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Abstract 
 
Modern Network Intrusion Detection Systems (NIDSs) 
maintain state that helps them accurately detect attacks.  
Because most NIDSs are signature-based, it is critical to 
update their rule-sets frequently; unfortunately, doing so 
can result in downtime that causes state to be lost, 
leading to vulnerabilities of attack misclassification.  In 
this paper, we show that such vulnerabilities do exist and 
provide a way to avoid them.  Using the open-source 
NIDS Snort, we present Elephant, an approach and 
implementation for updating rule-sets that provides a way 
to cause Snort to enter a safe quiescent point, load the 
new rules into memory, and remove the old rules from 
memory—all while preserving the state that is required to 
make sure that the NIDS does not miss attacks.  We 
provide a critique and performance evaluation of our 
technique. 
 
 
1. Introduction 
 
Network Intrusion Detection Systems (NIDSs) [4] 
provide the critical security function of detecting attacks 
and compromises on a network.  As NIDS technology 
improves, the reliance on NIDSs will likely increase.  
Most commercial NIDSs are signature-based, so they 
require a database of attack signatures (for detecting 
network-based attacks) and a corresponding rule database 
(for classifying and taking action on any malicious 
network traffic).  Because new attacks emerge rapidly, 
these databases must be updated frequently with 
signatures and rules for the new attacks.   

Many modern NIDSs track various types of 
connection-state, as discussed in Section 3, in addition to 
performing stateless packet analysis.  This state is often 
associated with various protocols (such as TCP, HTTP, 
and FTP) and helps the NIDS avoid the possibility of 
misclassifying packets that are sent using these protocols.  
This state tracking helps defend against a class of attacks 
that specifically targets the inherent lack of “memory” of 
stateless NIDSs.   

The need to update the rule and signature databases 
conflicts with the desire to have the NIDS running all of 

the time on the network.  Any scheduled downtime 
incurred in updating the rules reduces the NIDS’s online 
availability.  As we discuss in Section 10.1, simply 
replicating the NIDS does not necessarily reconcile this 
conflict or solve this problem.   

NIDSs are often deployed such that they passively 
monitor network traffic on a network segment.  Passive 
monitoring means that the NIDS might analyze the traffic, 
but does not attempt to modify or filter it.  This passive 
monitoring has the advantage that it is minimally 
intrusive because it does not affect the flow of network 
traffic.  However, this also means that NIDSs fail-open: 
attacks can occur even if the NIDS is down.  If a NIDS 
crashes or is down for updates, the network will continue 
to function without the monitoring and protection 
provided by the NIDS. 

The current state of the practice for updating the 
signatures and rules in the popular open-source NIDS 
known as Snort [11] (discussed further in Section 4), is to 
download or create rule and signature updates, merge 
them into the current databases using a rule-management 
tool like Oinkmaster [6], and restart the NIDS in order 
for the updates to take effect.  

The problem with this update strategy is that it does 
not account for the state tracking that is performed by the 
NIDS.  The NIDS might be optimized to restart very 
quickly, so a restart might add only a negligible amount 
of downtime in terms of number of seconds.  However, if 
the state that the NIDS maintains is not retained over a 
restart, the NIDS may misclassify or entirely ignore 
important attack traffic once it is restarted.   

In this paper, we demonstrate a timing vulnerability 
introduced whenever the rules of the NIDS are updated in 
a manner that does not preserve the state of the NIDS.  
We present Elephant Reload as a way to prevent these 
attacks through no-restart, state-preserving NIDS rule 
updating.  We present an implementation for Snort called 
Elephant STR, an empirical evaluation, and a critical 
discussion of the related issues. 

The organization of this paper is as follows.  We begin 
by discussing our assumptions.  Section 3 discusses the 
reasons that modern NIDSs maintain state.  In Section 4, 
we present the vulnerability that is created by using 
restart as a mechanism for rule updating.  Section 5 



 

presents the current techniques for reloading Snort’s 
rules, and Section 6 presents our alternative model and 
algorithm for online rule updating.  We present an 
implementation for our model and a performance 
evaluation of it in Sections 7 and 8.  Section 9 presents 
potential enhancements to our implementation, while 
Section 10 considers insights and lessons learned from 
our experience.  Section 11 is devoted to related work, 
and Section 12 concludes the paper. 
 
2. Assumptions 
 
When we discuss the availability of a NIDS, we are 
concerned with online availability.  This means that we 
are concerned with cases in which the desired behavior of 
the NIDS is real-time intrusion-detection performed on 
live network traffic.  In certain situations, NIDSs may be 
used to analyze network-traffic traces that were captured 
to a file; we consider this to be offline processing. 

Our strategy of performing online rule and signature 
updates does not mean that the updates must be 
performed automatically—it means simply that the NIDS 
does not need to be restarted to take advantage of the 
updates.     

We assume that the rule updates are valid.  Current 
best practices for updating the rules and signatures dictate 
that the updated databases should be tested (statically or 
dynamically) before use in a production system [2].  
Before updating the NIDS using Elephant Reload, this 
testing can still be performed. 

In this paper, we focus on only one particular source 
of potential downtime: the need to update the rule and 
attack signatures to account for new attacks.  However, 
there are many sources of potential scheduled and 
accidental downtime for deployed NIDSs.  For example, 
in certain cases, the NIDS may crash, the machine it runs 
on may crash, its network connection may fail, or a new 
version of the NIDS might need to replace the current 
version.   

Our experiments and implementation are based on the 
popular open-source network intrusion detection system, 
Snort [11].  Where we can generalize our findings and 
experience to another NIDS like Bro [7], or to NIDSs as a 
class of systems, we do so through the use of the term 
NIDS; where our experience relates directly to Snort, we 
use the word Snort in place of NIDS. 
 
3. The State Maintained by Modern NIDSs 
 
The Snot [14] and Stick [3] attacks were developed to 
overwhelm stateless NIDSs.  These attacks function by 
generating packets that are expected to trigger alerts by 
the NIDS.  These attacks seek to cause so many alerts that 
valid attack traffic will be able to slip by unnoticed in the 

noise; this heavy volume of alerting can even cause a 
NIDS to crash under the load of analyzing each packet 
and producing the corresponding alerts [5].   

To create a high volume of misleading traffic, Snot 
and Stick generate and send packets with no regard to 
TCP connection state.  Skipping the TCP connection 
establishment step helps this type of attack for the 
following reasons: (1) it saves on the time-overhead 
involved in creating a connection, (2) it does not require 
the existence of a TCP server to which to connect, (3) the 
attacker can spoof the source IP address because no 
response is expected, and (4) the attacker can continue to 
send bad traffic without concern that the connection 
might be closed or reset by the server. 

Modern NIDSs maintain state in order to thwart 
attacks like Snot and Stick.  This state allows a NIDS to 
discard the types of attack packets generated by Snot or 
Stick preemptively without actually examining the 
contents of the packets.  In particular, stateful NIDSs 
typically assume that it is safe to discard packets that are 
not sent over an established TCP connection.   

Working from the assumption that it is reasonable to 
discard TCP packets that are not part of an established 
TCP connection, a stateful NIDS attempts to track the 
connection state of each of the end-hosts on its network 
segment.  The NIDS watches for occurrences of the TCP 
three-way handshake, which indicates that a TCP 
connection was successfully established between a client 
machine and a server machine (one or the other of which 
is on the NIDS’s network).  The NIDS simply drops any 
TCP traffic that does not occur over an established TCP 
connection that it knows about.  For accurate attack 
detection, it is important that the connection state on the 
NIDS stays in sync with the actual TCP connections that 
it watches. 

By automatically dropping traffic that is not sent over 
a legitimate TCP connection, the NIDS avoids the 
problem of generating alerts for pseudo-attack traffic that 
will have no effect on end-hosts.  The assumption that 
this behavior is safe is based on the fact that, in general, 
the TCP protocol stack of the target server will also 
discard these packets; therefore, this traffic will not be 
able to exploit any potential vulnerability in the server.  
Additionally, the traffic might not be handled by any 
target server at all—the Snot attack tool can be 
configured to send TCP packets to random host addresses 
within a network without regard as to whether the target 
hosts exist.   

 
4. Vulnerability in Snort 
 
Snort uses a single set of rules that acts as both the 
signature database and the rule database.  Snort was 
introduced in 1998, and originally provided only stateless 
intrusion detection.  TCP session-tracking was added to 



 

Snort in 2001 with the introduction of the stream4 
preprocessor.  According to the release documentation, 
stream4 is capable of stateful inspection for upwards of 
32,000 simultaneous TCP connections [13]. 

All active Snort preprocessors have the opportunity to 
act on packets before the packets are sent to the stateless 
detection engine.  These preprocessors maintain 
individual state databases for a variety of purposes such 
as packet-fragment reassembly, TCP session inspection, 
TCP session reassembly, and application protocol 
tracking.  The current version of Snort (2.1.2) ships with 
12 preprocessors (based on an examination of the 
preprocessor source code directory).  Of these, 5 
preprocessors (frag2, stream4, http_inspect, rpc_decode, 
and bo) are enabled by default.  These preprocessors can 
be quite complex; for example, the stream4 preprocessor 
implementation file contains 4980 lines of commented C 
code.   

Snort contains a vulnerability based on the interaction 
between its TCP connection-tracking and its rule updating 
that can be exploited when Snort is restarted after a rule 
update.  Despite the relatively complex state tracking 
performed by the preprocessors, the support for updating 
Snort’s rule-set is very minimalist.  As discussed in 
Section 5, the current procedure for updating Snort’s rule-
set is to restart Snort after downloading the new rules.  
The problem is that Snort loses its state during the restart.   

When configured to defend against the Snot and Stick 
attacks, Snort uses the stream4 preprocessor to drop 
packets that appear to have been sent outside of a valid 
TCP connection.  When restarted, Snort loses the state 
maintained by its preprocessors, including the state about 
the TCP connections that are active on its network.  
Because of this, Snort will simply discard any packets—
even actual attack packets—that are sent over TCP 
connections that were established before it was restarted, 
even if it knew about the TCP connections before it was 
restarted.   
 
4.1 Demonstration of the Vulnerability 

 
We now show that this vulnerability does exist in Snort.  
In order to demonstrate the vulnerability, we first require 
a tool that sends attack traffic over established TCP 
connections.  The previously mentioned Snot tool reads 
publicly available Snort rule files and generates packets 
that specifically target those rules in order to trigger 
alerts.  However, in its present form, Snot does not 
attempt to establish a TCP connection before sending 
TCP packets. 

We use a version of the Snot 0.92a tool, which we 
have modified in a manner that we describe next; we refer 
to our modified version of Snot as TCPSnot.  Unlike 
Snot, our TCPSnot tool does establish a TCP connection 
before sending attack traffic so that, as discussed in 

Section 3, the traffic that it generates should not be 
discarded by a NIDS that is configured properly for TCP 
state tracking.  TCPSnot uses the stream socket interface 
instead of the raw socket interface that is employed by the 
standard Snot tool.  The use of the stream socket interface 
makes TCPSnot somewhat less flexible than Snot in that 
TCPSnot cannot forge or modify parts of the TCP or IP 
headers.  Creating a more flexible version of TCPSnot 
could be achieved by lower-level modifications to the 
kernel. 

To demonstrate the vulnerability, we perform an 
experiment consisting of two trial runs.  In both runs, we 
use identical Snort configurations that track TCP 
connection state.  With Snort already running, we have 
TCPSnot establish a connection to a server on the Snort 
server’s network, pause for a fixed length of time (at least 
the length of time required to reboot Snort), and then send 
an attack packet that should trigger an alert by Snort, 
based on its current rule-set.   

The two runs are depicted in Figure 1.  During both 
runs, TCPSnot establishes a TCP connection to the end 
host (t0-t2), a fact that Snort records at t3.  In Run B, 
Snort is restarted at t4 and finishes restarting at t5.  At t6, 
the attacker sends an attack packet.  In Run A, Snort 
correctly recognizes the attack as occurring over a TCP 
connection, so it generates an alert at t7.  But in Run B, 
Snort fails to do so because it has lost its state; Snort will 
also ignore any subsequent attack packets sent over this 
TCP connection. 

 
The two runs differ as follows: 

 
1. In Run A, we do not restart Snort.  As expected, 

Snort detects the attack packet and generates the 
expected alert.   
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Figure 1. Two trial runs that together illustrate 
the vulnerability in Snort using TCPSnot.   



 

2. In Run B, we restart Snort (using the Snort Reload 
technique that is discussed in Section 5) after 
TCPSnot has established a connection to the server.  
Once Snort has finished restarting, TCPSnot sends 
the attack packet.  As predicted, Snort fails to 
generate an alert for this packet. 

 
The cause for this misleading behavior is clear: Snort 

has lost its state after its restart.   
 
5. Current Snort Rule Updating 
 
In order to update its rules, Snort is typically restarted 
using one of two techniques, which we refer to as Snort 
Restart and Snort Reload.  Both techniques result in a loss 
of state that can lead to the vulnerability discussed in 
Section 4. 

Snort Restart is characterized by a manual two-step 
approach.  The current Snort process is manually shut 
down, a new Snort process is then manually started. 
These two steps require operating-system-provided 
facilities, such as a way to terminate the current Snort 
process and a way to launch a new Snort process.  

Snort Reload is similar to Snort Restart, but it is done 
in memory, automatically by Snort, and uses only a single 
process.  Under Snort Reload, the Snort process first calls 
the Snort shutdown routines, but does not terminate.  
Instead, once the shutdown routines have completed, the 
process uses the POSIX execv() call (or execvp(), 
depending on configuration options) to replace the 
current Snort process image with a newly started, clean 
Snort image.   

To perform a Snort Reload, the administrator sends a 
SIGHUP signal to the Snort process; Snort treats the 
SIGHUP signal as an indication that it should restart 
itself.  Snort Reload does not work in its current state if 
Snort is run in a chroot jail or if it is set to run without the 
privileges of the super user.   
 
6. Elephant Online Rule Updating 
 
From an architectural standpoint, as discussed in Section 
4, Snort is designed so that its intrusion detection engine 
(the place where the rules and attack signatures are used) 
is stateless, while its preprocessors may maintain state.  It 
is this characteristic that can make online rule updating 
relatively straightforward.  We are only updating rules—
we are not updating the runtime state, the code that acts 
on that state, nor the interfaces to that code. 

Our basic algorithm, which we call Elephant Reload, 
for updating the rules, is as follows: first, find a quiescent 
point, i.e., a point where the rules are not in use; next, 
load the new rules into memory; and, finally, replace the 
current rules with the new rules.  

From an application consistency standpoint, it is 
important that the rule update be applied at a quiescent 
point in order to avoid the possibility of packets being 
checked partially using the old rule-set and partially using 
the new rule-set.  From an implementation standpoint, 
applying the rule update at a quiescent point makes it 
much simpler to avoid stale runtime references to old 
rules that could be cached while the rules are in use. 
 
7. Elephant STR Implementation 
 
In order to implement Elephant Reload for Snort, we need 
the following: (1) a way for the administrator to signal 
that the rules should be updated, (2) a quiescent point, (3) 
a way to load the rules into memory, and (4) a way to 
remove the old rules from memory.  As we will see in this 
section, Snort provides us (1–3) with relative ease, but (4) 
poses more challenges.   

As seen in Figure 2, the modified running Snort 
system can be in one of three states: the 
NORMAL_STATE, in which Snort executes as it did 
without modification; the INTERRUPT_STATE, which 
is the direct consequence of a request for rule reloading 
and which flags the need for a rule update; or the 
QUIESCENT_STATE, where the rule-set is not being 
accessed and where the rule updates can therefore safely 
occur.   

We have created an implementation of Elephant 
Reload for Snort 2.1.2 that we call Elephant STR (single-
threaded reload).  Snort is single-threaded by design; the 
Snort developers have stated that this is, in part, because 
of a desire to retain platform portability [9].  Therefore, 
Elephant STR does not rely on the addition of any new 
threads (hence the STR).  In Section 9, we propose more 
complex implementation variants of Elephant Reload, 
such as one that uses multiple threads, and another that 
does an in-memory merge of the current and new rules in 
order to reduce memory overhead.  Here, we discuss only 
the Elephant STR implementation.   

 
7.1 Requesting the Reload 

 
We require a way to signal that Snort should reload its 
rule-set.  It would be possible to implement this in a 
number of ways, including having Snort listen for special 
network traffic, having Snort listen on a socket, or by 
using the UNIX Signal API.   

Of these options, we feel that the UNIX Signal API 
[15] provides the most direct and natural interface for 
sending “commands” to Snort, when given a finite, small 
set of commands.  An added benefit is that this behavior 
fits naturally with Snort—indeed, Snort already handles a 
number of signals; for example, Snort currently catches 
SIGUSR1 for displaying statistics about packet 
processing.   



 

The SIGUSR2 signal is reserved for application-
designated purposes, although it is only rarely used by 
applications.  Using the UNIX Signal API, we modify 
Snort by adding a SIGUSR2 handler that treats the 
SIGUSR2 signal as a request to reload the rule-set.  We 
adhere to Snort’s source-code conventions of allowing 
nested signals and disallowing recursive signal handlers 
(i.e., those caused by the same signal).   

For Elephant STR, we cannot use this new SIGUSR2 
handler as the point at which actually to reload the rules 
because Snort may not be quiescent when the handler is 
invoked.  UNIX signal handlers asynchronously interrupt 
the executing application code, so it is possible that the 
SIGUSR2 handler would interrupt the detection 
processing in which the rule-set is being used.  Even if we 
did not care about this level of consistency (in which not 
even a single packet can be partially processed by both 
rule-sets), we still could not use the signal handler as the 
quiescent point to load new rules, because, under UNIX, 
it is not safe to allocate heap memory in a signal handler 
[15].   

For these reasons, we use the SIGUSR2 signal handler 
as the INTERRUPT_STATE, which asynchronously 
indicates that we would like the rule-set to be reloaded, 
but we defer the rule updating to a truly quiescent point.   
 
7.2 Quiescent Point 

 
The point at which we reload the rules must be a 
quiescent point in which the rule-set is not being used.  
Finding a quiescent point may seem complex, but our 
implementation makes it straightforward.  We take 
advantage of the fact that Snort is single-threaded in order 
to know that Snort is not using the rule-set at the point 
where we perform our rule updates.   

For our purposes, the point at which Snort is about to 
check for the arrival of a new network packet is a 
quiescent point.  Snort spends the majority of its time, 
after initialization, in a loop reading packets, as they 
arrive on the network interface, and processing these 
packets, one at a time, in the Snort preprocessors and 
detection engine.  Because Snort is single threaded, while 
it is waiting in this loop for a packet to arrive, it is 
necessarily not processing any packets. 

In order to take advantage of this quiescent point, we 
must be able to insert our own code for the 
implementation of the QUIESCENT_STATE, where the 
rule updating can be safely performed.  We do this by 
programming Snort to exit from the packet-reading loop 
when a rule update request has been signaled (using the 
mechanism described in Section 7.1).  We then have 
Snort enter the QUIESCENT_STATE, immediately 
following its exit from the loop, to perform the rule 
update.  Because the loop may exit for a variety of 
reasons (including errors and application termination), we 
have Snort check that the exit from the loop was the result 
of a request for a rule update. 

The standard implementation of Snort’s packet-
reading loop uses the libpcap [16] packet capture library, 
specifically the pcap_loop() function.  This function reads 
from a network interface and sends the packets that it 
reads to a pre-specified handler function; in this case, the 
handler function starts the Snort packet analysis.  In 
addition to watching for packets on the network interface, 
pcap_loop() also checks a flag; if this flag is set, then 
pcap_loop() exits.  The flag is set by calling the function 
pcap_breakloop().   

The flow of actions required to reach the 
QUIESCENT_STATE is as follows.  The administrator 
sends a SIGUSR2 signal to Snort.  This causes Snort to 
enter the INTERRUPT_STATE, call pcap_breakloop(), 
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Use New Rules

 

Figure 2. Elephant Reload Implementation (Elephant STR). 



 

and set a reload flag indicating that a rule update has been 
requested by the administrator.  On the basis of the loop 
interrupt and the reload flag, Snort enters the 
QUIESCENT_STATE and starts the reloading process 
before retrieving another packet for processing.  Either 
before or after the rules are reloaded, the memory for the 
current rule-set can be de-allocated.   

 
7.3 Loading the New Rules 
 
In the QUIESCENT_STATE, we piece together parts of 
the built-in initialization code from Snort in order to load 
the new rules into memory after first deleting references 
to the old rules.   

We must modify the default rule-parsing functionality 
somewhat in order to disable certain types of actions that 
can be triggered by parsing the rule file.  In particular, 
given Snort’s current architecture, certain actions, such as 
initializing the preprocessors, can be done only once per 
run; however, the rule-file may contain directives that 
specify that preprocessors should be loaded.  We modify 
Snort’s parser to ignore these directives during a rule 
update in a way that we believe does not affect the 
loading of the rules. 
 
7.4 Removing the Old Rules 

 
Unfortunately, Snort is not designed to de-allocate the 
memory for its current rule-set.  This task is left for the 
operating system when the Snort process terminates.  
This, coupled with the fact that there are no memory de-
allocation routines pre-coded into Snort, makes de-
allocating the memory a somewhat involved task as the 
rules are stored in memory in multiple chains (for faster 
indexing).  For our purposes in this paper, memory de-
allocation is relatively unimportant, so our code does not 
currently de-allocate the memory for the old rule-set. 
 

7.5 Putting it All Together 
 
Figure 3 contrasts the steps required for Elephant STR 
with the steps required for Snort Reload.  Elephant STR 
consists of four high-level steps: (1) the user signals a 
rule-reload request by sending a SIGUSR2 signal to 
Snort; (2) this causes the packet-reading loop to exit (after 
waiting to finish processing the current packet, if there is 
one); (3) Elephant STR then loads the new rules; and (4) 
resumes packet processing. 

Snort Reload, on the other hand, requires six high-
level steps: (1) the user signals a rule-reload request by 
sending a SIGHUP signal to Snort; (2) this causes Snort 
to execute its shutdown routines; (3) once the shutdown 
routines are complete, Snort calls execv() to overwrite its 
current process image with a new one; (4) Snort 
initializes the new process image (as it would on initial 
startup); (5) Snort then loads the new rules; and (6) 
begins packet processing.  The state of the Snort process 
is lost during steps (2) and (3).  
 
8. Performance Evaluation 
 
Although our primary goal in implementing Elephant 
Reload is to avoid the vulnerability described in Section 
4, it is also the case that, as seen in this section, our 
Elephant STR implementation can result in improved 
performance in terms of the time required for rule 
reloading.   

In this section, we compare Elephant STR to the Snort 
Reload technique introduced in Section 5.  We do not 
evaluate the Snort Restart technique introduced in that 
section because Snort Restart requires manual 
intervention by either the administrator or a script running 
on behalf of the administrator.  The way in which this 
intervention is done would vary from site to site.  Given 
the intervention, we would expect Snort Restart to 
perform like Snort Reload in the best case, and to perform 
worse than Snort Reload in the common case. 

We also do not evaluate the technique that we discuss 
in Section 10.1, which involves starting a second Snort 
process before shutting down the first process.  This 
technique should lead to different performance impacts; 
in particular, we would expect this technique to require 
additional memory overhead, but result in less downtime.  
This technique will not preserve the state of the original 
Snort process. 
 
8.1 Hardware and Software Configuration 
 
Our performance evaluation configuration consists of a 
single server with 512M of RAM, based on an Intel 
Pentium 4 CPU running at 2.4Ghz.  This server runs 
Redhat Linux 9.   
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Figure 3. Steps required for Elephant STR vs. 
Snort Reload (not to time-scale).   



 

We start Snort with super-user privileges because 
Snort requires these privileges initially to access the 
network interface in promiscuous mode under Linux.    

Our experiments consist of multiple runs so that we 
can measure average case behavior; for each experiment, 
we stop the Snort process used in the current run (after 
loading the new rules and taking performance 
measurements) and then start a new copy of Snort for the 
next run. 

The rule loading time for any of the evaluated 
techniques includes time to print processing statistics to 
the terminal, a feature that is enabled in Snort by default. 
 
8.2 Analysis with the Default Rule-Set 

 
Table 1 compares our Elephant STR technique with Snort 
Reload, and shows the times required for various 
components of Snort rule loading, based on our 
measurements over seven runs.  This data represents the 
times to reload Snort’s default rule configuration (as 
specified by the snort.conf configuration file) that ships 
with Snort 2.1.2.  This rule configuration loads 1679 
rules.   

Snort Reload (B) requires a total of 259,921 
microseconds on average.  This time includes the time for 
Snort to perform its shutdown routines, the time for it to 
reinitialize and reload the rules, and some miscellaneous 
overhead time, including the time for the execv() call 
itself.   

The shutdown routines (B1) require 0.09% (244 
microseconds) of Snort Reload on average.  Initializing 
Snort in the default configuration again (B2) requires 
95.24% (247,560 microseconds) of Snort Reload on 
average.  The miscellaneous overhead (B3) consumes the 
remaining 4.66% (12,118 microseconds) on average.   

Our Elephant STR implementation (A) requires 
203,767 microseconds on average.  This represents a 
21.60% improvement (C) in time on average when 
compared to the Snort Reload technique  
 
8.3 Analysis with Rule-Sets of a Range of Sizes  
 

In Section 8.2, we compare Elephant STR with Snort 
Reload for the task of loading a rule-set of default size.  
In this section, we compare Elephant STR with Snort 
Reload for loading rule-sets of a range of sizes.   

Each rule-set is created by multiple concatenations of 
the Snort ftp.rules file (which contains signatures and 
rules for FTP based attacks) and a truncation to the 
appropriate number of rules.  Snort will blindly load 
multiple identical rules, so the method used to create the 
rule files should not impact the time required to load the 
rules.   

Figure 4 shows that Elephant STR follows the trend of 
Snort Reload and the standard Snort startup initialization.  
It plots the average time consumed by each of the 
techniques to load an entire rule-set over twenty runs for 
each of the rule-set sizes.  The absolute difference in time 
between Elephant STR and Snort Reload remains nearly 
constant at approximately 0.04 seconds throughout the 
range of rule-sets from size 100 to size 1600.   

Because the time required to load large rule-sets is 
much greater than that required for smaller sets, Figure 4 
is on a log scale, which makes it appear that the absolute 
difference in time between Elephant STR and Snort 
Reload is less for large rule-sets than for small rule-sets.  
In fact, we observe the opposite—the difference is 
approximately 0.04 seconds for 100 rules, but 0.85 
seconds for 12,800 rules. 

Elephant STR uses the same mechanisms as both 
Snort Reload and the standard Snort initial rule loading 
procedures, so it comes as no surprise that Elephant STR 
follows the same performance trends as those two 
techniques.  On the other hand, we expected that, given 
the lack of memory de-allocation in our current 
implementation, the performance of Elephant STR would 
degrade somewhat more rapidly than the performance of 
Snort Reload.  However, we have not observed this 
behavior in our evaluation. 

Table 1.  Performance of Elephant STR and 
Snort Reload for the default Snort rule-set. 

  MEAN MIN MAX 

(A) Elephant STR 203,767 µs 202,216 µs 206,147 µs 
(B) Snort Reload 259,921 µs 256,824 µs 264,839 µs 
(B1) Shutdown 0.09% 0.10% 0.08% 
(B2) Child Proc. Init. 95.24% 95.07% 94.10% 
(B3) Misc. Overhead 4.66% 4.83% 5.82% 
(C) Improvement 21.60% 21.26% 22.16% 

 

 

Figure 4. Elephant STR vs. Default Snort. 

0.01

0.10

1.00

10.00

100.00

100 200 400 800 1600 3200 6400 12800
RULE-SET (size) 

TI
M

E 
(lo

g 
se

c)
 

Elephant STR
Snort Init
Snort Reload



 

 
9. Proposed Enhancements for Reloading 
 
We propose two basic strategies for decreasing the 
runtime overhead of our online rule-reloading approach.  
In Elephant STR, the main execution thread is used for 
loading the new rules and for standard Snort execution.  
During the time that it takes to reload the rules, packets 
can be queuing in network buffers.  If these buffers 
become full, traffic can be lost, which can cause the state 
that Snort knows about to diverge from the actual state of 
the end-hosts.  This can cause attack packets to be missed. 

The first enhancement strategy, Elephant MTR (multi-
threaded reload), to improve the performance of our rule 
reloading is designed to decrease the length of the 
“pause” in normal program execution that occurs when 
the reloading occurs.  In Elephant MTR, we introduce a 
second helper thread to reload the rules.  Then, only the 
actual rule switchover needs to occur on the main thread. 

A disadvantage of this approach is that the CPU time 
devoted to the rule reloading will be more spread out 
(because loading will happen concurrently with packet 
processing), and, therefore, the rule reloading may appear 
to take longer.  To disrupt the processing of packets even 
less, this second thread can also be run at a lower priority 
than the main thread, but this might cause the reloading to 
appear to take even longer.  We expect that Elephant 
MTR can use the same quiescent point as Elephant STR 
for the rule switchover. 

The second strategy is to decrease the memory 
overhead of our rule reloading.  The default Snort rule 
database loads 1679 rules.  In memory, this rule database 
requires approximately 24MB based on our observations.  
Therefore, if we load a second rule-set of similar size 
before de-allocating the current rule-set (such as would be 
required by Elephant MTR), we temporarily require 
almost 50MB of RAM.  In practice, it seems highly 
plausible that the two rule-sets will have a great deal of 
overlap, and that the new rule-set will reflect few changes 
to the current rule-set except for the addition of new rules.  
Therefore, we can envision an efficient in-memory 
comparison and merge of the current and new rule-sets. 

 
10. Insights and Lessons Learned 
 
10.1 Why Replication is Insufficient 
 
It would be possible to start a new Snort process using the 
new rule-set while the current process is still running.  
This would provide an approximation of a way to update 
Snort’s rules with zero downtime (with the added 
complication of sorting through duplicate alerts generated 
while both processes are running).  A major problem with 

this strategy is that the state maintained by the current 
process would still be lost.   

This problem could potentially be handled by a state-
exchange mechanism that transfers the state from the 
current process to the new process.  However, such a 
strategy would be complex in that it would require a way 
for all packets received during the transfer to be applied 
by the new process to the state that it receives.  This 
might be done by buffering the packets, and it might be 
made more efficient by requesting incremental state 
updates.  Such a strategy would also be complex in that it 
would require the current process to enter a quiescent 
point before transferring the state, a fact that could force 
the current process to also buffer (and possibly drop) 
packets.   

Such a state-transfer strategy would be more complex 
than Elephant STR.  It is unclear that it would actually be 
faster or require less packet buffering.  We feel the multi-
threaded Elephant MTR approach suggested in Section 9 
is simpler and would likely require less packet buffering. 

 
10.2 Comparison to Software Upgrading 
 
Our Elephant Reload algorithm for NIDS rule updating is 
simpler than a complete solution to software upgrading.  
For example, the problem of updating Snort’s rule 
database is less complex than the problem of updating 
Snort itself.   

As we have identified, the Snort rule database is itself 
stateless.  From an architectural perspective, this means 
that we can simply swap it for a new rule database at a 
quiescent point.  By contrast, if we were to try to update 
Snort itself, we would need first to save all of the state 
that is used by the code that is updated, then to find a 
quiescent point (or perhaps multiple quiescent points if no 
single point exists in the software), and finally to reload 
the state (perhaps first converting it to a new format for 
the new code).  Even with this complexity, updating Snort 
would still be simpler in some ways than updating a 
distributed application in which multiple systems would 
have to be coordinated during the update. 
 
10.3 Architecting NIDSs for Online Updates 
 
Snort has not been designed to allow for simple online 
rule updating.  This is evident in at least two ways: as 
discussed in Section 7.3, rule loading is intertwined with 
Snort initialization; and, as discussed in Section 7.4, there 
are no facilities for removing rules from memory.   

For the purpose of online updates, a NIDS would 
ideally separate rule loading from program initialization, 
and provide an efficient way to remove a batch of rules 
from memory. 
 



 

10.4 Guaranteeing Default Behavior 
 
We would like to be able to show conclusively that we do 
not perturb the behavior of the NIDS with the 
introduction of our Elephant Reload rule updating 
technique.  In particular, while it is relatively simple to 
show that the new rules work and that the old rules are no 
longer active after the rule-set has been updated, it is 
more difficult to be certain that we have not affected 
some time-sensitive behavior. 

As an example, Snort threshold objects seek to 
minimize the number of alerts sent if the volume of 
packets that would generate the same type of alert is high.  
These objects keep track of the number of alerts with the 
same rule identifier that they have generated during the 
past period of time; they do not generate alerts if this 
number reaches a pre-specified threshold.  A concern is 
that the pause in packet processing caused by our single-
threaded Elephant STR strategy could upset the behavior 
of these time-sensitive objects, the preprocessors, or other 
Snort functionality.  Elephant MTR is less likely to suffer 
this problem. 

While this is a concern for Elephant STR, it is clear 
that the time that Snort takes to process packets will 
already vary based on a number of factors, including the 
complexity of the pattern matching of the rules, the 
resource utilization of the machine on which Snort is 
running, and the amount of traffic to be analyzed.  
Therefore, it appears that the time-sensitivity of Snort is 
not terribly strict. 

Automated testing and code-analysis are two 
possibilities for increasing our certainty in the correctness 
of our procedure, and are potential areas for future work.  
Model checking and static analysis would be interesting 
to explore in this context. 
 
11. Related Work 
 
We know of no other work that directly addresses the 
problem of maintaining protocol state during a NIDS rule 
upgrade.  We also know of no work describing attacks 
that target a failure to maintain this state.  However, there 
is a variety of work related to the general problem of high 
availability for NIDS and to our solution for online rule 
updating. 

The fact that NIDSs fail-open is well known.  Because 
of this and a desire to provide reliable network intrusion 
detection systems, there has been work done in industry 
to provide high-availability NIDSs.  The most prominent 
solutions focus on replicated load-balancing as a 
technique for avoiding resource exhaustion problems that 
can cause a NIDS to fail.  TopLayer Inc. sells a network-
switch-type product called IDS Balancer [17] that can 
merge incoming traffic streams and then distribute the 
merged traffic to multiple NIDSs.  IDS Balancer can be 

configured to follow a variety of policies for distributing 
the traffic (e.g., by port number, by protocol, or round-
robin).  IDS Balancer can also sense the failure of a 
NIDS, and rebalance the traffic accordingly. 

There has been work done on tools for offline 
management of the rule updates that become available 
when new attacks are discovered.  Oinkmaster [6] and 
SnortCenter [12] provide ways to download rule updates 
for Snort and to merge the new rules into the current rule-
set in an offline fashion.  They do not provide any 
mechanism for applying the updates to a running Snort 
process.  These tools are complementary to online rule-
reloading, and can be used in conjunction with Elephant 
Reload. 

There is a body of literature on techniques for 
software upgrading.  Ajmani [1] and Segal and Frieder 
[10] provide surveys of the literature, focusing on 
techniques for zero-downtime software upgrading, the 
former with a particular emphasis on distributed systems.  
Much of this work could be applicable to our needs, but 
may be overly complex in that it attempts to provide a 
general solution for software upgrading and so must 
assume that application state, or the code that acts on that 
state, may need to be saved.  As we discuss in Section 
10.2, our Elephant Reload algorithm avoids this problem 
because it updates only the rule and attack databases, 
which can be separated from any code that maintains 
state. 

 
12. Conclusion 
 
There is a critical tension between modern NIDSs that 
maintain state and the need to restart these NIDSs in order 
to update their rule and attack-signature databases.  This 
may result in vulnerabilities that hide malicious network 
traffic in connections about which the NIDS “forgets” 
after it is restarted. 

In this paper, we have demonstrated a specific 
vulnerability in Snort that takes advantage of this type of 
behavior.  We have proposed Elephant Reload, a 
technique for online rule-updating that does not require 
NIDS downtime and which therefore handles this 
vulnerability. 

Our Snort-based Elephant STR implementation of 
Elephant Reload avoids the vulnerability, and, 
additionally, provides a 21.6% average performance 
benefit over the current technique built into Snort for 
reloading its default rule-set. 

There are a number of potential enhancements to our 
technique and potential expansions on our work.  We 
have presented one implementation for one NIDS; it 
would certainly be possible to expand this to multiple 
implementations or to different NIDSs.  Our current 
implementation is not ready for production use in that it 
does not de-allocate the memory for the old rule-set; we 



 

expect this problem to be fully solvable with additional 
engineering.  Another interesting area of potential work is 
the exploration of ways to verify that the rule updates are 
valid and will behave as expected. 
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