
SAFARI Technical Report No. 2015-005 (April 2015)

This is a summary of the original paper, entitled “Characterizing Application Memory Error Vulnerability
to Optimize Datacenter Cost via Heterogeneous-Reliability Memory” in DSN-44, 2014 [30].

Heterogeneous-Reliability Memory:
Exploiting Application-Level Memory Error Tolerance

Yixin Luo Sriram Govindan† Bikash Sharma† Mark Santaniello† Justin Meza
Aman Kansal† Jie Liu† Badriddine Khessib† Kushagra Vaid† Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
†Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com

1. Summary
Recent studies estimate that server cost contributes to as

much as 57% of the total cost of ownership (TCO) of a data-
center [1]. One key contributor to this high server cost is the
procurement of memory devices such as DRAMs, especially
for data-intensive datacenter cloud applications that need low
latency (such as web search, in-memory caching, and graph
traversal). Such memory devices, however, may be prone to
hardware errors that occur due to unintended bit flips during
device operation [40, 33, 41, 20]. To protect against such er-
rors, traditional systems uniformly employ devices with high-
quality chips and error correction techniques, both of which
increase device cost. At the same time, we make the obser-
vations that 1) data-intensive applications exhibit a diverse
spectrum of tolerance to memory errors, and 2) traditional
one-size-fits-all memory reliability techniques are inefficient
in terms of cost.

Our DSN-44 paper [30] is the first to 1) understand how
tolerant different data-intensive applications are to memory
errors and 2) design a new memory system organization that
matches hardware reliability to application tolerance in or-
der to reduce system cost. The main idea of our approach
is to classify applications based on their memory error toler-
ance, and map applications to heterogeneous-reliability mem-
ory system designs managed cooperatively between hardware
and software to reduce system cost. Our DSN-44 paper pro-
vides the following contributions:
1. A new methodology to quantify the tolerance of applica-

tions to memory errors. Our approach measures the effect
of memory errors on application correctness and quantifies
an application’s ability to mask or recover from memory
errors.

2. A comprehensive characterization of the memory error
tolerance of three data-intensive workloads: an interactive
web search application [30, 39], an in-memory key–value
store [30, 3], and a graph mining framework [30, 29]. We
find that there exists an order of magnitude difference in
memory error tolerance across these three applications.

3. An exploration of the design space of new memory sys-
tem organizations, called heterogeneous-reliability mem-
ory, which combines a heterogeneous mix of reliability
techniques that leverage application error tolerance to re-
duce system cost. We show that our techniques can reduce
server hardware cost by 4.7%, while achieving 99.90%
single server availability.

1.1. Methodology
We had three design goals when implementing our method-

ology for quantifying application memory error tolerance.

First, due to the sporadic and inconsistent nature of memory
errors in the field [40, 33, 41, 20, 27, 18, 36], we wanted to
design a framework to emulate the occurrence of a memory
error in an application’s data in a controlled manner. Second,
we wanted an efficient way to measure how an application ac-
cesses its data. Third, we wanted our framework to be easily
adaptable to other workloads or system configurations.

(b) Error Injection
Framework

(Re)Start App

Inject Errors
(Soft/Hard)

Run Client
Workload

App
Crash?

Compare Result
with Expected

Output

NO

YES

Re
pe

at

Start

2

3

4

5

1

Figure 1. Memory
error emulation frame-
work.

Figure 1 shows a flow diagram
illustrating the five steps involved
in our error emulation frame-
work. We assume that the ap-
plication under examination has
already been run outside of the
framework and its expected out-
put has been recorded. The
framework proceeds as follows.
(1) We start the application under
the error injection framework.1
(2) We use software debuggers2

to inject the desired number and
types of memory errors. (3) We
initiate the connection of a client
and start executing the desired
workload. (4) Throughout the
course of the application’s exe-
cution, we check to see if the
machine has crashed; if it has,
we log this outcome and proceed
to step (1) to begin testing once
again. (5) If the application fin-
ishes its workload, we check to
see if its output matches the expected results; if the output
does not match the expected results, we log this outcome and
proceed to step (1) to test again.
1.2. Characterization

In our DSN paper, we characterize three new data-intensive
applications to memory errors, to quantify their tolerance to
memory errors: WebSearch [39]—an interactive web search
application, Memcached [3]—an in-memory key-value store,
and GraphLab [29]—a graph mining framework. We ran
these applications in real production systems and sampled
hundreds to tens of thousands of unique memory addresses
for each application.

Key Findings. In the following, we summarize two of the
most important findings of our DSN 2014 paper.
Finding 1: Error Tolerance Varies Across Applications.

1We describe our memory error emulation framework in our DSN 2014
paper [30].

2WinDBG [4] in Windows and GDB [2] in Linux.

1

SAFARI Technical Report No. 2015-005 (April 2015)

0

5

10

15

Soft Error Hard Error

WebSearch
Memcached
GraphLab

P
ro

b
ab

ili
ty

 o
f

C
ra

sh
 (

%
)

1E+0

1E+2

1E+4

1E+6

1E+8

Soft Error Hard Error

WebSearch
Memcached
GraphLab

In

co
rr

ec
t/

B
ill

io
n

 Q
u

er
ie

s

(a) Application vulnerability (b) Application incorrectness

Figure 2. Inter-application variations in vulnerability to
single-bit soft and hard memory errors for the three appli-
cations in terms of (a) probability of crash and (b) frequency
of incorrect results.

Figure 2(a) plots the probability of each of the three applica-
tions crashing due to the occurrence of single-bit soft or hard
errors in their memory (we call this application-level mem-
ory error vulnerability). In terms of how these errors affect
application correctness, Figure 2(b) plots the rate of incor-
rect results per billion queries under the same conditions. We
draw two key observations from these results.

First, there exists a significant variance in vulnerability
among the three applications both in terms of crash proba-
bility and in terms of incorrect result rate, which varies by up
to six orders of magnitude. Second, these characteristics may
differ depending on whether errors are soft or hard (for exam-
ple, the number of incorrect results for WebSearch differs by
over two orders of magnitude between soft and hard errors).
We therefore conclude that memory reliability techniques that
treat all applications similarly are inefficient because there
exists significant variation in error tolerance among applica-
tions.
Finding 2: Error Tolerance Varies Within an Application.
Figure 3(a) plots the probability of each of the three applica-
tions crashing due to the occurrence of single-bit soft or hard
errors in different regions of their memory. Figure 3(b) plots
the rate of incorrect results per billion queries under the same
conditions. Two observations are in order.

First, for some memory regions, the probability of an error
leading to a crash is much lower than for others (for exam-
ple, in WebSearch the probability of a hard error leading to
a crash in the heap or private memory regions is much lower
than in the stack memory region). Second, even in the pres-
ence of memory errors, some regions of some applications
are still able to tolerate memory errors (perhaps at reduced
correctness). This may be acceptable for applications such
as WebSearch that aggregate results from several servers be-
fore presenting them to the user, in which case the likelihood
of the user being exposed to an error is much lower than the
reported probabilities. We therefore conclude that memory
reliability techniques that treat all memory regions within an
application similarly are inefficient because there exists sig-
nificant variance in the error tolerance among different mem-
ory regions.

Other Findings. We use WebSearch as an examplar data-
intensive application and perform an in-depth analysis of its
tolerance behavior. Other findings in the paper are listed be-
low.
• Quick-to-crash vs. periodically incorrect behavior. More-

severe failures due to memory errors tend to crash the ap-
plication or system quickly, while less-severe failures tend

0
2
4
6
8

10
12
14

P
ro

b
ab

ili
ty

 o
f

C
ra

sh
 (

%
) Private Heap Stack

Soft Error Hard Error

0 0 0 0 1E+0

1E+2

1E+4

1E+6

1E+8 Private Heap Stack

Soft Error Hard Error

In

co
rr

ec
t/

B
ill

io
n

 Q
u

er
ie

s

0 0 0 0 0

(a) Memory region vulnerability (b) Memory region incorrectness

Figure 3. Memory region variations in vulnerability to
single-bit soft and hard memory errors for the applications
in terms of (a) probability of crash and (b) frequency of in-
correct results.

to generate incorrect results periodically.
• Some memory regions are safer than others. This indicates

either application access pattern or application access pat-
tern or application logic can be the dominant factor in dif-
ferent memory regions to mask a majority of memory er-
rors.

• More-severe errors mainly decrease correctness, as op-
posed to increase an application’s probability of crashing.

• Data recoverability varies across memory regions. For
data-intensive applications like WebSearch, software-only
memory error tolerance techniques are a promising direc-
tion for enabling reliable system designs.

1.3. Solution
In our DSN paper, we propose heterogeneous-reliability

memory as our solution to optimize datacenter cost. We ex-
amine three dimensions and their benefits and trade-offs in
the design space for systems with heterogeneous reliability:
(1) hardware techniques to detect and correct errors, (2) soft-
ware responses to errors, and (3) the granularity at which dif-
ferent techniques are used. In addition to dimensions in sys-
tem designs, we also discuss (1) the metrics we use to evalu-
ate the benefits and costs of the designs, and (2) the memory
error model we use to examine the effectiveness of the de-
signs.

Using WebSearch as an example application, we evalu-
ated and compared five design points (three baseline sys-
tems: Typical Server, Consumer PC, and Less-Tested,
and two heterogeneous-reliability memory systems: De-
tect&Recover and Detect&Recover/L). Such comparison il-
lustrates the inefficiencies of traditional homogeneous ap-
proaches to memory system reliability, as well as the bene-
fits of heterogeneous-reliability memory system designs. De-
tect&Recover uses parity in hardware to detect errors for the
private memory region and responds by correcting them with
a clean copy of data from disk in software (Par+R, parity
and recovery), and uses neither error detection nor correction
for the rest of its data. Detect&Recover/L applies the same
technique as Detect&Recover does but uses less-thoroughly-
tested memory throughout the entire system.

Major evaluation results in Figure 4 show that the two
highlighted design points (in orange color), which leverage
heterogeneous-reliability memory system design, can both
achieve the target single server availability of 99.90% while
reducing server hardware cost to 2.9% and 4.7% respectively.

2

SAFARI Technical Report No. 2015-005 (April 2015)

3.3

2.9

8.1

4.7

0 2 4 6 8

Typical Server

Consumer PC

Detect&Recover

Less-Tested(L)

Detect&Recover/L

Server HW cost savings (%)

99.55

99.93

97.78

99.90

97 98 99 100
Single server availability (%)

Figure 4. Comparison of server hardware cost savings and
single server availability for the five design points.

We therefore conclude that heterogeneous-reliability memory
system designs can enable systems to achieve both high cost
savings and high single server availability/reliability at the
same time.

Our DSN 2014 paper has much more detailed analysis, in-
cluding 1) memory cost savings, expected crash and incor-
rect query frequency for each configuration (Sec. VI-B), 2)
the maximum number of tolerable errors per month for each
application to achieve a reliability target (Sec. VI-B), and 3) a
discussion of hardware/software support for and feasibility of
the proposed heterogeneous-reliability memory (Sec. VI-C).

2. Significance
2.1. Novelty

Our DSN paper identifies the inefficiency in traditional
one-size-fits-all solutions to tolerate memory errors. We find
an opportunity to greatly reduce server hardware cost by pro-
visioning the right amount of memory reliability for differ-
ent applications using a hardware-software cooperative ap-
proach. By characterizing three important data-intensive ap-
plications, we build a comprehensive understanding of how
tolerant different data-intensive applications are to memory
errors. Based upon these insights, we propose the idea of
heterogeneous-reliability memory system and explore dimen-
sions in the design space of such systems.

Methodology. To perform a controlled memory error in-
jection to the three new data-intensive applications in a rapid
manner, we build a unique memory error emulation frame-
work using software debuggers [4, 2]. This framework allows
us to meet our goal of efficiency and adaptivity coming from
the scale and diversity of our target applications and enables
us to execute our workloads in their entirety. This frame-
work enables us to understand different aspects of application
memory error tolerance at the whole-application level.

Characterization. We characterize different aspects of
an application’s tolerance to memory errors, from the result-
ing outcomes to the underlying causes. We use our unique
characterization framework to inject a total of 23,718 unique
memory errors and monitor the correctness of a total of 11
billion query results for the three new data-intensive applica-
tions. From the characterization results, we conclude 6 new
findings which motivate and enable our proposed solution.

Solution. To reduce datacenter cost while reaching a relia-
bility target, we propose a heterogeneous-reliability memory
system design, managed cooperatively between hardware and
software. We examine three dimensions in the design space
enabled by this system design. Our evaluations of an exam-
ple heterogeneous-reliability memory system show that our
proposed solution can enable future low-cost high-reliability

memory system designs with minimal changes to hardware
and software.

2.2. Long-Term Impact
We believe our DSN paper will have long-term impact due

to the following three reasons. First, it emphasizes and aims
to solve an unfavorable trend in DRAM scaling — an in-
crease in hardware cost to ensure memory reliability. Sec-
ond, it tackles a problem that will become increasingly im-
portant in the future — reducing memory system cost in dat-
acenters. Third, it proposes a technique that uses software-
hardware co-design to improve memory system reliability,
thereby hopefully inspiring future works to exploit software
characteristics to improve system reliability and reduce sys-
tem cost.

Increasing memory error rate. As DRAM scales to
smaller process technology nodes, DRAM reliability degra-
dation becomes more significant [17, 34]. For example, re-
cent works 1) showed the existence of disturbance errors in
commodity DRAM chips operating in the field [21], 2) ex-
perimentally demonstrated the increasing importance of re-
tention related failures in modern DRAM devices [26, 28,
19, 36], and 3) advocated, in a paper co-written by Samsung
and Intel design teams, the use of in-DRAM error correcting
codes to overcome the reliability challenges [17, 36]. As a re-
sult of decreasing DRAM reliability, keeping the memory er-
ror rate as the levels we have today can either increase DRAM
cost due to decreased yield, expensive quality assurance tests,
and extra capacity for storing stronger error-correcting codes
or reduce performance due to frequent error correction and
logging. All of these make DRAM scaling more difficult and
less appealing. Our paper proposes a solution that enables
the use of DRAMs with higher error rates while achieving
reasonable application reliability, which can enable more ef-
ficient scaling of DRAM to smaller technology nodes in the
future.

Other memory technologies such as NAND Flash Mem-
ory [12, 11, 10, 9, 6, 7, 8, 32], phase change memory
(PCM) [23, 24, 23, 37, 31] and STT-MRAM [22, 31] also
show a similar decreasing trend in their reliability with pro-
cess technology scaling and the advent of multi-level cell
(MLC) technology [35]. NAND Flash Memory, for exam-
ple, also suffers from retention errors [6, 7, 12] and cell-
to-cell program interference errors [6, 9, 11]. Additionally,
NAND Flash Memory suffers from program/erase cycling er-
rors [6, 10], and read disturb errors [6, 13]. PCM suffers from
endurance issues [23, 37, 38, 25] and resistance drift [16].
The solution proposed in our paper can also be applied to
these memory technologies with slight modification to enable
reliable high density non-volatile devices in the future.

Increasing datacenter cost. Recent studies have shown
that capital costs can account for the majority (e.g., around
57% in [5]) of datacenter TCO (total cost of ownership). As
part of the cost of a server, the cost of the memory is com-
parable to that of the processors, and is likely to exceed pro-
cessor cost and become the dominant cost for servers running
data-intensive applications such as web search and social me-
dia services. As future datacenters grow in scale, datacenter
TCO will become an increasingly important factor in system
design. Our paper demonstrates a way of optimizing datacen-
ter TCO by reducing the cost of the memory system. The cost

3

SAFARI Technical Report No. 2015-005 (April 2015)

savings can be significant due to the increasing scale of such
datacenters [15], making our proposed technique hopefully
more important in the future.

Software-hardware co-design. Our solution,
heterogeneous-reliability memory, utilizes software-
hardware cooperative design to reduce cost. It demonstrates
the benefits of exploiting the application characteristics to
improve overall system design. For example, it shows that a
significant number of errors can be corrected in software by
reloading a clean copy of the data from storage. This moti-
vates us to rethink the placement of different functionalities
(such as error detection and error correction) to improve the
cost-reliability trade-off.

2.3. New Research Directions
Our DSN paper will hopefully continue to inspire fu-

ture works that can provide efficient and extensive charac-
terization/estimation of application-level memory error toler-
ance [14], which can make our proposed technique applicable
to a broader set of applications. Our paper has started a com-
munity discussion [15] on the feasibility of solving the prob-
lem of memory reliability by exploiting application memory
error tolerance in the future, inspiring reporters to ask the
question: "How good does memory need to be?"

2.4. Conclusion
Our DSN paper presents an efficient methodology to char-

acterize memory error tolerance, a set of new characteriza-
tion results along with their findings, and a new solution to
reduce datacenter cost under an availability constraint. As
DRAM becomes increasingly less reliable at smaller technol-
ogy nodes and memory cost becomes more important in data-
centers in the future, we hope that our findings and ideas will
inspire more research to improve the cost-reliability trade-off
in memory systems.

References
[1] Data Center Cost Model. http://perspectives.mvdirona.com/

2010/09/18/OverallDataCenterCosts.aspx.
[2] GDB: The GNU Project Debugger. http://www.sourceware.org/gdb/.
[3] Memcached. http://memcached.org/.
[4] Windows Debugging. http://tinyurl.com/l6zsqzv.
[5] L. A. Barroso et al. The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines. Morgan & Claypool Pub-
lishers, 2009.

[6] Y. Cai et al. Error Patterns in MLC NAND Flash Memory: Measure-
ment, Characterization, and Analysis. In DATE, 2012.

[7] Y. Cai et al. Flash Correct-and-Refresh: Retention-Aware Error Man-
agement for Increased Flash Memory Lifetime. In ICCD, 2012.

[8] Y. Cai et al. Error Analysis and Retention-Aware Error Management
for NAND Flash Memory. ITJ, 2013.

[9] Y. Cai et al. Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation. In ICCD, 2013.

[10] Y. Cai et al. Threshold Voltage Distribution in MLC NAND Flash
Memory: Characterization, Analysis, and Modeling. In DATE, 2013.

[11] Y. Cai et al. Neighbor-Cell Assisted Error Correction for MLC NAND
Flash Memories. In SIGMETRICS, 2014.

[12] Y. Cai et al. Data Retention in MLC NAND Flash Memory: Charac-
terization, Optimization and Recovery. In HPCA, 2015.

[13] Y. Cai et al. Read Disturb Errors in MLC NAND Flash Memory: Char-
acterization, Mitigation and Recovery. In DSN, 2015.

[14] N. Foutris et al. Versatile Architecture-level Fault Injection Framework
for Reliability Evaluation: A first Report. In IOLTS, 2014.

[15] R. Harris. How good does memory need to be?, 2014.
http://www.zdnet.com/how-good-does-memory-need-to-be-
7000031853/.

[16] D. Ielmini et al. Physical Interpretation, Modeling and Impact on Phase
Change Memory (PCM) Reliability of Resistance Drift Due to Chalco-
genide Structural Relaxation. In IEDM, 2007.

[17] U. Kang et al. Co-Architecting Controllers and DRAM to Enhance
DRAM Process Scaling. In The Memory Forum, 2014.

[18] S. Khan et al. The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study. In SIGMET-
RICS, 2014.

[19] S. M. Khan et al. The Efficacy of Error Mitigation Techniques for
DRAM Retention Failures: A Comparative Experimental Study. In
SIGMETRICS, 2014.

[20] Y. Kim et al. Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors. In ISCA, 2014.

[21] Y. Kim et al. Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors. In ISCA, 2014.

[22] E. Kultursay et al. Evaluating STT-RAM As An Energy-Efficient Main
Memory Alternative. In ISPASS, 2013.

[23] B. C. Lee et al. Architecting Phase Change Memory as a Scalable
DRAM Alternative. In ISCA, 2009.

[24] B. C. Lee et al. Phase Change Memory Architecture and The Quest for
Scalability. CACM, 2010.

[25] B. C. Lee et al. Phase Change Technology and the Future of Main
Memory. IEEE Micro, 2010.

[26] J. Liu et al. RAIDR: Retention-Aware Intelligent DRAM Refresh. In
ISCA, 2012.

[27] J. Liu et al. An Experimental Study of Data Retention Behavior in
Modern DRAM Devices: Implications for Retention Time Profiling
Mechanisms. In ISCA, 2013.

[28] J. Liu et al. An Experimental Study of Data Retention Behavior in
Modern DRAM Devices: Implications for Retention Time Profiling
Mechanisms. In ISCA, 2013.

[29] Y. Low et al. Distributed GraphLab: A Framework for Machine Learn-
ing and Data Mining in the Cloud. PVLDB, 2012.

[30] Y. Luo et al. Characterizing Application Memory Error Vulnerability
to Optimize Datacenter Cost via Heterogeneous-Reliability Memory.
In DSN, 2014.

[31] J. Meza et al. A Case for Efficient Hardware/Software Cooperative
Management of Storage and Memory. In WEED, 2013.

[32] J. Meza et al. A Large Scale Study of Flash Errors in the Field. In
SIGMETRICS, 2015.

[33] J. Meza et al. Revisiting Memory Errors in Large-Scale Production
Data Centers: Analysis and Modeling of New Trends from the Field.
In DSN, 2015.

[34] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. In
MEMCON, 2013.

[35] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. In
IMW, 2013.

[36] M. Qureshi et al. AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems. In DSN, 2015.

[37] M. K. Qureshi et al. Scalable High Performance Main Memory System
Using Phase-Change Memory Technology. In ISCA, 2009.

[38] M. K. Qureshi et al. Scalable High Performance Main Memory System
Using Phase-Change Memory Technology. In ISCA, 2009.

[39] V. J. Reddi et al. Web Search Using Mobile Cores: Quantifying and
Mitigating the Price of Efficiency. In ISCA, 2010.

[40] B. Schroeder et al. DRAM Errors in the Wild: A Large-Scale Field
Study. In SIGMETRICS Performance, 2009.

[41] V. Sridharan et al. Feng Shui of Supercomputer Memory: Positional
Effects in DRAM and SRAM Faults. In SC, 2013.

4

