
SAFARI Technical Report No. 2011-010 (October 2, 2011)

Design of Heterogeneous On-Chip Networks:

An Application Driven Approach

Asit K. Mishra Onur Mutlu Chita R. Das

Pennsylvania State University Carnegie Mellon University Pennsylvania State University

amishra@cse.psu.edu onur@cmu.edu das@cse.psu.edu

SAFARI Technical Report No. 2011-010

October 2, 2011

Abstract

An on-chip interconnect is a critical shared resource that affects the performance-energy envelope of an entire

multicore system. This aspect has led to a plethora of proposals in recent years for efficiently architecting the NoC

substrate. However, most of these designs are agnostic to the actual application requirements in that they attempt to

optimize a generic set of objective functions such as latency and throughput and/or energy/power. In this paper, we

show that not all applications demand similar resources from the underlying interconnection substrate. Consequently,

an alternative approach to design an NoC is to utilize multiple networks, each of which is specialized for common ap-

plication requirements, and dynamically steer requests of an application to the network that matches the application’s

requirements.

To this end, we start with a top-down approach by analyzing the communication requirements of several appli-

cations. Our key observation is that, although applications, in general, can be classified as either network bandwidth

sensitive or latency sensitive, not all bandwidth (latency) sensitive applications are equally sensitive to bandwidth

(latency). Thus, we propose a novel set of metrics that can dynamically classify applications as either bandwidth or

latency sensitive to steer them into appropriate networks. We propose two separate heterogeneous networks in the

on-chip interconnection substrate, where one network is tailored to optimize for bandwidth sensitive applications and

the second network for latency sensitive applications. Within each sub-network, we prioritize applications based on

their criticality of network resource demand. Simulations with different designs of a 64-core 2D mesh architecture

demonstrate that our heterogeneous network architecture is 5%/3% better in weighted/instruction throughput, while

consuming 47% lower energy compared to an iso-resource single network.

1 Introduction

Network-on-Chips (NoCs) are envisioned to be a scalable communication substrate for building multicore systems,

which are expected to execute a large number of different applications and threads concurrently to maximize system

performance. The NoC is a critical shared resource among these concurrently-executing applications, significantly

affecting each application’s performance, system performance, and energy efficiency. Applications that share the NoC

are likely to have diverse characteristics and performance requirements, resulting in different performance demands

from the network. The design parameters and algorithms employed in the NoC critically affect the latency and band-

width provided to each application, thereby affecting the performance and efficiency of each application’s execution.

Therefore, devising NoCs that can efficiently satisfy diverse characteristics of different applications is likely to become

increasingly important.

Traditionally, NoCs have been designed in a monolithic, one-size-fits-all manner, agnostic to the needs of different

access patterns and application characteristics. Two common solutions are to design a single NoC for 1) common-

case, or average-case, application behavior or 2) near-worst case application behavior, by overprovisioning the design

as much as possible to maximize network bandwidth and to minimize network latency. However, applications have
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widely different demands from the network, e.g. some require low latency, some high bandwidth, some both, and

some neither. As a result, both design choices are suboptimal in terms of either performance or efficiency. The

“average-case” network design cannot provide good performance for applications that require more than the supported

bandwidth or benefit from lower latency. Both network designs, especially the “overprovisioned” design, is power- and

energy-inefficient for applications that do not need the provided high bandwidth or low latency. Hence, monolithic,

one-size-fits-all NoC designs are sub-optimal from performance and energy standpoints.

Ideally, we would like an NoC design that can provide just the right amount of bandwidth and latency for an ap-

plication such that the application’s performance is maximized, while the system’s energy consumption is minimized.

This can be achieved by dedicating each application its own NoC that is dynamically customized for the application’s

bandwidth and latency requirements. Unfortunately, such a design would not only be very costly in terms of die area,

but also requires innovations to dynamically change the network bandwidth and latency across a wide range. Instead, if

we can categorize applications into a small number of classes based on similarity in resource requirements, and design

multiple networks that can efficiently execute each class of applications, then we can potentially have a cost-efficient

network design that can adapt itself to application requirements.

Building upon this insight, this paper proposes a new approach to designing an on-chip interconnect that can satisfy

the diverse performance requirements of applications in an energy efficient manner. We observe that applications can

be generally divided into two general classes in terms of their requirements from the network: bandwidth-sensitive

and latency-sensitive. Two different NoC designs, each of which is customized for high bandwidth or low latency

can, respectively, satisfy requirements of the two classes in a more power efficient manner than a monolithic single

network. We, therefore, propose designing two separate, heterogeneous networks on a chip, dynamically monitoring

executing applications’ bandwidth and latency sensitivity, and steering/injecting network packets of each application to

the appropriate network based on whether the application is deemed to be bandwidth-sensitive or latency-sensitive. We

show that such a heterogeneous design can achieve better performance and energy efficiency than current average-case

one-size-fits-all NoC designs.

To this end, based on extensive application profiling, we first show that a high-bandwidth, low frequency network

is best suited for bandwidth-sensitive applications and a low-latency/high frequency network is best for latency sen-

sitive applications. Next, to steer packets into a particular sub-network, we identify a packet’s sensitivity to network

latency or bandwidth. To do this, we propose a new packet classification scheme that is based on an application’s

intrinsic network requirement property. For this, we use an application’s network episode length and height metric to

dynamically identify the communication requirements (latency/bandwidth criticality). Further, observing the property

that not all applications are equally sensitive to latency or bandwidth, we propose a fine grain prioritization mechanism

for applications within the bandwidth and latency optimized sub-networks.

Evaluations on a 64 core 2D mesh architecture considering 9 design alternatives with 36 diverse applications,

show that our proposed two-layer heterogeneous network architecture outperforms all competitive monolithic net-

work designs in terms of system/application performance and energy/energy-delay envelope. Overall, the primary

contributions of this work are the following:

• We identify that a monolithic network design is sub-optimal when hosting applications with diverse network de-

mands. As a step further, with extensive application level profiling, we identify that applications can be divided into

two general classes in terms of their requirements from the network: bandwidth-sensitive and latency-sensitive.

• To exploit these two application classes, we propose a two-tier heterogeneous network architecture suitable for band-

width and latency sensitive applications. For steering packets to an appropriate network, we propose a novel dynamic

mechanism that utilizes the communication episodes of an application, called network episode length and height.

These two metrics combined helps us to classify applications as latency or bandwidth sensitive. Further, using these

two metrics, we classify applications into 9 sub-groups for the purpose of identifying an application’s criticality

within each of the bandwidth-sensitive or latency-sensitive class. This fine grain classification allows us to facilitate

a prioritization mechanism for applications within the bandwidth and latency optimized sub-networks for further im-

proving the performance. This dynamic ranking/prioritization scheme is shown to perform better than two recently

proposed schemes.

• We show that our two-layer NoC design consisting of a 64b link-width latency optimized sub-network and a 256b

link-width bandwith optimized sub-network, provides 5%/3% weighted/instruction throughput improvement over

an iso-resource (320b link-width) monolithic network design, and consumes 47% lower energy compared to the

iso-resource monolithic network. When compared to a baseline 256b link-width monolithic network, our proposed

design provides 18%/12% weighted/instruction throughput improvement and consumes 16% less energy.
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Figure 1: Instruction throughput (IT) scaling of applications with increase in network bandwidth.

2 Application-Driven Communication Characterization

As mentioned above, existing NoC designs are implicitly built on the paradigm that all the hosted applications place

similar demands on the underlying network. In this paper, we argue against this paradigm by observing how different

packets (even within the same application, but particularly across different applications) have vastly differing network

resource demand and how each individual network packet impacts application-level performance. In this section, we

contrast few observations that highlight the intrinsic heterogeneity in network demands across applications. These

observations put together, provide the motivation for our application-aware design of NoC, which is described in

Section 3. We start by looking at two of the fundamental parameters: network channel bandwidth and latency.

Impact of channel bandwidth on performance scaling of applications: Channel or link bandwidth is a critical

design parameter that affects network latency, throughput and energy/power of the entire network. By increasing the

link bandwidth, the packet serialization latency reduces, however increase in link bandwidth adversely affects a router

crossbar power envelope. To study the sensitivity of an application to variation in link bandwidth, we perform a simple

analysis. For this analysis, we use an 8x8 mesh network and run 64 copies of the same application on all nodes on the

network1.

Figure 1 shows the results of this analysis for 30 out of the 36 applications in our benchmark suite (6 applications

are omitted to reduce clutter in the plots). We analyze scenarios, where we double the bandwidth starting with 64b links

to 512b links (annotated as BW-64b, BW-128b, BW-256b and BW-512b in the figure). In this figure, the applications

are shown on the X-axis in order of their increasing L1MPKI (L1 misses per 1000 instructions), i.e. applu has

the lowest L1MPKI and mcf has the highest L1MPKI. The Y-axis shows the average instruction throughput when

normalized to the instruction throughput of the 64b network.

Observations from this analysis are as follows: (1) Out of the 30 applications shown, performance of 12 applica-

tions (the rightmost 12 in the figure after swim) scale with increase in channel bandwidth. For these applications, an

increase in 8x bandwidth results in at least 2x increase in performance. We call these applications bandwidth sensitive

applications. (2) The rest 18 applications (all applications to the left of swim and including it), show very little to

no improvement in performance with increase in network bandwidth. (3) Even for bandwidth sensitive applications,

not all applications’ performance scale equally with increase in bandwidth. For example, while omnet, gems and mcf

show more than 5x performance improvement for 8x bandwidth increase, applications like xalan , soplex and cacts

show only 3x improvement for the same bandwidth increase. (4) L1MPKI is not necessarily a good predictor of band-

width sensitivity of applications. Intuitively, applications that have high L1MPKI would inject more packets into the

network, and hence, would require more bandwidth from the network. But this intuition does not hold entirely true.

For instance, bzip in spite of having higher L1MPKI than xalan, is less sensitive to bandwidth than xalan. Thus, we

need a better metric to identify bandwidth sensitive applications.

Impact of network latency on performance scaling of applications: Next, we analyze the impact of network/router

latency on the instruction throughput of these applications. Router pipeline critically affects the network throughput

and also dictates the network frequency. To study the latency sensitiveness of applications, we add an extra pipeline

latency of 2 and 4 cycles to each router (in the form of dummy pipeline stages) on top of the baseline router’s 2-cycle

latency. The cores and the network are clocked at 1.5GHz for this analysis as well. Increasing the pipeline stages at

1The network is wormhole switched, uses deterministic X-Y routing, has 6 virtual channels per physical channel and 5-flit buffer depth. Each

router in the network tile is connected to a core, a private L1 cache, and an 1MB per core shared L2 cache (Table 1). The network is clocked at the

same frequency as the cores (1.5GHz). Table 2 mentions the application details.
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Figure 2: Instruction throughput scaling of applications with increase in router latency.

each router mimics additional contention at the routers when compared to the baseline network.

Figure 2 shows the results for this analysis, where the channel bandwidth is 128b (although the observation from

this analysis holds true for other channel bandwidths as well). Our observations are the following: (1) Bandwidth

sensitive applications are not very responsive to increase in network/router latency and on an average, for a 3x in-

crease in per-hop latency, there is only 7% degradation in application performance (instruction throughput) for these

applications, i.e. an extra 4 cycle latency per router is easily tolerated by these applications. (2) On the other hand, for

all applications to the left of swim (and including swim), there is about 25% performance degradation when the router

latency increases from 2-cycles to 6-cycles. These applications are clearly very sensitive to network latency and we

call these latency sensitive applications. (3) Further, L1MPKI is not a good indicator of latency sensitivity (hmmer in

spite of having higher L1MPKI when compared to h264, does not show proportional performance improvement with

reduction in router latency).

Application-level implications on network design: The above analysis suggests that a single monolithic network

is not the best option for catering various application demands. Therefore, an alternative approach to designing an

on-chip interconnect is to explore the feasibility of multiple networks each of which is specialized for common appli-

cation requirements, and dynamically steer requests of each application to the network that matches the application’s

requirements. Based on Figures 1 and 2, a wider and a low frequency network is suitable for bandwidth sensitive

applications, while a narrow and high frequency network is best for latency sensitive benchmarks. To improve the

performance of the latency sensitive applications, a network architect can, reduce the router pipeline latency from

2-cycles (our baseline) to single cycle, while keeping the frequency constant or increase the network frequency (to

reduce network latency). Although there are proposals that advocate for single cycle routers [13, 15], their design is

often complex (involves speculation which can be ineffective at high or adverse load conditions) and requires sophis-

ticated arbiters. Hence, while single cycle routers are certainly feasible, in this paper, we use frequency as a knob to

reduce the network latency. Note, our analysis shows that, increasing the frequency of the network from 1.5GHz to

4.5GHz (3 times the core frequency) leads to less than 1.5% increase in energy for the latency sensitive applications

(results for energy with frequency scaling is omitted for brevity).

Designing latency and bandwidth customized networks is one part of the solution space. We also need a mechanism

to classify applications at runtime to one of the two categories: bandwidth/latency sensitive for guiding them to the

appropriate customized network. In addition, since not all applications are equally sensitive to bandwidth or latency,

we propose a fine grain prioritization of applications within the bandwidth and latency optimized sub-networks. This

scheme further improves the overall application/system performance.

3 Application-Driven Approach for Designing NoCs

3.1 Dynamic classification of applications

The goal of identifying an application’s sensitivity to latency/bandwidth, is to enable the network interface (NI) to

inject or steer packets into a sub-network that has been optimized for either latency or bandwidth. We propose two

novel metrics, called episode length and episode height, that effectively capture the latency and bandwidth demands

of an application and help the NI to classify an application as either bandwidth or latency sensitive. We contrast the

new metrics against two heuristics (L1MPKI [5] and Slack [6]), which were recently proposed to estimate a packet’s

criticality in the network.
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Figure 3: Network and compute episodes.
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Figure 4: L1MPKI, L2MPKI and slack in applications.

Episode length and height: During an application’s life cycle, the application alternates between two kinds of

episodes (shown in Figure 3): (1) network episode, where the application has at least one packet (to L2 cache or

to DRAM) in the network, and (2) compute episode, where there are no outstanding cache/memory requests by the

thread. During the network phase, there may be multiple outstanding packets from the application in the network

owing to various techniques that exploit memory-level parallelism (MLP) [8, 19]. During this network phase, the

processor is most likely to be stalling for the L2 and memory requests to be serviced. Because of this, the instruction

throughput of the processor is low during this episode. During the compute episode, however, the instruction through-

put is high. In this paper, we quantify a network episode by its length and height. Length is the number of cycles the

episode lasts starting from when the first packet is injected into the network till there are no more outstanding packets

belonging to that episode. Height is the average number of packets (L1 misses) injected by the application during the

network episode. To compute this average height, the processor hosting the application keeps track of the number of

outstanding L1 misses (when there is at least 1 L1 miss) in the re-order buffer on a per-cycle basis. For example, if the

episode lasts for 3 cycles and there are 2, 3 and 1 L1 misses in each of those cycles, then the average episode height is
2+3+1

3
= 2.

If an episode lasts for a very few cycles, intuitively it reflects that all packets belonging to this episode are very

critical for the application to make progress. Any delay of packets belonging to this short lasting episode will delay

the start of the following computation phase, and, thus the performance of the application will degrade. Hence, these

packets are latency sensitive. On the other hand, if an episode is long lasting, the application is most likely tolerant to

this long episode length, and delaying any packets belong to this episode will not degrade the performance much.

If an episode’s height is short, it suggests that the application is likely to have low MLP in this episode and hence,

its requests are likely to be very critical for the application to make progress. The packets belonging to this phase are

likely to be latency sensitive. On the other hand, if an episode height is high, then the application has a large number

of requests in the network, and the network latency of all those packets are overlapped. Large number of packets in

the network means that the application most likely needs more bandwidth, but the network latency is not very critical

for the application. Our analysis shows that, these two heuristics are least affected by the system state or network

characteristics such as interference from other applications in the network. Therefore, these two metrics provide an

intuitive, easy-to-compute, accurate and stable characterization of an application’s network demand.

Private cache misses per instruction (MPI): This metric captures an application’s network intensity. If the network

intensity is lower, the application has low MLP and hence, its request are latency sensitive as opposed to bandwidth

sensitive. Figure 4 shows the L1MPKI and L2 MPKI of several applications. We find that, MPI (or MPKI) can help

in identifying latency sensitive applications from bandwidth sensitive ones. In Figure 4, all applications to the left of

sjbb have a lower MPKI than sjbb’s MPKI. Since these applications are latency sensitive, empirically we can think
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Figure 5: Average episode length (in cycles) across applications.
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Figure 6: Average episode height (in packets) across applications.

of having a threshold in MPKI (equal to sjbb’s MPKI) to classify applications as bandwidth or latency sensitive.

However, as mentioned earlier, this metric is not accurate in estimating the criticality of applications within the latency

sensitive class or bandwidth sensitive class. For instance, bzip in spite of having higher L1MPKI than xalan, is less

sensitive to bandwidth than xalan. Similarly, hmmer and swim, in spite of having higher L1MPKI when compared

to gobmk and astar, do not show proportional performance improvement with increase in bandwidth as the later

applications show.

Packet slack: Slack, as a metric, was recently investigated [6] to identify a packet’s criticality in the network. We

measured an instruction’s slack from when it enters the re-order buffer (ROB) to when the instruction actually becomes

the oldest in the ROB and is ready to commit. Figure 4 shows how slack varies across applications. Intuitively, slack

of a L1-miss instruction directly translates to the instruction’s criticality in the network. Based on this, applications

that have a longer slack are more tolerant to network delays when compared to applications that have smaller or no

slack. Unfortunately, slack does not capture the MLP of an application and has low correlation in identifying increase

in performance with increase in bandwidth/frequency. Also, slack is influenced by network contention.

To avoid short term fluctuations, we use running averages of the episode height and length to keep track of these

metrics at runtime. Further, we quantify episode height as high, medium or short and episode length as long, medium

and short. This allows us to perform a fine grain application classification based to episode length and height to

classify them as either latency sensitive or bandwidth sensitive. Section 3.3 provides empirical data to support such

a classification scheme. Figures 5 and 6 show these metrics for 30 applications in our benchmark suite. Based on

Figures 1 and 2, we classify all applications whose episode length and height are shorter than sjbb’s episode length

and height, respectively, to be short in length and height (shaded black in the figures). Applications whose average

episode is larger than sjbb’s episode height but lower than 7 (empirically chosen) are classified as medium (shaded

blue in the figures) and the remaining as high episode heights (shaded with hatches in Figure 6). Empirically, a cut-off

of 10K cycles is chosen to classify applications as having medium episode length.

3.2 Analysis of episode length and height

Figure 7 shows the classification of applications based on their episode height and length. The figure also shows the

bandwidth sensitive applications and the latency sensitive applications based on such a classification. In general, we

classify applications having high episode height as bandwidth sensitive and vice-versa for latency sensitive.
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Classification Length 

Long Medium Short

High gems, mcf

sphinx, lbm, cactus, 

xalan sjeng, tonto

Height Medium omnetpp, apsi

ocean, sjbb, sap, bzip, 

sjas, soplex, tpc

applu, perl, barnes, 

gromacs, namd, 

calculix, gcc, povray, 

h264,  gobmk, hmmer, 

astar

Short leslie art, libq, milc, swim wrf, deal

Ranking Length 

Long Medium Short

High Rank-4 Rank-2 Rank-1

Height Medium Rank-3 Rank-2 Rank-2

Short Rank-4 Rank-3 Rank-1

Bandwidth sensitive

Latency sensitive

Figure 7: Application classification and ranking based on episode length and height.
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Figure 8: Hierarchical clustering of applications. The input to the clustering

algorithm consists of improvement in IPC with bandwidth scaling (from 64b to

512b) and improvement in IPC with frequency scaling (1.5GHz to 4.5GHz).
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3.3 Ranking of applications

We use the above fine-grained classification to rank applications for providing customized prioritization in a network.

Essentially, applications whose episode length lasts longer, are prioritized the least in the network over other applica-

tions. Below, we discuss the steering and ranking of a few application classes and our intuition behind doing so.

(1) Episode length is short and height is short: Applications belonging to this category have very low MPKI and

since their episode lasts for a very short period, delaying any packet is most likely to delay the start of the computation

phase. This makes these applications highly latency sensitive and ranks them with the heights priority (rank 1). (2)

Episode length is short and height is high: These applications are bursty, but for a very short period of time. Because

of this burstiness, the packets’ network latency are overlapped and hence, we classify these applications as bandwidth

sensitive but rank them the highest in the bandwidth optimized sub-network (owing to their criticality to network

latency because of a very short episode length). (3) Episode length is long and height is short: These applications

are still latency sensitive, but are relatively latency tolerant compared to applications having medium/short episode

length. So, these applications are prioritized the least (rank 4) in the latency optimized sub-network. (4) Episode

length is long and height is high: These applications are the most bandwidth sensitive applications and owing to their

large episode height, they are the most tolerant to network delay. Thus, these applications are classified as bandwidth

sensitive and we prioritize them the least in the bandwidth optimized network.

Applications that do not belong to the above classes, have either latency or bandwidth sensitivity that lie within

the extremes and are prioritized based on their relative tolerance to network delays when compared to others. Figure 7

shows the ranking of the applications in their respective sub-networks.

We took two critical decisions in our classifications - (1) choosing sjbb’s episode length and height as a threshold

for short lasting episodes and episodes with smaller heights, and (2) choosing 9 smaller sub-classes after classifying

the applications as bandwidth or latency sensitive. We next outline the empirical results that led us in taking these

decisions.

Rationality of our classification: Figure 8 shows the results of a hierarchical clustering of all the applications in

our benchmark suite. Hierarchical clustering incrementally groups objects that are similar, i.e., objects that are close

to each other in terms of some distance metric. In our case, the input to the clustering algorithm consists of the

improvement in IPC with bandwidth scaling (from 64b to 512b) and improvement in IPC with frequency scaling (from
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1.5GHz to 4.5GHz) i.e. values from Figures 1 and 2. The hypothesis behind this is to observe whether a clustering

algorithm perceives noticeable difference between applications’ performance with frequency and bandwidth scaling.

We tried various linkage distance metrics like Euclidean distance, Pearson correlation and average distance between

the objects, and in all cases the clustering was consistent with that shown in Figure 8 (shown for Euclidean distance).

Although the eventual hierarchical cluster memberships are different from that shown in our classification matrix, the

broader classification of how hierarchical clustering groups applications in bandwidth and latency sensitive clusters

matches exactly with our classification scheme, which is based in episode height and length (with the exception of

sjeng). The reason for sjeng’s misclassification is because its performance does not scale with bandwidth and hence,

hierarchical clustering classifies it as a latency sensitive application. However, sjeng’s episode has a high episode

height but a short episode length on average, meaning it is very bursty (and hence, high MLP) during a small interval

of time. Because of this, we classify it as the highest ranking application in the bandwidth optimized sub-network.

Why 9 sub-classes? To answer this question, we measure the total within-group sum-of-squares (WG-SS) of the

clusters resulting with hierarchical clustering. Figure 9 shows this metric as the number of clusters increase. The total

WG-SS is a measure of the total dispersion between individual clusters and often regarded as a metric to decide the

optimal number of clusters from a hierarchical or K-means algorithm [12, 20]. When all clustering objects are grouped

into one cluster, the total WG-SS is maximum, whereas, if each object is classified as a separate object, the WG-SS is

minimum (=0). Figure 9 suggests that 8 or 9 clusters have similar WG-SS and, 8 or 9 clusters reduce the total WG-SS

by 13x compared to a single cluster. Based on this, we chose 9 classes for our application classification and hence,

sub-divided episode height and length into three quantitative class each.

4 Design Details

Since, we are using a canonical 2D network in our study, instead of discussing the standard router and network designs,

we focus on the critical design aspects for supporting our classification and prioritization schemes in this section.

Computing episode characteristics: To filter out short-term fluctuations in episode height/length, and adapt our

techniques to handle long-term traffic characteristics, we use running averages of these metrics, i.e. on every L1 miss,

the NI computes the running average episode length/height. To compute episode height, outstanding L1 miss count is

obtained from the miss-status handling registers (MSHRs). Counting the number of cycles (using an M-bit counter) the

L1 MSHRs are occupied gives the information to compute episode length. This M-bit counter is reset every batching

interval, B.

When an NI of a local router receives a packet, it computes the episode length/height and based on the classification

scheme mentioned in Section 3, decides which network this packet is to be steered. Further, the NI also tags the packet

with its rank (2-bits) and it batch-id (3-bits). Note that, although the classification is static, each applications’ rank

and network sensitivity is decided at runtime. Thus, no central co-ordination is required in our technique to decide a

uniform central ranking across all the applications in the system. Moreover, once a packet’s ranking has been decided,

it is consistently prioritized across the entire sub-network until it reaches its destination. At each router, the priority

bits in the header-flit are utilized by the priority arbiters in a router to allocate VCs and the switch. Fast priority arbiters

can be designed using high speed adders as comparators within the arbiters and our estimates (based on [21]) show

that priority arbiters do not skew the pipeline latencies of a router.

To prevent priority inversion due to virtual channels (VCs) in routers, where a packet belonging to an older batch

or higher rank is queued behind a lower ranked packet, we use atomic buffers [16]. With atomic buffers, a head-flit

of a packet cannot occupy a particular VC unless the tail-flit of a packet occupying that VC has released it. Atomic

buffers can lead to network under-utilization, but our experiments show that the performance loss due to this is very

minimal.

Handling starvation: Prioritizing high ranked packets in a network may lead to starvation of low ranked packets. To

prevent starvation, we combine our application-aware prioritization with a “batching mechanism” [5]. Each packet is

added to a batch; and packets belonging to older batches are prioritized over packets from younger batches. Only if two

packets belong to the same batch, they are prioritized based on their applications’ rank order that is based on episode

height/length. A batch also provides a convenient granularity in which the ranking of the applications is enforced. To

support batching, each node keeps a local copy of a batch-ID (BID) register containing the current (injection) batch

number and maximum supported batch-ID register containing the maximum number of batching priority levels (L).

BID is simply incremented every B cycles, and thus, BID values across all nodes are the same. Due to batch-ID wrap-

around, a router cannot simply prioritize packets with lower batch-IDs over others with higher batch-IDs, and we use
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schemes suggested in [5, 6] to handle relative priorities inside a router.

Customized network design choices: As mentioned earlier, we opt for a high-frequency but low link-width network

for the latency-sensitive applications and a high-bandwidth network operating at the same frequency as the cores for

the bandwidth sensitive applications. We use a 2-stage router and increase the router frequency up to 3 times(4.5Ghz)

for the latency sensitive network. Note that the total network bandwidth depends on both link-width and frequency.

Therefore, a designer could think of increasing the frequency of the bandwidth customized network (256b link-width)

network to increase the total network bandwidth and consequently help the bandwidth sensitive applications. However,

increasing the frequency of the wider 256b link network would adversely affect the power envelope of this network.

Hence, in our network designs, we only increase the frequency of the narrow 64b link-width network whose power

envelope is 40% lower when compared to the wider network. Consequently, the total network bandwidth of our base-

line 256b network is 384 Gbps (256b*1.5GHz), of latency customized sub-network is 288 Gbps (64b*4.5GHz), and

that of the bandwidth customized sub-network is 384 Gbps. Further, increasing the frequency of the latency cus-

tomized sub-network, also increases this network’s bandwidth (compared to no frequency scaling), but since we only

steer latency sensitive applications (which are agnostic to bandwidth increase), into this sub-network, the performance

improvement of these applications is primarily due to latency reduction in the network.

The design space for optimizing network latency or bandwidth is huge and is not possible to cover in this paper. The

motivation of this paper is to demonstrate that a dual network with one optimized for latency and the other optimized

for bandwidth is a better design than a monolithic or un-customized dual networks. The 64b 4.5GHz network for

the latency sensitive applications and 256b 1.5GHz network for the bandwidth sensitive applications are just 2 of the

design points to demonstrate the concepts.

5 Evaluation Methodology

Design scenarios: Starting with a monolithic network, we show the benefits of having two sub-networks each cus-

tomized for either bandwidth or latency. We also show the benefits of our scheme when compared to an iso-resource

network (similar bandwidth as two sub-networks). Following are the nine design scenarios we evaluated on our ex-

perimental platform:

¶ 1N-128: In this configuration, there is a single homogeneous 128b link network. We assume this to be our

starting point in network design since, starting with this monolithic network, we increase its bandwidth to create a

bandwidth optimized sub-network, and reduce its bandwidth (and increase its frequency) to design a latency optimized

sub-network.

· 1N-256: In this configuration, there is a single homogeneous network with 256b link width. We chose this

as our baseline network since starting with this network, we first design a homogeneous multiple sub-network design

(where each sub-network has equal bandwidth, 2N-128x128) and then customize one sub-network for latency sensitive

applications and the other sub-network for bandwidth sensitive applications.

¸ 2N-128x128: This design has two parallel sub-networks, each with 128b link width. The buffer resources

in each sub-network is half that of the baseline 1N-128 network and each of the sub-networks operate at the same

frequency as that of the processors (= 1.5GHz). Packets are steered into each sub-network with a probability of 0.5

i.e., there is load balancing across the sub-networks.

¹ 1N-512: This design has a single network with 512b link width. We call this a high-bandwidth configuration

and is analyzed to see how our proposal fares when compared to a very high bandwidth network.

º 2N-64x256-ST: In this design, there are two parallel sub-networks, one with 64b link width and the other

with 256b link width. The buffering resources in each sub-network is half that of a single network, so that the total

buffering resources are constant across this design and a design that has a single network. Further, in this configuration,

the bandwidth sensitive packets are steered (hence, the annotation ST) into the 256b sub-network and the latency

sensitive packets are steered into the 64b sub-network. Each sub-network in this configuration is clocked at 1.5GHz

(the frequency of the processors).

»2N-64x256-ST+RK(no FS): This design is the same as 64x256-steering network except that, in addition to

steering the application packets into the appropriate sub-network, the network also prioritize applications based on

their ranks (hence, the annotation RK) at every cycle in a router.

¼2N-64x256-ST+RK(FS): This design is similar to above configuration except that the 64b sub-network is

clocked at 4.5GHz (3x the frequency of processor). The 256b sub-network is still clocked at 1.5GHz. This configura-

tion is analyzed to see the benefits of frequency scaling (hence, the annotation FS) the latency optimized network.
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Table 1: Baseline processor, cache, memory and network configuration
Processor Pipeline 1.5GHz processor, 128-entry instruction window

Fetch/Exec/Commit width 2 instructions per cycle in each core; only 1 can be a memory operation

L1 Caches 32 KB per-core (private), 4-way set associative, 128B block size, 2-cycle latency, write-back, split I/D caches, 32 MSHRs

L2 Caches 1MB banks, shared, 16-way set associative, 128B block size, 3-cycle bank latency, 32 MSHRs

Main Memory 4GB DRAM, up to 16 outstanding requests for each processor, 320 cycle access, 4 on-chip memory controllers

Network Router 2-stage wormhole switched, virtual channel flow control, 6 VC’s per port, 5 flit buffer depth, 1 flit/address packet

Network Topology 8x8 mesh, each node has a router, processor, private L1 cache and shared L2 cache bank(all nodes)

4 memory controllers (1 at each corner node), 256b bi-directional links (= data packet’s flit width).

½1N-320(no FS): In this design, there is a single network with 320b (=64b+256b) bandwidth per link. The network

operates at 1.5GHz. This configuration is iso-resource configuration when compared to all our 64x256 networks and

is analyzed to see the benefits of our proposal over an equivalent iso-bandwidth configuration.

¾1N-320(FS): This design is similar to the above design, except that the network is now clocked at 4.5GHz. This

design is analyzed to see the effectiveness of our scheme over a scheme that is iso-resource as well as over-clocked to

help latency sensitive applications.

Experimental setup: Our proposals are evaluated on a trace-driven, cycle-accurate x86 CMP simulator. Table 1

provides the configuration of our baseline, which contains 64 cores in a 2D, 8x8 mesh NoC. A single node of this

configuration is shown in Figure 10 (a). Each core has a private write-back L1 cache. The network connects the cores,

shared L2 cache banks, and memory controllers. Each router uses a state-of-the-art two-stage pipeline. We use the

deterministic X-Y routing algorithm, finite input buffering, wormhole switching, and virtual-channel flow control. A

data packet consists of 1024b (= cache line size) and is decomposed into 8 flits in the baseline design (with 128b

links). Since wiring resources on die are abundant [1, 4, 17, 3], when simulating parallel networks, we assume the

sub-networks to be implemented in the same 2D substrate as the cores (a single node of this configuration is shown in

Figure 10 (b) and the resulting logical view of the CMP is shown in Figure 10 (c)). The dynamic and leakage energy

numbers for the network were extracted using Orion 2.0 [10] and incorporated into our simulator for detailed network

energy analysis. Based on Orion 2.0 estimates, the area of two sub-networks (router and links) consisting of 256b and

64b links is just 1% larger than an iso-resource 320b links network (2.4X larger area when compared to baseline 128b

link network), and the power envelope of these two sub-networks is 20% lower than the iso-area network (2.3X higher

power when compared to baseline 128b link network). The various counter bits and parameters used in our techniques

are: (1) counter size for number of cycles in a network phase, M = 14bits (2) batching interval, B = 16,000 cycles (3)

batching levels, L = 8.

Application characteristics: We use a diverse set of multiprogrammed application workloads comprising scientific,

commercial, and desktop benchmarks. We use the SPEC CPU2006 benchmarks, applications from SPLASH-2 and

SPEC-OMP benchmark suites, and four commercial workloads traces (sap, tpcc, sjbb, sjas) totalling 36 applica-

tions. All our experiments analyze multiprogrammed workloads, where each core runs a separate application. We

simulate at least 320 million instructions across 64 processors (minimum 5 million instructions per core). Table 2

characterizes our application suite. The reported parameters are for the applications running alone on the baseline

CMP system without any interference. The table shows application characteristics based on network load intensity

(high/low), episode height (high/medium/short), episode length (long/medium/short) and the fraction of execution time

spent in network episodes. All our results are aggregated across 25 workload combinations. In each of these work-

load combinations, 50% (32) of the applications are latency sensitive and 50% (32) of the applications are bandwidth

sensitive. This provides a good mix of bandwidth/latency sensitive applications that is likely to be a common mix for

future multicore systems. Within each of these two categories, applications are randomly picked to form the workload.

In Section 6 we analyze the sensitivity of our scheme when the percentage of latency/bandwidth applications vary in
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Table 2: Application characteristics when run on the baseline (Load: High/Low depending on network injection rate,

Episode height: High/Medium/Short, Episode length: Long/Medium/Short, Net-fraction: Fraction of execution time

spent in network episodes.)
# Benchmark Load Episode Episode Net. # Benchmark Load Episode Episode Net.

height length fraction height length fraction

1 applu Low Medium Short 8.23% 19 ocean Low Medium Medium 90.10%

2 wrf Low Short Short 9.42% 20 hmmer Low Medium Short 66.03%

3 perlbench Low Medium Short 8.78% 21 swim Low Short Medium 41%

4 art Low Short Medium 82.33% 22 sjbb High Medium Medium 87.29%

5 dealII (deal) Low Short Short 27.92% 23 sap High Medium Medium 88.89%

6 sjeng Low High Short 28.41% 24 xalancbmk (xalan) High High Medium 89.86%

7 barnes Low Medium Short 72.51% 25 sphinx3 (sphnx) High High Medium 83.92%

8 gromacs (grmcs) Low Medium Short 48.58% 26 bzip2 (bzip) High Medium Medium 84.90%

9 namd Low Medium Short 51.60% 27 lbm High High Medium 81.10%

10 h264ref (h264) Low Medium Short 61.45% 28 sjas High Medium Medium 89.47%

11 calculix Low Medium Short 48.21% 29 soplex (soplx) High Medium Medium 81.23%

12 gcc Low Medium Short 47.55% 30 tpc High Medium Medium 86.82%

13 povray (pvray) Low Medium Short 59.56% 31 cactusADM (cacts) High High Medium 82.33%

14 tonto Low High Short 52.99% 32 leslie3d High Short Long 99.70%

15 libquantum (libq) Low Short Medium 99.00% 33 omnetpp High Medium Long 92.62%

16 gobmk Low Medium Short 64.88% 34 GemsFDTD High High Long 97.26%

17 astar Low Medium Short 82.78% 35 apsi High Medium Long 95.15%

18 milc Low Short Medium 88.16% 36 mcf High High Long 99.18%
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Figure 11: Performance comparison across various network designs with multiprogram mixes.

a workload.

Evaluation metrics: Our primary performance evaluation metrics are instruction throughput and weighted speedup.

Instruction throughput is defined to be the sum total of the number of instructions committed per cycle (IPC) in the

entire CMP and is considered as an application throughput metric [7]. The weighted speedup metric [18] sums up the

slowdown experienced by each application in a workload, compared to its stand alone run under the same configuration

and is widely regarded as a system throughput metric [7].

6 Analysis of Results

Performance comparison: Figure 11 shows the performance comparison across the various network designs. The

following observations are in order:

• Two 128b sub-networks (2N-128x128) provide similar performance (both system and application throughput) as

compared to a bandwidth equivalent single monolithic network with 256b link width (1N-256). This is in spite

of the increase in packet serialization in the sub-networks. The primary reason for this performance improvement

is reduction in congestion across each sub-network (each sub-network now sees 50% less packet) when compared

to a monolithic wider network. The total bandwidth in the 2N-128x128 design is the same as 1N-256 design and

hence bandwidth sensitive applications performance is not affected. One the other hand, the performance of latency

sensitive applications is improved because of the load balancing (reduced congestion is each sub-network), and thus,
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Figure 12: Energy and EDP comparison across various network designs (all results normalized to 128 net.).

the degradation in performance due to serialization latency increase is compensated by improvement in performance

due to reduced congestion.

• Bandwidth and latency optimized parallel sub-networks operating at the same frequency as the processor along with

steering of packets based on their bandwidth/latency sensitivity (2N-64x256-ST) provides 4.3%/5% system/application

throughput improvement, over the baseline (2N-256) design. By providing bandwidth sensitive applications more

bandwidth (when compared to 1N-128) and reducing the congestion when compared to a monolithic network, the

performance of both bandwidth and latency sensitive applications are improved. Prioritizing and ranking packets

based on their criticality after steering them into a sub-network (2N-64x245-ST+RK(no FS)) provides an additional

6%/3% improvement in system/application throughput, over the 2N-64x256-ST design when compared to the base-

line design. This is because, our ranking scheme prioritizes the more (relatively) network-sensitive applications in

each sub-network, and ensures no starvation using batching.

• Frequency scaling the latency/bandwidth sub-network along with steering and ranking the applications (2N-64x245-

ST+RK(FS)) provides the maximum performance improvement among our proposals: 18%/12% system/application

throughput improvement over the baseline network. With frequency scaling, the latency optimized sub-network is

clocked at a higher frequency, accelerating the latency sensitive packets and this brings the additional benefits in

performance.

• Frequency scaling the sub-networks and steering along with ranking of applications (2N-64x245-ST+RK(FS)) is bet-

ter than an iso-resource network (1N-320(no FS)) by 5%/3% in weighted/instruction throughput. The performance

of 2N-64x245-ST+RK(FS) is within 2.0%/2.2% (system/application throughput) of the high frequency iso-resource

network with frequency increased by 3x (1N-320(FS)). Frequency scaling the 320b link width network helps latency

sensitive applications and more bandwidth (when compared to 256b link width) helps the bandwidth sensitive appli-

cations. But as will be shown shortly, the energy consumption of such a network is higher when compared to our

proposal.

• Our proposed network (2N-64x245-ST+RK(FS)) design’s system performance is within 1.8% of a very high band-

width network (1N-512). A high bandwidth network helps bandwidth sensitive applications, but provides little benefit

for latency sensitive applications. Additionally, as will be shown next, a wide-channel network’s energy consumption

is very high (about 75% higher than a 128b link width network). Hence, although our proposed network provides

similar performance as a high bandwidth network, it does so at a lower energy envelope.

Energy and EDP comparison: Increasing the channel bandwidth decreases the serialization (and zero-load) latency

and hence, end-to-end latency is reduced. However, increasing the channel bandwidth also affects router crossbar

power quadratically. Figure 12 shows the energy and energy-delay product (EDP) of the applications across the 9

designs. We find that:

• The average energy consumption of a 256b link network (1N-256) is 38% higher than a 128b link network (1N-

128). However, the two 128b sub-networks design (2N-128x128) has similar energy consumption as a single 128b

link monolithic network. The energy reduction going from one network to two sub-networks comes primarily from

reduction in network latency (by reducing the congestion in each sub-network). In fact, we observed that the energy

consumption of two parallel sub-networks, each with channel width N
2

, is always lower than a single network with

channel width N.
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when compared to state-of-the art design (all results normalized to
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Figure 14: Performance comparison when

varying proportion of bandwidth/latency in-

tensive applications in each workload.

• The average energy consumption of a high bandwidth network with 512b links (1N-512) is 75% higher than a 128b

link network and 26% higher than the 256b link network. When link width increases, although serialization latency

reduces, the crossbar power starts to dominate the energy component.

• Steering packets along with application prioritization in the routers (2N-64x256-ST-RK(no FS)) reduces energy con-

sumption by 6.7% when compared to just steering packets (2N-64x256-ST). Amongst our proposed designs, steering

along with ranking in frequency scaled sub-networks (2N-64x256-ST-RK(FS)), consumes 16% lower energy than

the 2N-128 network . This is 59% lower energy when compared to a high-bandwidth network (1N-512) and 47%

lower energy than an iso-resource network which is frequency scaled (1N-320(FS)). Overall, our proposed scheme

consisting of heterogeneous parallel sub-network architecture always consumes lower energy than an iso-resource

320b link width network, and the 2N-64x256-ST network.

• When comparing EDP metric, steering along with ranking in frequency scaled sub-networks (2N-64x256-ST-RK(FS))

design is 35% better than the baseline design(1N-256). This is because, our scheme reduces network latency sig-

nificantly and this lowers the delay component in EDP metric. Even without frequency scaling, the 2N-64x256-ST-

RK(no FS) design has 22% lower EDP than the baseline design. Again, our proposed schemes always have lower

EDP than a high-bandwidth network (1N-512) or an iso-resource 320b link network or the iso-resource 2N-64x256-

ST network.

Thus, compared to a 256b link monolithic network operating at 1.5GHz, we find a 64b sub-network operating at

4.5GHz and a 256b sub-network operating at 1.5GHz is an optimal design from performance, energy and EDP

perspective.

Reply packets from L2 cache (DRAM) to L1 cache (L2 cache): In all the above evaluations, we routed the L2

cache (DRAM) replies to the L1 cache (L2 cache) in either the 64b or the 256b sub-network depending on where the

request packet traversed the network: if the request packet was bandwidth sensitive, the matching reply is sent on the

256b sub-network and vice-versa. Reply packets are L1/L2 cache line sized packets (1024b) and transmitting them

over the 64b network increases their serialization latency. However, the 64b sub-network is relatively less congested

when compared to the 256b sub-network (because of lower injection ratio of latency sensitive applications) and since

the 64b sub-network is clocked at 3x frequency, the network latency in this sub-network is lower. Our analysis

shows that, transmitting all the reply packets in the 256b network increases the system/application throughput by an

additional 1.6%/2.4% and reduces energy consumption by an additional 4% when compared to the baseline network.

Also, since coherence packets are latency sensitive packets, we always route them in the 64b high frequency sub-

network.

Comparison with prior works: A previous work by Das et al. [5] proposed a ranking framework, called STC, that

is based on criticality of a packet in the network. In this work, the authors use L1MPKI as a heuristic to estimate the

criticality of a packet and based on this, propose a ranking framework which ranks applications with lower L1MPKI

over applications with higher L1MPKI. In their work, a central decision logic periodically gathers information from

each node, determines a global application ranking and batch boundaries, and communicates these information to each

node. Apart from performance benefits, the authors also show that STC is better in terms of fairness when compared

to the round-robin arbitration often employed in routers. Since, we also prioritize applications in the network, we

compare our scheme with STC below. When comparing with STC for a single network design, we utilize a 2-level
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ranking scheme when using our technique. The first level ranking prioritizes latency sensitive applications over band-

width sensitive applications, and then among the latency and bandwidth sensitive applications, we use episode width

and height to rank the applications (based on ranking in Figure 7).

Another recent work by Balfour and Dally [1] showed the effectiveness of load-distributing traffic equally over

two parallel sub-networks. In this work, each of the sub-networks is a concentrated mesh with similar bandwidth.

With detailed layout/area analysis, the authors found that a second network has no impact on the chip area since the

additional routers can reside in areas initially allocated for wider channels in the first network. Since, we also propose

parallel sub-networks (although our design shows heterogeneous networks are better than homogeneous), we compare

our scheme with a similar load-balancing scheme proposed as by Balfour and Dally [1].

Figure 13 shows the results, where we compare the performance and fairness of our schemes with the two prior

proposals mentioned above. All numbers in these plots are normalized to that of a 128b link network with no prior-

itization (the link-width used in STC work). The STC schemes are annotated as -STC with a given network design

and the load-balancing schemes are annotated as -LD-BAL in the figures. The overall performance improvement with

STC is 6%/3% (system/application) in a single 128b link monolithic network when compared to 1N-128. Compared

to this, our 2-level ranking scheme shows 11%/8% system/application throughput improvement over 1N-128 design.

Since STC uses L1MPKI to decide rankings, and as shown earlier, L1MPKI is not a very strong metric to decide the

latency/bandwidth criticality of applications. Moreover, when using L1MPKI, STC does not take into account the

time factor i.e how long in cycles does an application has this L1MPKI. Our proposed episode length captures this

factor, and hence, can differentiate between two applications having similar episode height (L1MPKI in the context

of STC) from each other. Based on this, our design ranks an application with shorter episode length higher than an

application with longer episode length, hence capturing the true criticality of these packets. Even when comparing

our scheme (2N-64x256-ST-RK(FS)) with that of STC in a two parallel network design (2N-64x256-ST-STC) (where

applications are first steered into the appropriate network and then ranked using STC), we see an additional 12%/5%

(system/application) benefit over the STC based design. Moreover, in terms of fairness (harmonic speedup results

omitted for brevity), our scheme is 4% and 2% better than STC in a single and multiple parallel network design,

respectively. Further, in our scheme the rankings are determined dynamically when the packet enters into each sub-

network and there is no requirement of a dynamic co-ordination scheme to decide rankings as is required by STC

scheme. So, our scheme not only has lower overhead, but also exhibits better performance and fairness compared to

STC.

Since we propose heterogeneous sub-networks, when load balancing between two sub-networks we steer packets

in the weighted-ratio of 256
256+64

and 256
256+64

between the 256b and the 64b sub-network. This scheme is annotated as

-W-LD-BAL in the Figure 13. Our evaluations show that, steering packets with equal probability into each network

leads to more congestion the 64b link sub-network and under-utilizes the 256b sub-network. We find that our proposal

(2N-64x256-ST-RK(FS)) has an additional 18%/10% (system/application) throughput improvement over the weighted

load-balancing scheme (2N-64x256-W-LD-BAL). Load balancing scheme is oblivious to the sensitivity or criticality

of packets. With this scheme, a latency sensitive packet is steered into the bandwidth optimized network with a

probability of 0.8 and bandwidth sensitive packet is steered into the latency sensitive network with a probability of

0.2 and, thus in both these cases performance either does not improve (for the former) or degrades (with the later).

Further, with weighted load-balancing, there is negligible improvement in fairness whereas, in our scheme the fairness

of the system improves by 19% over the baseline network. Overall, we believe that with heterogeneous sub-networks,

load balancing is a sub-optimal scheme and that intelligently steering packets based on their sensitivity and criticality

can lead to significant performance benefits.

Sensitivity to distribution of bandwidth-latency applications in the workload: All results shown till now had

a multiprogram mix with equal percentage of latency and bandwidth sensitive applications. To analyze the sensitivity

of our scheme across various application mixes, we varied the bandwidth sensitive application mix in a workload

from 100%, 25%, 50%, 75% to 0%. Figure 14 shows the results of this analysis (the results have been normalized

to 128b monolithic network since some of our 256b experiments with varying workload mixes are still running at the

time of submission of this paper). We find that our proposal, in general, has higher system/application throughput

across the entire spectrum of workload mix. However, the benefits are small (4%/9% system/application throughput

improvement over 1N-128 design) when the system has 100% latency sensitive applications. When the application

mix is skewed (i.e. system has only bandwidth or latency sensitive applications), we have assumed an oracle knowl-

edge, and weighted-load balanced both the sub-networks. As such, with 100% latency sensitive applications in the

workload mix, benefits arise only due to load distribution and the benefits are minimal in this case. Without this load

balancing, the benefits of our proposal will only be because of ranking. We are currently working on a scheme that
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can dynamically measure this skew and can then steer packets to the second sub-network.

7 Related Work

We have already qualitatively compared our scheme with Balfour and Dally’s proposal [1] and showed that our scheme

is significantly better than a load balancing (even weighted load balancing) scheme. Other works that have proposed

multiple networks for NoCs include TRIPS [17], RAW [14], Tilera [3], and IBM cell [9]. The motivation for including

multiple networks in all these designs is entirely different from ours - in TRIPS, multiple networks are used to connect

operand networks, RAW has two static networks (routes specified at compile time) and two dynamic networks (one

for trusted and other for untrusted clients) and Cell’s EIB has a set of four unidirectional concentric rings (arranged

in groups of four and interleaved with ground and power shields) primarily to reduce coupling noises. Even DASH

multiprocessor [2] had multiple networks (request and reply meshes), but the design was meant to eliminate request-

reply deadlocks. Tilera’s iMesh network consists of five separate networks to handle memory access, streaming packet

transfers, user data, cache misses, and interprocess communications. Among these five networks, there is only one

network where the processor (user) gets to send data from cores to caches (and vice-versa). Each of the five networks

are based on sizes of packets from a source to a destination. In contrast, our proposal sub-divides a network to

customize for latency/bandwidth sensitive traffic and then rank traffic based on criticality of packets.

The concept of compute and non-compute epidodes has been used in ATLAS [11]. ATLAS defines memory

episode length to be the duration when an application is waiting for at least one memory request (i.e. L2 miss). We

use the concept of network episode which is the duration when the application is waiting for at least one L1 miss.

ATLAS exploits the notion of memory episode to prioritize threads with least attained memory service time. On the

contrary, we use network episodes to classify applications. Further, we use the notion of network episode height to

capture applications MLP which no previous works have done.

8 Conclusions

Recently, design and analysis of NoCs has gathered significant momentum because of the criticality of the communi-

cation substrate in designing scalable, high performance and energy efficient multicore systems. However, most NoCs

have been designed in a monolithic manner without considering the actual application requirements. We argue that

such an approach is sub-optimal from both the performance and energy standpoints and propose an application driven

approach to design NoCs. Based on the characterization of several applications, we observe that a heterogeneous NoC

consisting of two separate networks, one optimized for bandwidth and other for latency, can cater to the applications’

requirement more effectively.

We evaluate the effectiveness of this two-layer network over a range of monolithic designs. Evaluations with

36 benchmarks on a 64-core 2D architecture indicate that a two-layer heterogeneous network approach consisting

of a 256b link (64b link) bandwidth (latency) optimized network provides 18%/12% system/application throughput

improvement over a 256b link network and is 5%/3% better in weighted/instruction throughput, while consuming

47% lower energy compared to an iso-resource (320b link) network (59% lower energy when compared to a very high

bandwidth 512b link network). In a combined performance-energy design space, the proposed application-driven NoC

outperforms all competitive monolithic network designs. In conclusion, while multiple on-chip networks have been

proposed in the literature, none of these are based on a systematic, application-driven approach like ours. Also, the

proposed communication episode based classification and ranking schemes are significantly better than state-of-the-art

NoC prioritization mechanisms.
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