this technique to require
additional memory overhead, but result in less downtime.
This technique will not preserve the state of the original
Snort process.

8.1 Hardware and Software Configuration

Our performance evaluation configuration consists of a
single server with 512M of RAM, based on an Intel
Pentium 4 CPU running at 2.4Ghz. This server runs
Redhat Linux 9.

Shutdown
(Cleanup)

Initialize
Process Load

New Rules Begin
Processing

Exec.
New Image

Elephant STR

Snort Reload

State Lost

Interrupt-
SIGUSR2

(1)

Exit Loop
(Quiesce)

(2)

Load
New Rules

(3)

Resume
Processing

(4)

Interrupt-
SIGHUP

(1)
(2)

(3)
(4)

(5)
(6)

Figure 3. Steps required for Elephant STR vs.
Snort Reload (not to time-scale).

We start Snort with super-user privileges because
Snort requires these privileges initially to access the
network interface in promiscuous mode under Linux.

Our experiments consist of multiple runs so that we
can measure average case behavior; for each experiment,
we stop the Snort process used in the current run (after
loading the new rules and taking performance
measurements) and then start a new copy of Snort for the
next run.

The rule loading time for any of the evaluated
techniques includes time to print processing statistics to
the terminal, a feature that is enabled in Snort by default.

8.2 Analysis with the Default Rule-Set

Table 1 compares our Elephant STR technique with Snort
Reload, and shows the times required for various
components of Snort rule loading, based on our
measurements over seven runs. This data represents the
times to reload Snort’s default rule configuration (as
specified by the snort.conf configuration file) that ships
with Snort 2.1.2. This rule configuration loads 1679
rules.

Snort Reload (B) requires a total of 259,921
microseconds on average. This time includes the time for
Snort to perform its shutdown routines, the time for it to
reinitialize and reload the rules, and some miscellaneous
overhead time, including the time for the execv() call
itself.

The shutdown routines (B1) require 0.09% (244
microseconds) of Snort Reload on average. Initializing
Snort in the default configuration again (B2) requires
95.24% (247,560 microseconds) of Snort Reload on
average. The miscellaneous overhead (B3) consumes the
remaining 4.66% (12,118 microseconds) on average.

Our Elephant STR implementation (A) requires
203,767 microseconds on average. This represents a
21.60% improvement (C) in time on average when
compared to the Snort Reload technique

8.3 Analysis with Rule-Sets of a Range of Sizes

In Section 8.2, we compare Elephant STR with Snort
Reload for the task of loading a rule-set of default size.
In this section, we compare Elephant STR with Snort
Reload for loading rule-sets of a range of sizes.

Each rule-set is created by multiple concatenations of
the Snort ftp.rules file (which contains signatures and
rules for FTP based attacks) and a truncation to the
appropriate number of rules. Snort will blindly load
multiple identical rules, so the method used to create the
rule files should not impact the time required to load the
rules.

Figure 4 shows that Elephant STR follows the trend of
Snort Reload and the standard Snort startup initialization.
It plots the average time consumed by each of the
techniques to load an entire rule-set over twenty runs for
each of the rule-set sizes. The absolute difference in time
between Elephant STR and Snort Reload remains nearly
constant at approximately 0.04 seconds throughout the
range of rule-sets from size 100 to size 1600.

Because the time required to load large rule-sets is
much greater than that required for smaller sets, Figure 4
is on a log scale, which makes it appear that the absolute
difference in time between Elephant STR and Snort
Reload is less for large rule-sets than for small rule-sets.
In fact, we observe the opposite—the difference is
approximately 0.04 seconds for 100 rules, but 0.85
seconds for 12,800 rules.

Elephant STR uses the same mechanisms as both
Snort Reload and the standard Snort initial rule loading
procedures, so it comes as no surprise that Elephant STR
follows the same performance trends as those two
techniques. On the other hand, we expected that, given
the lack of memory de-allocation in our current
implementation, the performance of Elephant STR would
degrade somewhat more rapidly than the performance of
Snort Reload. However, we have not observed this
behavior in our evaluation.

Table 1. Performance of Elephant STR and
Snort Reload for the default Snort rule-set.

 MEAN MIN MAX

(A) Elephant STR 203,767 µs 202,216 µs 206,147 µs
(B) Snort Reload 259,921 µs 256,824 µs 264,839 µs
(B1) Shutdown 0.09% 0.10% 0.08%
(B2) Child Proc. Init. 95.24% 95.07% 94.10%
(B3) Misc. Overhead 4.66% 4.83% 5.82%
(C) Improvement 21.60% 21.26% 22.16%

Figure 4. Elephant STR vs. Default Snort.

0.01

0.10

1.00

10.00

100.00

100 200 400 800 1600 3200 6400 12800
RULE-SET (size)

TI
M

E
(lo

g
se

c)

Elephant STR
Snort Init
Snort Reload

9. Proposed Enhancements for Reloading

We propose two basic strategies for decreasing the
runtime overhead of our online rule-reloading approach.
In Elephant STR, the main execution thread is used for
loading the new rules and for standard Snort execution.
During the time that it takes to reload the rules, packets
can be queuing in network buffers. If these buffers
become full, traffic can be lost, which can cause the state
that Snort knows about to diverge from the actual state of
the end-hosts. This can cause attack packets to be missed.

The first enhancement strategy, Elephant MTR (multi-
threaded reload), to improve the performance of our rule
reloading is designed to decrease the length of the
“pause” in normal program execution that occurs when
the reloading occurs. In Elephant MTR, we introduce a
second helper thread to reload the rules. Then, only the
actual rule switchover needs to occur on the main thread.

A disadvantage of this approach is that the CPU time
devoted to the rule reloading will be more spread out
(because loading will happen concurrently with packet
processing), and, therefore, the rule reloading may appear
to take longer. To disrupt the processing of packets even
less, this second thread can also be run at a lower priority
than the main thread, but this might cause the reloading to
appear to take even longer. We expect that Elephant
MTR can use the same quiescent point as Elephant STR
for the rule switchover.

The second strategy is to decrease the memory
overhead of our rule reloading. The default Snort rule
database loads 1679 rules. In memory, this rule database
requires approximately 24MB based on our observations.
Therefore, if we load a second rule-set of similar size
before de-allocating the current rule-set (such as would be
required by Elephant MTR), we temporarily require
almost 50MB of RAM. In practice, it seems highly
plausible that the two rule-sets will have a great deal of
overlap, and that the new rule-set will reflect few changes
to the current rule-set except for the addition of new rules.
Therefore, we can envision an efficient in-memory
comparison and merge of the current and new rule-sets.

10. Insights and Lessons Learned

10.1 Why Replication is Insufficient

It would be possible to start a new Snort process using the
new rule-set while the current process is still running.
This would provide an approximation of a way to update
Snort’s rules with zero downtime (with the added
complication of sorting through duplicate alerts generated
while both processes are running). A major problem with

this strategy is that the state maintained by the current
process would still be lost.

This problem could potentially be handled by a state-
exchange mechanism that transfers the state from the
current process to the new process. However, such a
strategy would be complex in that it would require a way
for all packets received during the transfer to be applied
by the new process to the state that it receives. This
might be done by buffering the packets, and it might be
made more efficient by requesting incremental state
updates. Such a strategy would also be complex in that it
would require the current process to enter a quiescent
point before transferring the state, a fact that could force
the current process to also buffer (and possibly drop)
packets.

Such a state-transfer strategy would be more complex
than Elephant STR. It is unclear that it would actually be
faster or require less packet buffering. We feel the multi-
threaded Elephant MTR approach suggested in Section 9
is simpler and would likely require less packet buffering.

10.2 Comparison to Software Upgrading

Our Elephant Reload algorithm for NIDS rule updating is
simpler than a complete solution to software upgrading.
For example, the problem of updating Snort’s rule
database is less complex than the problem of updating
Snort itself.

As we have identified, the Snort rule database is itself
stateless. From an architectural perspective, this means
that we can simply swap it for a new rule database at a
quiescent point. By contrast, if we were to try to update
Snort itself, we would need first to save all of the state
that is used by the code that is updated, then to find a
quiescent point (or perhaps multiple quiescent points if no
single point exists in the software), and finally to reload
the state (perhaps first converting it to a new format for
the new code). Even with this complexity, updating Snort
would still be simpler in some ways than updating a
distributed application in which multiple systems would
have to be coordinated during the update.

10.3 Architecting NIDSs for Online Updates

Snort has not been designed to allow for simple online
rule updating. This is evident in at least two ways: as
discussed in Section 7.3, rule loading is intertwined with
Snort initialization; and, as discussed in Section 7.4, there
are no facilities for removing rules from memory.

For the purpose of online updates, a NIDS would
ideally separate rule loading from program initialization,
and provide an efficient way to remove a batch of rules
from memory.

10.4 Guaranteeing Default Behavior

We would like to be able to show conclusively that we do
not perturb the behavior of the NIDS with the
introduction of our Elephant Reload rule updating
technique. In particular, while it is relatively simple to
show that the new rules work and that the old rules are no
longer active after the rule-set has been updated, it is
more difficult to be certain that we have not affected
some time-sensitive behavior.

As an example, Snort threshold objects seek to
minimize the number of alerts sent if the volume of
packets that would generate the same type of alert is high.
These objects keep track of the number of alerts with the
same rule identifier that they have generated during the
past period of time; they do not generate alerts if this
number reaches a pre-specified threshold. A concern is
that the pause in packet processing caused by our single-
threaded Elephant STR strategy could upset the behavior
of these time-sensitive objects, the preprocessors, or other
Snort functionality. Elephant MTR is less likely to suffer
this problem.

While this is a concern for Elephant STR, it is clear
that the time that Snort takes to process packets will
already vary based on a number of factors, including the
complexity of the pattern matching of the rules, the
resource utilization of the machine on which Snort is
running, and the amount of traffic to be analyzed.
Therefore, it appears that the time-sensitivity of Snort is
not terribly strict.

Automated testing and code-analysis are two
possibilities for increasing our certainty in the correctness
of our procedure, and are potential areas for future work.
Model checking and static analysis would be interesting
to explore in this context.

11. Related Work

We know of no other work that directly addresses the
problem of maintaining protocol state during a NIDS rule
upgrade. We also know of no work describing attacks
that target a failure to maintain this state. However, there
is a variety of work related to the general problem of high
availability for NIDS and to our solution for online rule
updating.

The fact that NIDSs fail-open is well known. Because
of this and a desire to provide reliable network intrusion
detection systems, there has been work done in industry
to provide high-availability NIDSs. The most prominent
solutions focus on replicated load-balancing as a
technique for avoiding resource exhaustion problems that
can cause a NIDS to fail. TopLayer Inc. sells a network-
switch-type product called IDS Balancer [17] that can
merge incoming traffic streams and then distribute the
merged traffic to multiple NIDSs. IDS Balancer can be

configured to follow a variety of policies for distributing
the traffic (e.g., by port number, by protocol, or round-
robin). IDS Balancer can also sense the failure of a
NIDS, and rebalance the traffic accordingly.

There has been work done on tools for offline
management of the rule updates that become available
when new attacks are discovered. Oinkmaster [6] and
SnortCenter [12] provide ways to download rule updates
for Snort and to merge the new rules into the current rule-
set in an offline fashion. They do not provide any
mechanism for applying the updates to a running Snort
process. These tools are complementary to online rule-
reloading, and can be used in conjunction with Elephant
Reload.

There is a body of literature on techniques for
software upgrading. Ajmani [1] and Segal and Frieder
[10] provide surveys of the literature, focusing on
techniques for zero-downtime software upgrading, the
former with a particular emphasis on distributed systems.
Much of this work could be applicable to our needs, but
may be overly complex in that it attempts to provide a
general solution for software upgrading and so must
assume that application state, or the code that acts on that
state, may need to be saved. As we discuss in Section
10.2, our Elephant Reload algorithm avoids this problem
because it updates only the rule and attack databases,
which can be separated from any code that maintains
state.

12. Conclusion

There is a critical tension between modern NIDSs that
maintain state and the need to restart these NIDSs in order
to update their rule and attack-signature databases. This
may result in vulnerabilities that hide malicious network
traffic in connections about which the NIDS “forgets”
after it is restarted.

In this paper, we have demonstrated a specific
vulnerability in Snort that takes advantage of this type of
behavior. We have proposed Elephant Reload, a
technique for online rule-updating that does not require
NIDS downtime and which therefore handles this
vulnerability.

Our Snort-based Elephant STR implementation of
Elephant Reload avoids the vulnerability, and,
additionally, provides a 21.6% average performance
benefit over the current technique built into Snort for
reloading its default rule-set.

There are a number of potential enhancements to our
technique and potential expansions on our work. We
have presented one implementation for one NIDS; it
would certainly be possible to expand this to multiple
implementations or to different NIDSs. Our current
implementation is not ready for production use in that it
does not de-allocate the memory for the old rule-set; we

expect this problem to be fully solvable with additional
engineering. Another interesting area of potential work is
the exploration of ways to verify that the rule updates are
valid and will behave as expected.

Acknowledgments

We would like to thank Sonya Johnson, Deepti
Srivastava, and the anonymous referees for their helpful
comments on drafts of the paper.

This work is supported by the Army Research Office
through grant number DAAD19-02-1-0389 (“Perpetually
Available and Secure Information Systems”) to the
Center for Computer and Communications Security at
Carnegie Mellon University.

13. References

[1] Ajmani, Sameer. A Review of Software Upgrade Techniqu-
es for Distributed Systems.
http://pmg.csail.mit.edu/~ajmani/papers/review.pdf. August
2002.

[2] Caswell, Brian, et al. Snort 2.0 Intrusion Detection. 2003.
Syngress. Rockland, MA.

[3] Coretez, Giovanni. Fun with Packets: Designing a Stick.
Draft White Paper on Stick. http://www.eurocompton.net/stick/.
June 2004.

[4] Mukherjee, Biswanath et al. Network Intrusion Detection.
IEEE Network. 8(3). May/June 1994. pp. 26-41

[5] Newman, David et al. Crying Wolf: False Alarms Hide
Attacks. Network World. June 24, 2002.

[6] Oinkmaster. http://oinkmaster.sourceforge.net/. June 2004.

[7] Paxson, Vern. Bro: A System for Detecting Network
Intruders in Real-Time. 7th Annual USENIX Security
Symposium. Amsterdam, Netherlands. January 1998. pp. 2435-
2463.

[8] Ptacek, Thomas H. and Newsham, Timothy N. Insertion,
Evasion, and Denial Of Service: Eluding Network Intrusion
Detection. Technical Report, Secure Networks, Inc., January
1998.

[9] Roesch, Martin. Re: [snort] multithreaded snort?. Snort
Users Mailing List. February 25, 2000.

[10] Segal, Mark E. and Frieder, Ophir. On-the-Fly Program
Modification: Systems for Dynamic Updating. IEEE Software,
vol. 10, no. 2. March 1993. pp. 53-65.

[11] Snort. http://www.snort.org. June 2004.

[12] SnortCenter – Snort Management Console.
http://users.pandora.be/larc/. June 2004.

[13] Snort Manual, Chapter 2.8.4.
http://www.snort.org/docs/snort_manual/node17.html. June
2004.

[14] Snot V0.92 alpha. http://www.stolenshoes.net/sniph/snot-
0.92a-README.txt. June 2004.

[15] Stevens, W. Richard, Advanced Programming in the UNIX
Environment. 1992. Addison-Wesley. Reading, MA.

[16] TCPDUMP/LIBPCAP. http://www.tcpdump.org/. June
2004.

[17] TopLayer IDS Balancer.
http://www.toplayer.com/content/products/intrusion_detection/i
ds_balancer.jsp. June 2004.

