
SAFARI Technical Report No. 2016-003 (March 28, 2016)

This is a summary of the original paper, entitled “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case”
which appears in HPCA 2015 [64].

Adaptive-Latency DRAM (AL-DRAM)
Donghyuk Lee Yoongu Kim Gennady Pekhimenko

Samira Khan Vivek Seshadri Kevin Chang Onur Mutlu
Carnegie Mellon University

Abstract

This paper summarizes the idea of Adaptive-Latency DRAM
(AL-DRAM), which was published in HPCA 2015 [64]. The
key goal of AL-DRAM is to exploit the extra margin that is
built into the DRAM timing parameters to reduce DRAM la-
tency. The key observation is that the timing parameters are
dictated by the worst-case temperatures and worst-case DRAM
cells, both of which lead to small amount of charge storage and
hence high access latency. One can therefore reduce latency by
adapting the timing parameters to the current operating tem-
perature and the current DIMM that is being accessed. Us-
ing an FPGA-based testing platform, our work first character-
izes the extra margin for 115 DRAM modules from three major
manufacturers. The experimental results demonstrate that it
is possible to reduce four of the most critical timing parame-
ters by a minimum/maximum of 17.3%/54.8% at 55◦C while
maintaining reliable operation. AL-DRAM adaptively selects
between multiple different timing parameters for each DRAM
module based on its current operating condition. AL-DRAM
does not require any changes to the DRAM chip or its inter-
face; it only requires multiple different timing parameters to be
specified and supported by the memory controller. Real system
evaluations show that AL-DRAM improves the performance of
memory-intensive workloads by an average of 14% without in-
troducing any errors [64].

1. Summary
1.1. Problem: High DRAM Latency

A DRAM chip is made of capacitor-based cells that represent
data in the form of electrical charge. To store data in a cell,
charge is injected, whereas to retrieve data from a cell, charge
is extracted. Such movement of charge happens through a wire
called bitline. Due to the large resistance and the large capaci-
tance of the bitline, it takes long time to access DRAM cells. To
guarantee correct operation, DRAM manufacturers impose a
set of minimum latency restrictions on DRAM accesses, called
timing parameters [44]. Ideally, timing parameters should pro-
vide just enough time for a DRAM chip to operate correctly.
In practice, however, there is a very large margin in the timing
parameters to ensure correct operation under worst-case con-
ditions with respect to two aspects. First, due to process vari-
ation, some outlier cells suffer from a larger RC-delay than
other cells [46, 67], and require more time to be accessed. Sec-
ond, due to temperature dependence, DRAM cells lose more
charge at high temperature [124], and therefore require more
time to be sensed and restored. Due to the worst-case pro-

visioning of timing parameters, it takes longer time to access
most of DRAM under most operating conditions than neces-
sary for correct operation.

1.2. Key Observations and Our Goal

Most DRAM chips do not contain the worst-case cell with
the largest latency. Using an FPGA-based testing platform,
we profile 115 DRAM modules and observe that the slowest
cell, having the smallest amount of charge, for a typical chip is
still faster than that of the worst-case chip. We expose the large
margin built into DRAM timing parameters. In particular, we
identify four timing parameters that are the most critical during
a DRAM access: tRCD, tRAS, tWR, and tRP. At 55◦C, we
demonstrate that the parameters can be reduced by an average
of 17.3%, 37.7%, 54.8%, and 35.2% while still maintaining
correctness.
Most DRAM chips are not exposed to the worst-case tem-
perature of 85◦C. We measure the DRAM ambient tempera-
ture in a server cluster running a very memory-intensive bench-
mark, and find that the temperature never exceeds 34◦C — as
well as never changing by more than 0.1◦C per second. Other
works [38, 39, 71] also observed that worst-case DRAM tem-
peratures are not common and servers operate at much lower
temperatures [38, 39, 71].

Based on these observations, we show that typical DRAM
chips operating at typical temperatures (e.g., 55◦C) are capable
of providing a much smaller access latency, but are neverthe-
less forced to operate at the largest latency of the worst-case
due to the use of only a single set of timing parameters dictated
by the worst case.

Our goal in our HPCA 2015 paper [64] is to exploit the
extra margin that is built into the DRAM timing parameters to
reduce DRAM latency and thus improve performance. To this
end, we first provide a detailed analysis of why we can reduce
DRAM timing parameters without sacrificing reliability.

1.3. Charge & Latency Interdependence

The operation of a DRAM cell is governed by two impor-
tant parameters: i) the quantity of charge and ii) the latency
it takes to move charge. These two parameters are closely
related to each other. Based on SPICE simulations with a
detailed DRAM model, we identify the quantitative relation-
ship between charge and latency [64]. While our HPCA 2015
paper provides the detailed analyses of this relationship, here
we summarize the three key observations. First, having more
charge in a DRAM cell accelerates the sensing operation in the
cell, especially at the beginning of sensing, enabling the oppor-
tunity to shorten the corresponding timing parameters (tRCD
and tRAS). Second, when restoring the charge in a DRAM

1



SAFARI Technical Report No. 2016-003 (March 28, 2016)

cell, a large amount of the time is spent on injecting the final
small amount of charge into the cell. If there is already enough
charge in the cell for the next access, the cell does not need
to be fully restored. In this case, it is possible to shorten the
latter part of the restoration time, creating the opportunity to
shorten the corresponding timing parameters (tRAS and tWR).
Third, at the end of precharging, i.e., setting the bitline into
the initial voltage level (before accessing a cell) for the next
access, a large amount of the time is spent on precharging the
final small amount of bitline voltage difference from the ini-
tial level. When there is already enough charge in the cell to
overcome the voltage difference in the bitline, the bitline does
not need to be fully precharged. Thus, it is possible to shorten
the final part of the precharge time, creating the opportunity to
shorten the corresponding timing parameter (tRP). Based on
these three observations, we understand that timing parameters
can be shortened if DRAM cells have enough charge.

1.4. Adaptive-Latency DRAM
As explained, the amount of charge in the cell right before an
access to it plays a critical role in whether the correct data is
retrieved from the cell. In Figure 1, we illustrate the impact of
process variation using two different cells: one is a typical cell
(left column) and the other is the worst-case cell which deviates
the most from the typical (right column). The worst-case cell
contains less charge than the typical cell in its initial state. This
is because of two reasons. First, due to its large resistance,
the worst-case cell cannot allow charge to flow inside quickly.
Second, due to its small capacitance, the worst-case cell cannot
store much charge even when it is full. To accommodate such
a worst-case cell, existing timing parameters are set to a large
value.

In Figure 1, we also illustrate the impact of temperature de-
pendence using two cells at two different temperatures: i) a
typical temperature (55◦C, bottom row), and ii) the worst-case
temperature (85◦C, top row) supported by DRAM standards.
Both typical and worst-case cells leak charge at a faster rate at
the worst-case temperature. Therefore, not only does the worst-
case cell have less charge to begin with, but it is left with even
less charge at the worst temperature because it leaks charge at
a faster rate (top-right in Figure 1). To accommodate the com-
bined effect of process variation and temperature dependence,
existing timing parameters are set to a very large value. That is
why the worst-case condition for correctness is specified by the
top-right of Figure 1, which shows the least amount of charge
stored in the worst-case cell at the worst-case temperature in
its initial state. On top of this, DRAM manufacturers still add
an extra latency margin even for such worst-case conditions. In
other words, the amount of charge at the worst-case condition
is still greater than what is required for correctness under that
condition.

If we were to reduce the timing parameters, we would also
be reducing the charge stored in the cells. It is important to
note, however, that we are proposing to exploit only the addi-
tional slack (in terms of charge) compared to the worst-case.
This allows us to provide as strong of a reliability guarantee as
the worst-case. In Figure 1, we illustrate the impact of reducing
the timing parameters. The lightened portions inside the cells
represent the amount of charge that we are giving up by using
the reduced timing parameters. Note that we are not giving up

large
leakage

Typical Cell

small
leakage

small
leakage

large
leakage

Te
m

pe
ra

tu
re

Worst Cell

Te
m

pe
ra

tu
re

Rlow Rhigh

RhighRlow

unfilled
(Rhigh)

unfilled
(Rhigh)

unfilled
(by design)

unfilled
(by design)

unfilled
(by design)

Ty
pi

ca
l

W
or

st

leakage leakage

leakage

Figure 1: Effect of Reduced Latency: Typical vs. Worst

any charge for the worst-case cell at the worst-case tempera-
ture. Although the other three cells are not fully charged in
their initial state, they are left with a similar amount of charge
as the worst-case (top-right). This is because these cells are
capable of either holding more charge (typical cell, left col-
umn) or holding their charge longer (typical temperature, bot-
tom row). Therefore, optimizing the timing parameters (based
on the amount of existing charge slack) provides the opportu-
nity to reduce overall DRAM latency while still maintaining
the reliability guarantees provided by the DRAM manufactur-
ers.

Based on these observations, we propose Adaptive-Latency
DRAM (AL-DRAM), a mechanism that dynamically opti-
mizes the timing parameters for different modules at differ-
ent temperatures. AL-DRAM exploits the additional charge
slack present in the common-case compared to the worst-case,
thereby preserving the level of reliability (at least as high as the
worst-case) provided by DRAM manufacturers.

1.5. DRAM Latency Profiling
We present and analyze the results of our DRAM profiling ex-
periments, performed on our FPGA-based DRAM testing in-
frastructure [22, 48, 49, 50, 64, 69, 99]. Figures 2a and 2b
show the results of this experiment for the read and write la-
tency tests. The y-axis plots the sum of the relevant timing
parameters (tRCD, tRAS, and tRP for the read latency test
and tRCD, tWR, and tRP for the write latency test). The solid
black line shows the latency sum of the standard timing param-
eters (DDR3 DRAM specification). The dotted red line and the
dotted blue line show the acceptable latency parameters that do
not cause any errors for each DIMM at 85◦C and 55◦C, re-
spectively. The solid red line and blue line show the average
acceptable latency across all DIMMs.

(a) Read Latency (b) Write Latency

Figure 2: Access Latency Analysis of 115 DIMMs

2



SAFARI Technical Report No. 2016-003 (March 28, 2016)

We make two observations. First, even at the highest tem-
perature of 85◦C, DIMMs have a high potential of access with
reduced latency: 21.1% on average for read, and 34.4% on av-
erage for write operations. This is a direct result of the possi-
ble reductions in timing parameters tRCD/tRAS/tWR/tRP —
15.6%/20.4%/20.6%/28.5% on average across all the DIMMs.
As a result, we conclude that process variation and lower tem-
peratures enable a significant potential to reduce DRAM ac-
cess latencies. Second, we observe that at lower temperatures
(e.g., 55◦C), the potential for latency reduction is even greater
(32.7% on average for read, and 55.1% on average for write op-
erations), where the corresponding reduction in timing parame-
ters tRCD/tRAS/tWR/tRP are 17.3%/37.7%/54.8%/35.2% on
average across all the DIMMs.

1.6. Real-System Evaluation
We evaluate AL-DRAM on a real system that offers dynamic
software-based control over DRAM timing parameters at run-
time [9, 10]. We use the minimum values of the timing param-
eters that do not introduce any errors at 55◦C for any module
to determine the latency reduction at 55◦C. Thus, the latency
is reduced by 27%/32%/33%/18% for tRCD/tRAS/tWR/tRP,
respectively. Our full methodology is described in our HPCA
2015 paper [64].

Figure 3 shows the performance improvement of reducing
the timing parameters in the evaluated memory system with
one rank and one memory channel at 55◦C operating temper-
ature. We run a variety of different applications in two dif-
ferent configurations. The first one (single-core) runs only
one thread, and the second one (multi-core) runs multiple ap-
plications/threads. We run each configuration 30 times (only
SPEC benchmarks are executed 3 times due to their large ex-
ecution times), and present the average performance improve-
ment across all the runs and their standard deviation as an error
bar. Based on the last-level cache misses per kilo instructions
(MPKI), we categorize our applications into memory-intensive
or non-intensive groups, and report the geometric mean perfor-
mance improvement across all applications from each group.

We draw three key conclusions from Figure 3. First, AL-
DRAM provides significant performance improvement over
the baseline (as high as 20.5% for the very memory-bandwidth-
intensive STREAM applications [78]). Second, when the
memory system is under higher pressure with multi-core/multi-
threaded applications, we observe significantly higher perfor-
mance (than in the single-core case) across all applications
from our workload pool. Third, as expected, memory-intensive
applications benefit more in performance than non-memory-
intensive workloads (14.0% vs. 2.9% on average). We con-
clude that by reducing the DRAM timing parameters using AL-
DRAM, we can speed up a real system by 10.5% (on average
across all 35 workloads on the multi-core/multi-thread config-
uration).

1.7. Other Results and Analyses in Our Paper
Our HPCA paper includes more DRAM latency analyses and
system performance evaluations.
• Effect of Changing the Refresh Interval on DRAM La-

tency. We evaluate DRAM latency at different refresh in-
tervals. We observe that refreshing DRAM cells more fre-
quently enables more DRAM latency reduction.

hm
m

er
na

m
d

ca
lc

ul
ix

gr
om

ac
po

vr
ay

h2
64

bz
ip

2
sj

en
g

to
nt

o
pe

rl
go

bm
k

as
ta

r
xa

la
n

ca
ct

us gc
c

sp
hi

nx
ze

us
de

al
II

bw
av

e
om

ne
t

so
pl

ex m
cf

m
ilc lib
q

lb
m

ge
m

s
tr

ia
d

ad
d

co
py

sc
al

e
s.

cl
us

te
r

ca
nn

ea
l

m
ca

ch
ed

ap
ac

he
gu

ps
no

n-
in

te
ns

iv
e

in
te

ns
iv

e
al

l-w
or

kl
oa

ds

0

5

10

15

20

25

Pe
rf.

Im
pr

ov
em

en
t(

%
) MEANsingle-core multi-core

Figure 3: Real System Performance Improvement with AL-DRAM

• Effect of Reducing Multiple Timing Parameters. We
study the potential for reducing multiple timing parame-
ters simultaneously. Our key observation is that reducing
one timing parameter leads to decreasing the opportunity
to reduce another timing parameter simultaneously.

• Analysis of the Repeatability of Cell Failures. We per-
form tests for five different scenarios to determine that
a cell failure due to reduced latency is repeatable: same
test, test with different data patterns, test with timing-
parameter combinations, test with different temperatures,
and read/write test. Most of these scenarios show that a
very high fraction (more than 95%) of the erroneous cells
consistently experience an error over multiple iterations of
the same test.

• Performance Sensitivity Analyses. We analyze the im-
pact of increasing the number of ranks and channels, exe-
cuting heterogeneous workloads, using different row buffer
policies.

2. Significance
2.1. Novelty
To our knowledge, our HPCA 2015 paper is the first work to
i) provide a detailed qualitative and empirical analysis of the
relationship between process variation and temperature depen-
dence of modern DRAM devices on the one side, and DRAM
access latency on the other side (we directly attribute the rela-
tionship between the two to the amount of charge in cells), ii)
experimentally characterize a large number of existing DIMMs
to understand the potential of reducing DRAM timing con-
straints, iii) provide a practical mechanism that can take advan-
tage of this potential, and iv) evaluate the performance benefits
of this mechanism by dynamically optimizing DRAM timing
parameters on a real system using a variety of real workloads.
We make the following major contributions.

Addressing a Critical Real Problem, High DRAM La-
tency, with Low Cost. High DRAM latency is a critical bot-
tleneck for overall system performance in a variety of mod-
ern computing systems [81, 90], especially in real large-scale
server systems [72]. Considering the difficulties in DRAM
scaling [46, 81, 90], the problem is getting worse in future sys-
tems due to process variation. Our HPCA 2015 work leverages
the heterogeneity created by DRAM process variation across
DRAM chips and system operating conditions to mitigate the
DRAM latency problem. We propose a practical mechanism,
Adaptive-Latency DRAM, which mitigates DRAM latency with
very modest hardware cost, and with no changes to the DRAM
chip itself.

3



SAFARI Technical Report No. 2016-003 (March 28, 2016)

Low Latency DRAM Architectures. Previous works [23,
24, 42, 53, 65, 77, 82, 105, 108, 112, 129] propose new DRAM
architectures that provide lower latency. These works im-
prove DRAM latency at the cost of either significant additional
DRAM chip area (i.e., extra sense amplifiers [77, 105, 112],
an additional SRAM cache [42, 129]), specialized proto-
cols [23, 53, 65, 108] or a combination of these. Our proposed
mechanism requires no changes to the DRAM chip and the
DRAM interface, and hence has almost negligible overhead.
Furthermore, AL-DRAM is largely orthogonal to these pro-
posed designs, and can be applied in conjunction with them,
providing greater cumulative reduction in latency.

Large-Scale Latency Profiling of Modern DRAM Chips.
Using our FPGA-based DRAM testing infrastructure [22, 48,
49, 50, 64, 69, 99], we profile 115 DRAM modules (862
DRAM chips in total) and show that there is significant timing
variation between different DIMMs at different temperatures.
We believe that our results are statistically significant to vali-
date our hypothesis that the DRAM timing parameters strongly
depend on the amount of cell charge. We provide detailed char-
acterization of each DIMM online at the SAFARI Research
Group website [63]. Furthermore, we introduce our FPGA-
based DRAM infrastructure and experimental methodology for
DRAM profiling, which are carefully constructed to represent
the worst-case conditions in power noise, bitline/wordline cou-
pling, data patterns, and access patterns. Such information will
hopefully be useful for future DRAM research.

Extensive Real System Evaluation of DRAM Latency.
We evaluate our mechanism on a real system and show that our
mechanism provides significant performance improvement.
Reducing the timing parameters strips the excessive margin in
DRAM’s electrical charge. We show that the remaining margin
is enough for DRAM to operate correctly. To verify the cor-
rectness of our experiments, we ran our workloads for 33 days
non-stop, and examined their and the system’s correctness with
reduced timing parameters. Using the reduced timing parame-
ters over the course of 33 days, our real system was able to exe-
cute 35 different workloads in both single-core and multi-core
configurations while preserving correctness and being error-
free. Note that these results do not absolutely guarantee that
no errors can be introduced by reducing the timing parameters.
However, we believe that we have demonstrated a proof-of-
concept which shows that DRAM latency can be reduced at no
impact on DRAM reliability. Ultimately, the DRAM manufac-
turers can provide the reliable timing parameters for different
operating conditions and modules.

Other Methods for Lowering Memory Latency. There
are many works that reduce overall memory access latency
by modifying DRAM, the DRAM-controller interface, and
DRAM controllers. These works enable more parallelism
and bandwidth [4, 5, 23, 24, 53, 62, 108, 120, 127, 131], re-
duce refresh counts [48, 69, 70, 99, 119], accelerate bulk op-
erations [24, 107, 108, 109], accelerate computation in the
logic layer of 3D-stacked DRAM [2, 3, 40, 126], enable bet-
ter communication between CPU and other devices through
DRAM [66], leverage DRAM access patterns [41], reduce
write-related latencies by better designing DRAM and DRAM
control policies [25, 58, 106], reduce overall queuing latencies

in DRAM by better scheduling memory requests [11, 12, 28,
35, 43, 45, 51, 52, 59, 60, 61, 78, 79, 80, 86, 87, 92, 104, 114,
115, 116, 117, 118, 130], employing prefetching [6, 21, 26,
27, 32, 34, 36, 37, 59, 83, 84, 85, 88, 89, 91, 93, 113], mem-
ory/cache compression [1, 7, 8, 29, 31, 33, 94, 95, 96, 97, 111,
121, 128], or better caching [47, 100, 101, 110]. Our proposal
is orthogonal to all of these approaches and can be applied in
conjunction with them to achieve even higher latency reduc-
tions.

2.2. Potential Long-Term Impact

Tolerating High DRAM Latency by Exploiting DRAM In-
trinsic Characteristics. Today, there is a large latency cliff be-
tween the on-chip last level cache and off-chip DRAM, leading
to a large performance fall-off when applications start missing
in the last level cache. By enabling lower DRAM latency, our
mechanism, Adaptive-Latency DRAM, smoothens this latency
cliff without adding another layer into the memory hierarchy.

Applicability to Future Memory Devices. We show the
benefits of the common-case timing optimization in modern
DRAM devices by taking advantage of intrinsic characteris-
tics of DRAM. Considering that most memory devices adopt
a unified specification that is dictated by the worst-case op-
erating condition, our approach that optimizes device latency
for the common case can be applicable to other memory de-
vices by leveraging the intrinsic characteristics of the technol-
ogy they are built with. We believe there is significant potential
for approaches that could reduce the latency of Phase Change
Memory (PCM) [30, 55, 56, 57, 75, 98, 102, 103, 123, 125],
STT-MRAM [54, 68, 75], RRAM [122], and Flash mem-
ory [13, 14, 15, 16, 17, 18, 19, 20, 73, 74, 76].

New Research Opportunities. Adaptive-Latency DRAM
creates new opportunities by enabling mechanisms that can
leverage the heterogeneous latency offered by our mechanism.
We describe a few of these briefly.

Optimizing the operating conditions for faster DRAM ac-
cess. Adaptive-Latency DRAM provides different access la-
tency at different operating conditions. Thus, optimizing the
DRAM operating conditions enables faster DRAM access with
Adaptive-Latency DRAM. For instance, balancing DRAM ac-
cesses over different DRAM channels and ranks leads to reduc-
ing the DRAM operating temperature, maximizing the benefits
from Adaptive-Latency DRAM. At the system level, operating
the system at a constant low temperature can enable the use of
AL-DRAM’s lower latency more frequently.

Optimizing data placement for reducing overall DRAM ac-
cess latency. We characterize the latency variation in different
DIMMs due to process variation. Placing data based on this
information and the latency criticality of data maximizes the
benefits of lowering DRAM latency.

Error-correction mechanisms to further reduce DRAM la-
tency. Error-correction mechanisms can fix the errors from
lowering DRAM latency even further, leading to further reduc-
tion in DRAM latency without errors. Future research that uses
error correction to enable even lower latency DRAM is there-
fore promising as it opens a new set of trade-offs.

4



SAFARI Technical Report No. 2016-003 (March 28, 2016)

References
[1] B. Abali et al. Memory Expansion Technology (MXT): Software sup-

port and performance. In IBM Journal of Research and Development,
2001.

[2] J. Ahn et al. A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing. In ISCA, 2015.

[3] J. Ahn et al. PIM-Enabled Instructions: A Low-Overhead, Locality-
Aware Processing-in-Memory Architecture. In ISCA, 2015.

[4] J. H. Ahn et al. Improving System Energy Efficiency with Memory
Rank Subsetting. In ACM TACO, 2012.

[5] J. H. Ahn et al. Multicore DIMM: an Energy Efficient Memory Module
with Independently Controlled DRAMs. In IEEE CAL, 2009.

[6] A. Alameldeen and D. Wood. Interactions Between Compression and
Prefetching in Chip Multiprocessors. In HPCA, 2007.

[7] A. R. Alameldeen and D. A. Wood. Adaptive Cache Compression for
High-Performance Processors. In ISCA, 2004.

[8] A. R. Alameldeen and D. A. Wood. Frequent Pattern Compression: A
Significance-Based Compression Scheme for L2 Caches. In Technical
Report, UM-Madison 1599, University of Wisconsin-Madison, 2004.

[9] AMD. AMD Opteron 4300 Series processors. http://www.amd.
com/en-us/products/server/4000/4300.

[10] AMD. BKDG for AMD Family 16h Models 00h-0Fh Processors, 2013.
[11] R. Ausavarungnirun et al. Staged memory scheduling: achieving high

performance and scalability in heterogeneous systems. In ISCA, 2012.
[12] R. Ausavarungnirun et al. Exploiting Inter-Warp Heterogeneity to Im-

prove GPGPU Performance. In PACT, 2015.
[13] Y. Cai et al. Error Patterns in MLC NAND Flash Memory: Measure-

ment, Characterization, and Analysis. In DATE, 2012.
[14] Y. Cai et al. Threshold voltage distribution in MLC NAND flash mem-

ory: Characterization, analysis, and modeling. In DATE, 2013.
[15] Y. Cai et al. Read Disturb Errors in MLC NAND Flash Memory: Char-

acterization, Mitigation, and Recovery. In DSN, 2015.
[16] Y. Cai et al. Data retention in MLC NAND flash memory: Characteri-

zation, optimization, and recovery. In HPCA, 2015.
[17] Y. Cai et al. Program Interference in MLC NAND Flash Memory: Char-

acterization, Modeling, and Mitigation. In ICCD, 2013.
[18] Y. Cai et al. Flash correct-and-refresh: Retention-aware error manage-

ment for increased flash memory lifetime. In ICCD, 2012.
[19] Y. Cai et al. Error Analysis and Retention-Aware Error Management for

NAND Flash Memory. In ITJ, 2013.
[20] Y. Cai et al. Neighbor-cell Assisted Error Correction for MLC NAND

Flash Memories. In SIGMETRICS, 2014.
[21] P. Cao et al. A Study of Integrated Prefetching and Caching Strategies.

In SIGMETRICS, 1995.
[22] K. Chang et al. Understanding Latency Variation in Modern DRAM

Chips: Experimental Characterization, Analysis, and Optimization. In
SIGMETRICS, 2016.

[23] K. Chang et al. Improving DRAM performance by parallelizing re-
freshes with accesses. In HPCA, 2014.

[24] K. Chang et al. Low-Cost Inter-Linked Subarrays (LISA): Enabling
Fast Inter-Subarray Data Movement in DRAM. In HPCA, 2016.

[25] N. Chatterjee et al. Staged Reads: Mitigating the Impact of DRAM
Writes on DRAM Reads. In HPCA, 2012.

[26] R. Cooksey et al. A Stateless, Content-directed Data Prefetching Mech-
anism. In ASPLOS, 2002.

[27] F. Dahlgren et al. Sequential Hardware Prefetching in Shared-Memory
Multiprocessors. In IEEE TPDS, 1995.

[28] R. Das et al. Application-to-core mapping policies to reduce memory
system interference in multi-core systems. In HPCA, 2013.

[29] R. de Castro et al. Adaptive compressed caching: design and imple-
mentation. In SBAC-PAD, 2003.

[30] G. Dhiman et al. PDRAM: A hybrid PRAM and DRAM main memory
system. In DAC, 2009.

[31] F. Douglis. The Compression Cache: Using On-line Compression to
Extend Physical Memory. In Winter USENIX Conference, 1993.

[32] J. Dundas and T. Mudge. Improving Data Cache Performance by Pre-
executing Instructions Under a Cache Miss. In ICS, 1997.

[33] J. Dusser et al. Zero-content Augmented Caches. In ICS, 2009.
[34] E. Ebrahimi et al. Prefetch-aware Shared Resource Management for

Multi-core Systems. In ISCA, 2011.
[35] E. Ebrahimi et al. Parallel application memory scheduling. In MICRO,

2011.
[36] E. Ebrahimi et al. Coordinated Control of Multiple Prefetchers in Multi-

core Systems. In MICRO, 2009.
[37] E. Ebrahimi et al. Techniques for bandwidth-efficient prefetching of

linked data structures in hybrid prefetching systems. In HPCA, 2009.
[38] N. El-Sayed et al. Temperature Management in Data Centers: Why

Some (Might) Like It Hot. In SIGMETRICS, 2012.
[39] N. El-Sayed et al. Temperature Management in Data Centers: Why

Some (Might) Like It Hot. In Technical Report, CSRG-615, University
of Toronto, 2012.

[40] Q. Guo et al. 3D-Stacked Memory-Side Acceleration: Accelerator and
System Design. In WoNDP, 2014.

[41] H. Hassan et al. ChargeCache: Reducing DRAM Latency by Exploiting
Row Access Locality. In HPCA, 2016.

[42] H. Hidaka et al. The Cache DRAM Architecture: A DRAM with an
On-Chip Cache Memory. In IEEE Micro, 1990.

[43] E. Ipek et al. Self-optimizing memory controllers: A reinforcement
learning approach. In ISCA, 2008.

[44] JEDEC. Standard No. 79-3F. DDR3 SDRAM Specification, July 2012.
[45] A. Jog et al. Exploiting Core-Criticality for Enhanced GPU Perfor-

mance. In SIGMETRICS, 2016.
[46] U. Kang et al. Co-Architecting Controllers and DRAM to Enhance

DRAM Process Scaling. In The Memory Forum, 2014.
[47] S. Khan et al. Improving Cache Performance by Exploiting Read-Write

Disparity. In HPCA, 2014.
[48] S. Khan et al. The Efficacy of Error Mitigation Techniques for DRAM

Retention Failures: A Comparative Experimental Study. In SIGMET-
RICS, 2014.

[49] S. Khan et al. PARBOR: An Efficient System-Level Technique to De-
tect Data Dependent Failures in DRAM. In DSN, 2016.

[50] Y. Kim et al. Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors. In ISCA, 2014.

[51] Y. Kim et al. ATLAS: A scalable and high-performance scheduling
algorithm for multiple memory controllers. In HPCA, 2010.

[52] Y. Kim et al. Thread Cluster Memory Scheduling: Exploiting Differ-
ences in Memory Access Behavior. In MICRO, 2010.

[53] Y. Kim et al. A Case for Exploiting Subarray-Level Parallelism (SALP)
in DRAM. In ISCA, 2012.

[54] E. Kultursay et al. Evaluating STT-RAM as an energy-efficient main
memory alternative. In ISPASS, 2013.

[55] B. Lee et al. Phase-Change Technology and the Future of Main Mem-
ory. In IEEE Micro, 2010.

[56] B. C. Lee et al. Architecting Phase Change Memory As a Scalable
DRAM Alternative. In ISCA, 2009.

[57] B. C. Lee et al. Phase Change Memory Architecture and the Quest for
Scalability. In CACM, 2010.

[58] C. J. Lee et al. DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems. In UT Tech Report TR-
HPS-2010-002, 2010.

[59] C. J. Lee et al. Prefetch-Aware DRAM Controllers. In MICRO, 2008.
[60] C. J. Lee et al. Prefetch-Aware Memory Controllers. In IEEE TC, 2011.
[61] C. J. Lee et al. Improving Memory Bank-level Parallelism in the Pres-

ence of Prefetching. In MICRO, 2009.
[62] D. Lee et al. Simultaneous Multi-Layer Access: Improving 3D-Stacked

Memory Bandwidth at Low Cost. In ACM TACO, 2016.
[63] D. Lee et al. Adaptive-Latency DRAM: Optimizing DRAM Timing

for the Common-Case. http://www.ece.cmu.edu/˜safari/
tools/aldram-hpca2015-fulldata.html.

[64] D. Lee et al. Adaptive-latency DRAM: Optimizing DRAM timing for
the common-case. In HPCA, 2015.

[65] D. Lee et al. Tiered-latency DRAM: A low latency and low cost DRAM
architecture. In HPCA, 2013.

[66] D. Lee et al. Decoupled Direct Memory Access: Isolating CPU and IO
Traffic by Leveraging a Dual-Data-Port DRAM. In PACT, 2015.

[67] J. Lee et al. Simultaneously Formed Storage Node Contact and Metal
Contact Cell (SSMC) for 1Gb DRAM and Beyond. In IEDM, 1996.

[68] Y. Li et al. Managing Hybrid Main Memories with a Page-Utility Driven
Performance Model. In CoRR abs/1507.03303, 2015.

[69] J. Liu et al. An Experimental Study of Data Retention Behavior in Mod-
ern DRAM Devices: Implications for Retention Time Profiling Mecha-
nisms. In ISCA, 2013.

[70] J. Liu et al. RAIDR: Retention-Aware Intelligent DRAM Refresh. In
ISCA, 2012.

[71] S. Liu et al. Hardware/software techniques for DRAM thermal manage-
ment. In HPCA, 2011.

5



SAFARI Technical Report No. 2016-003 (March 28, 2016)

[72] D. Lo et al. Heracles: Improving resource efficiency at scale. In ISCA,
2015.

[73] Y. Lu et al. High-Performance and Lightweight Transaction Support in
Flash-Based SSDs. In IEEE TC, 2015.

[74] Y. Luo et al. WARM: Improving NAND flash memory lifetime with
write-hotness aware retention management. In MSST, 2015.

[75] J. Meza et al. A Case for Small Row Buffers in Non-Volatile Main
Memories. In ICCD, Poster Session, 2012.

[76] J. Meza et al. A large-scale study of flash memory failures in the field.
In SIGMETRICS, 2015.

[77] Micron. RLDRAM 2 and 3 Specifications. http://www.micron.
com/products/dram/rldram-memory.

[78] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial of
Memory Service in Multi-core Systems. In USENIX Security, 2007.

[79] T. Moscibroda and O. Mutlu. Distributed Order Scheduling and Its
Application to Multi-core Dram Controllers. In PODC, 2008.

[80] S. P. Muralidhara et al. Reducing memory interference in multicore sys-
tems via application-aware memory channel partitioning. In MICRO,
2011.

[81] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. In
IMW, 2013.

[82] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. In
MemCon, 2013.

[83] O. Mutlu et al. Address-value delta (AVD) prediction: increasing the
effectiveness of runahead execution by exploiting regular memory allo-
cation patterns. In MICRO, 2005.

[84] O. Mutlu et al. Techniques for efficient processing in runahead execu-
tion engines. In ISCA, 2005.

[85] O. Mutlu et al. Efficient Runahead Execution: Power-efficient Memory
Latency Tolerance. In IEEE Micro, 2006.

[86] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Schedul-
ing for Chip Multiprocessors. In MICRO, 2007.

[87] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: En-
hancing both Performance and Fairness of Shared DRAM Systems. In
ISCA, 2008.

[88] O. Mutlu et al. Runahead execution: an alternative to very large instruc-
tion windows for out-of-order processors. In HPCA, 2003.

[89] O. Mutlu et al. Runahead execution: An effective alternative to large
instruction windows. In IEEE Micro, 2003.

[90] O. Mutlu and L. Subramanian. Research Problems and Opportunities
in Memory Systems. In SUPERFRI, 2015.

[91] K. Nesbit et al. AC/DC: an adaptive data cache prefetcher. In PACT,
2004.

[92] K. J. Nesbit et al. Fair Queuing Memory Systems. In MICRO, 2006.
[93] R. H. Patterson et al. Informed Prefetching and Caching. In SOSP,

1995.
[94] G. Pekhimenko et al. Toggle-Aware Bandwidth Compression for GPUs.

In HPCA, 2016.
[95] G. Pekhimenko et al. Exploiting Compressed Block Size as an Indicator

of Future Reuse. In HPCA, 2015.
[96] G. Pekhimenko et al. Linearly Compressed Pages: A Low-complexity,

Low-latency Main Memory Compression Framework. In MICRO,
2013.

[97] G. Pekhimenko et al. Base-Delta-Immediate Compression: A Practical
Data Compression Mechanism for On-Chip Caches. In PACT, 2012.

[98] M. Qureshi et al. Enhancing lifetime and security of PCM-based main
memory with start-gap wear leveling. In MICRO, 2009.

[99] M. Qureshi et al. AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems. In DSN, 2015.

[100] M. K. Qureshi et al. Adaptive Insertion Policies for High Performance
Caching. In ISCA, 2007.

[101] M. K. Qureshi et al. A Case for MLP-Aware Cache Replacement. In
ISCA, 2006.

[102] M. K. Qureshi et al. Scalable High Performance Main Memory System
Using Phase-change Memory Technology. In ISCA, 2009.

[103] S. Raoux et al. Phase-change random access memory: A scalable tech-
nology. In IBM Journal of Research and Development, 2008.

[104] S. Rixner et al. Memory Access Scheduling. In ISCA, 2000.
[105] Y. Sato et al. Fast Cycle RAM (FCRAM); a 20-ns random row access,

pipe-lined operating DRAM. In Symposium on VLSI Circuits, 1998.
[106] V. Seshadri et al. The Dirty-Block Index. In ISCA, 2014.
[107] V. Seshadri et al. Fast Bulk Bitwise AND and OR in DRAM. In IEEE

CAL, 2015.

[108] V. Seshadri et al. RowClone: Fast and Energy-efficient in-DRAM Bulk
Data Copy and Initialization. In MICRO, 2013.

[109] V. Seshadri et al. Gather-Scatter DRAM: In-DRAM Address Transla-
tion to Improve the Spatial Locality of Non-unit Strided Accesses. In
MICRO, 2015.

[110] V. Seshadri et al. The Evicted-Address Filter: A Unified Mechanism to
Address Both Cache Pollution and Thrashing. In PACT, 2012.

[111] A. Shafiee et al. MemZip: Exploring Unconventional Benefits from
Memory Compression. In HPCA, 2014.

[112] Y. H. Son et al. Reducing Memory Access Latency with Asymmetric
DRAM Bank Organizations. In ISCA, 2013.

[113] S. Srinath et al. Feedback Directed Prefetching: Improving the Perfor-
mance and Bandwidth-Efficiency of Hardware Prefetchers. In HPCA,
2007.

[114] L. Subramanian et al. The Blacklisting Memory Scheduler: Achieving
high performance and fairness at low cost. In ICCD, 2014.

[115] L. Subramanian et al. The Blacklisting Memory Scheduler: Balancing
Performance, Fairness and Complexity. In TPDS, 2016.

[116] L. Subramanian et al. The Application Slowdown Model: Quantifying
and Controlling the Impact of Inter-Application Interference at Shared
Caches and Main Memory. In MICRO, 2015.

[117] L. Subramanian et al. MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems. In HPCA, 2013.

[118] H. Usui et al. DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware Accelerators. In
ACM TACO, 2016.

[119] R. Venkatesan et al. Retention-Aware Placement in DRAM (RAPID):
Software Methods for Quasi-Non-Volatile DRAM. In HPCA, 2006.

[120] F. Ware and C. Hampel. Improving Power and Data Efficiency with
Threaded Memory Modules. In ICCD, 2006.

[121] P. R. Wilson et al. The Case for Compressed Caching in Virtual Memory
Systems. In ATEC, 1999.

[122] H.-S. Wong et al. Metal Oxide RRAM. In Proceedings of the IEEE,
2012.

[123] H.-S. Wong et al. Phase Change Memory. In Proceedings of the IEEE,
2010.

[124] D. Yaney et al. A meta-stable leakage phenomenon in DRAM charge
storage - Variable hold time. In IEDM, 1987.

[125] H. Yoon et al. Efficient Data Mapping and Buffering Techniques for
Multilevel Cell Phase-Change Memories. In ACM TACO, 2014.

[126] D. Zhang et al. TOP-PIM: Throughput-oriented Programmable Pro-
cessing in Memory. In HPCA, 2014.

[127] T. Zhang et al. Half-DRAM: A high-bandwidth and low-power DRAM
architecture from the rethinking of fine-grained activation. In ISCA,
2014.

[128] Y. Zhang et al. Frequent value locality and value-centric data cache
design. In ASPLOS, 2000.

[129] Z. Zhang et al. Cached DRAM for ILP Processor Memory Access La-
tency Reduction. In IEEE Micro, 2001.

[130] J. Zhao et al. FIRM: Fair and High-Performance Memory Control for
Persistent Memory Systems. In MICRO, 2014.

[131] H. Zheng et al. Mini-rank: Adaptive DRAM architecture for improving
memory power efficiency. In MICRO, 2008.

6


