
SAFARI Technical Report No. 2011-006 (September 6, 2011)

Adaptive Cluster Throttling: Improving High-Load Performance in
Bufferless On-Chip Networks

Rachata Ausavarungnirun* Kevin Kai-Wei Chang*
rausavar@ece.cmu.edu kevincha@andrew.cmu.edu

Chris Fallin* Onur Mutlu
cfallin@cmu.edu onur@cmu.edu

(* primary student authors)

Computer Architecture Lab (CALCM)
Carnegie Mellon University

SAFARI Technical Report No. 2011-006

September 6, 2011

Abstract

Higher core counts and increasing focus on energy efficiency in modern Chip Multiprocessors (CMP) have led
to renewed interest in simple and energy-efficient Network-on-Chip (NoC) designs. Several recent proposed designs
trade off network capacity for efficiency, based on the observation that traditional networks are overprovisioned for
many workloads. Bufferless routing is one such example.

However, when the application workload requires high interconnect performance, the inefficiencies of bufferless
interconnects can cause significant performance degradations. Previous work has tackled various issues with buffer-
less routing, but little work has been done to improve performance at high network load. Fundamental improvements
in bufferless network performance at high load could extend the benefits of lower energy and smaller die area to a
wider range of potential applications.

In this work, we propose ACT (Adaptive Cluster Throttling), a source-throttling mechanism that provides better
system performance and fairness than the best current mechanisms on bufferless networks. By batching applications
into clusters, and alternately throttling different clusters, ACT provides a chance for all applications to inject traffic
into the network while maintaining control over total network load. We show 11.9% (10.2%) system performance
gain on average with 14.5% (15.1%) improvement in fairness over 60 network-intensive workloads on a 4x4 (8x8)
bufferless NoC. At high network load, ACT achieves nearly half the performance gain over a bufferless baseline that
a conventional buffered network achieves, while reducing network power by 15.4% (5.4%).

1 Introduction
In recent years, significant work has examined Networks-on-Chip (NoCs) as a solution to scalability challenges in
more traditional interconnect solutions, such as busses. As the number of cores grows into the hundreds, designs such
as the 2D mesh allow for scalability with simple routing algorithms and low-radix router designs.

However, on-chip interconnect is typically limited by tight constraints on power consumption and die area. Be-
cause of this, some recent work has examined alternative designs that make different design decisions from tradi-
tional buffered virtual channel (VC) routers in order to gain more efficiency. One such design is bufferless rout-
ing [12, 14, 17, 27], in which the router buffers are completely eliminated, and router port contention is resolved by
temporarily misrouting, or dropping and retransmitting, packets. This trade-off yields significant network power sav-
ings with minimal performance loss under low-to-medium network intensity workloads. However, bufferless networks
perform significantly worse than a traditional buffered network with network-intensive workloads, because network

1

rausavar@ece.cmu.edu
kevincha@andrew.cmu.edu
cfallin@cmu.edu
onur@cmu.edu

SAFARI Technical Report No. 2011-006 (September 6, 2011)

inefficiency due to deflections and a lower in-flight capacity reduce the saturation bandwidth. Previous work [12, 27]
notes that bufferless NoCs are a compelling design choice for low-to-medium network load because of significantly
reduced power and die area. However, the drop in performance at high network load from a buffered to a bufferless net-
work, which we call the performance gap in this paper, remains a hurdle for widespread adoption in general-purpose
systems.

There are at least two general approaches to bridge this performance gap. The first possibility is to build a hybrid
network that adaptively switches to a higher-capacity mode with buffers when the low-cost bufferless interconnect
becomes saturated. Adaptive Flow Control [18] combines a bufferless deflection router with a traditional VC-buffered
router, and allows each router to switch modes independently. While such an approach can attain the energy efficiency
of bufferless design at low load, and the performance of buffered networks at high load, it does not fundamentally
improve either underlying design. When running at high load, a hybrid system will spend a portion of its time in
buffered mode, requiring higher power consumption and eliminating the full power reductions of bufferless design.
Furthermore, while power gating can allow a hybrid scheme to enjoy the power and energy benefits of bufferless
designs at low load, it imposes some overhead, and incorporating both bufferless and buffered designs side-by-side
imposes an area penalty because buffers remain present.

An alternative approach is to improve the efficiency of bufferless deflection routing directly. One previous work [29]
uses source throttling (limiting the network request rates of applications) in order to reduce in-network contention in
bufferless networks, thereby reducing deflection rates and improving overall system throughput. Source throttling is
an effective technique to enhance performance without switching to more expensive designs, such as buffered routers,
under high load. Furthermore, it is orthogonal to hybrid designs, and may enable such a design to scale to higher loads
on a cheap interconnect before beginning to use energy-consuming buffers.

In this paper, we propose a new throttling mechanism, ACT (Adaptive Cluster Throttling). Based on the obser-
vation that different applications impose different portions of total network load, and should be treated differently,
ACT partitions applications into clusters (subsets) once per epoch. Clusters are throttled (limited in request rate) in a
timesliced schedule: some clusters are throttled only during some timeslices throughout the epoch. Doing so grants
the applications in these clusters some unthrottled access to the network, periodically making fast progress with less
interference from the other clusters that are currently throttled. Furthermore, timeslicing splits network access among
applications fairly without the need to adjust sensitive throttling rates individually on each application. ACT brings
the performance of bufferless networks closer to buffered networks while actually reducing network power due to re-
duced network utilization. ACT addresses the performance gap by more efficiently making use of a bufferless NoC’s
capacity. We make the following contributions:
• ACT, a throttling mechanism for bufferless NoCs that groups applications into clusters according to application

traits, and then alternately throttles clusters in timeslices.
• Evaluations showing improvement in system performance and fairness over a bufferless baseline, for a variety

of workloads, with comparisons to one prior proposed work [29], a homogeneous throttling mechanism, and an
adaptively-buffered network [18]. ACT closes 46.4% of the performance gap between bufferless and buffered 4x4-
networks with an 11.9% system performance gain on average.

2 Background

2.1 Network-on-Chips
The network-on-chip (NoC) is the most commonly proposed solution to scale interconnect in chip multiprocessors
(CMPs) beyond the limits of more traditional bus and crossbar interconnects [1, 7]. In a typical cache-coherent CMP,
the NoC carries data requests and responses between private (L1) caches, shared (L2) caches, and memory controllers.
It is thus on the critical path of every cache miss.

A significant body of research in the past decade has gone into mechanisms and new designs to improve the scal-
ability of NoCs: for example, there has been work on improved topology [16, 20] and on congestion control [15].
Additional work has investigated how to build more energy-efficient routers by simplifying the microarchitecture [19]
or removing buffers in the routers and misrouting [12, 24, 26, 27] or dropping [14, 17] traffic upon contention. Re-
moving buffers in particular yields a large reduction in die area and network power [12, 27]. We will now examine
this design direction in more detail.

2

SAFARI Technical Report No. 2011-006 (September 6, 2011)

2.2 Bufferless NoCs
Bufferless design is of particular interest because it optimizes the network for the common case when it is not heav-
ily loaded, and leads to significant energy and die-area savings relative to more traditional designs that use in-router
buffers. Bufferless NoCs have been proposed as an alternative option to the traditional virtual-channel (VC) buffered
routers [4, 6]. Whereas these buffered routers must buffer packets at every router input until they win arbitration for
a router output, deflection-based bufferless routers move packets continuously. The key idea of a such a design is to
deflect, or misroute, some packets (or their individual components, flits) to alternate output ports when traffic contends.
The packets will still eventually arrive at their destinations due to properties of the arbitration [27]. Thus, the network
links serve as in-flight buffers, and local contention will cause traffic to naturally spread to nearby links. BLESS [27]
motivates this scheme, bufferless deflection routing, by the energy and area savings obtained when removing buffers.
CHIPPER [12] examined bufferless deflection routing at the router microarchitecture level in order to make imple-
mentation practical. Together, these works provide a compelling proposal for low-to-medium network load, where
their performance degradation relative to a buffered network is minimal.

However, when network load rises above a certain point, bufferless networks begin to suffer in performance (and
also in energy efficiency). This is due first to increased deflections in the network, leading to higher average latency,
and second to a fundamentally lower network saturation point due to smaller in-flight traffic capacity. The lower
saturation bandwidth leads to lower system performance when multiple network-intensive applications are running
in the system. This is a case of network congestion. Moscibroda and Mutlu [27] claim that many workloads in a
real system have network utilizations low enough that a bufferless network’s capacity is sufficient. However, we
observe that for real workloads that include network-intensive applications, there is often a significant performance
gap between bufferless and buffered networks, as shown in §3. This performance gap, and the related problem of
poor fairness (worst-case application slowdown), could hinder the adoption of bufferless networks as an efficient
interconnect in general-purpose systems. We will now examine the problem in more detail before proposing a cluster-
based throttling mechanism to tackle the issue in a new way.

3 Motivation: Performance and Fairness at High Load
As we have introduced, bufferless routing presents the opportunity for significant energy and area reductions at the
cost of decreased network capacity. This decreased capacity can significantly degrade performance when network
load is high. Figure 1 demonstrates the performance-gap problem quantitatively. Two network designs are evaluated:
a traditional virtual-channel buffered NoC, and a bufferless NoC, FLIT-BLESS [27]. The top panel shows system per-
formance, measured as normalized weighted speedup (methodology in §5). Workloads (formed from SPEC CPU2006
applications [32]) are split by network-intensity class, increasing in network intensity from left to right. While BLESS
and a buffered network have nearly identical performance at low load, the gap grows with workload intensity, ex-
ceeding a 40% difference in the highest-intensity workloads. Previous work [27] motivated bufferless networks for
low-to-medium load where the gap is small. Clearly, the bufferless network is unsuitable for the network-intensive
workloads when performance is a concern.

However, the advantage of the bufferless-based approach is seen by examining power, as the bottom panel in
Figure 1 shows. In the best case (at low load), bufferless networks consume less than a quarter of the power of
buffered networks. Even at very high load, power consumption remains less than a buffered network. As previous
work has noted [12, 27], removing the in-network buffers from NoC routers yields this significant power savings,
as well as reduced die area. If the performance gap can be addressed, these cost-savings become more important:
mechanisms that enhance the performance of bufferless networks at high load without reducing their power and area
efficiency could lead to compelling energy-efficient interconnect designs for both network-light and network-intensive
workloads.

In addition to system performance, network congestion and saturation in bufferless NoCs can lead to degradation
of other important system properties. In this paper, we consider fairness as a first-class system metric alongside per-
formance. Figure 1 also shows fairness, measured as maximum application slowdown [8, 22], across both buffered
and bufferless baselines (lower is better). The bufferless network degrades fairness (increases max. slowdown) under
high load: the reduced capacity leads to significant slowdowns because some applications starve (are denied adequate
service) when the network is saturated by network-intensive applications. Many prior works [2, 10, 13, 25, 28] opti-
mize for fairness as well as performance: this means to improve the worst case for a single application’s performance
degradation, which yields a more robust mechanism and can also improve system throughput.

3

SAFARI Technical Report No. 2011-006 (September 6, 2011)

 0.8

 1

 1.2

 1.4

 1.6
 1.7

L ML M HL HML HM H Avg

N
o
rm

al
iz

ed
 P

er
f.

BLESS Buffered

 0

 1

 2

 3

 4

 5

L ML M HL HML HM H Avg

U
n
fa

ir
n
es

s
(M

ax
 S

lo
w

d
o
w

n
)

 0
 1
 2
 3
 4
 5

L ML M HL HML HM H Avg

N
o
rm

al
iz

ed
 P

o
w

er

Workload Classes

Figure 1: Buffered and bufferless network designs in a 4x4 (16-node) CMP. Details in §5.

Fundamentally, bufferless networks suffer the performance and fairness gaps because they become saturated at
lower load. Higher network utilization leads to more deflections, which in turn reduces network throughput and
system performance. However, past work [29] has shown that by limiting the network load with throttling (limiting
request injection rate), deflections reduce, and the bufferless network attains higher throughput. Our goal in this paper
is to develop a simple, easy-to-implement throttling-based mechanism for bufferless NoCs that further improves both
performance and fairness in bufferless networks.

4 ACT: Adaptive Cluster Throttling

4.1 Throttling Strategy and Application Types
At a high level, ACT works by observing application network intensity, grouping applications into clusters based on
that intensity, and then applying throttling to each cluster in a certain way.
What is Throttling? In broad terms, throttling in ACT is the blocking of new traffic injection into the network from
a particular application in order to reduce load. We use a throttling technique that is soft: throttled nodes can still
sometimes inject. We also assume that each node has separate injection queues for request packets and data response
packets to other nodes, and that only a node’s own request packets are throttled. For a throttling rate r, every time a
node attempts to inject a request packet, it randomly chooses to block the injection with probability r. Throttling rates
range from 0% (unthrottled) to 100% (fully blocked).
Overall Goal of Throttling: ACT applies throttling in order to reduce network load when the network is congested.
This reduces interference and thus improves system performance and fairness. In order to be most effective at reducing
load, ACT observes application network intensity and throttles those applications that will reduce network load the
most.
Impact of Throttling on System Performance: Throttling a particular application both causes slowdown to that
application (by reducing its access to the network), and causes performance gain in other applications (by reducing
overall network load). The performance impact on the throttled application depends on application characteristics such
as latency tolerance, which are difficult to measure directly. However, in a bufferless network, an application’s impact
on other applications correlates closely to its injection rate (network intensity): injection rate contributes to network
utilization, and high utilization in a bufferless network causes a high deflection rate, which distributes load throughout
the network and degrades performance for all applications [29]. Throttling an application with a high injection rate
will reduce network load more than throttling an application with a low injection rate. Thus, ACT throttles applications
according to network intensity, using the following principles.

4

SAFARI Technical Report No. 2011-006 (September 6, 2011)

Never Throttle Low-Intensity Applications: Low-intensity applications, or applications that have a low injection
rate, contribute little to overall network load. Thus, throttling such applications will not usually benefit system perfor-
mance, because throttling a low-intensity application does not reduce network load significantly. Hence, ACT never
throttles low-intensity applications.
Sometimes Throttle Medium-Intensity Applications: Medium-intensity applications have higher injection rates
than low-intensity applications, and thus have a non-negligible impact on total network load. Throttling medium-
intensity applications reduces network load and improves the performance of the other applications. However, throt-
tling such an application also impacts its own performance, because it is dependent on the network to make forward
progress some of the time. Thus, throttling all medium-intensity applications inhibits any of them from taking advan-
tage of the reduced congestion in the network. Hence, ACT builds clusters of medium-intensity applications that are
sometimes throttled, and then throttles most of these clusters while unthrottling one at a time in fine-grained times-
lices. This balances the impact of throttling across all medium-intensity applications, because each obtains unthrottled
network access for some time period.
Always Throttle High-Intensity Applications: Finally, high-intensity applications have very high network injec-
tion rates. These applications are nearly always network-bound, stalling on outstanding requests; thus, they use as
much network bandwidth as available. As long as there are lower-intensity applications in the network, ACT always
throttles high-intensity applications, because unthrottled access allows them to saturate the network and degrade the
performance of all other applications.
Throttling Strategy: In summary, ACT forms three types of clusters: one never-throttled cluster, multiple sometimes-
throttled clusters, and one always-throttled cluster. Applications are placed in clusters based on measured intensity.
Low-intensity applications are placed into the never-throttled cluster because they have little impact on network load.
High-intensity applications significantly degrade all other applications’ performance, and so are placed in the always-
throttled cluster. Finally, medium-intensity applications are sensitive to throttling but also place load on the network,
and so are split into many sometimes-throttled clusters. Most of these clusters are throttled, while one at a time is
unthrottled. Figure 2 depicts this scheme.

Sometimes-Throttled Clusters

Never-Throttled
Cluster

Always-Throttled Cluster

Throttled

Never-Throttled
Cluster

Always-Throttled
Cluster

Sometimes-Throttled
Clusters

Figure 2: Cluster-based throttling groups applications into clusters and shares network capacity via timesliced throt-
tling. Three types of clusters are formed: a never-throttled cluster, several sometimes-throttled clusters, which are
unthrottled one at a time, and an always-throttled cluster.

4.2 Cluster Formation and Throttling
Measuring Application Intensity: ACT needs to quantitatively measure applications’ network intensity in order
to throttle each application appropriately. Because the network services cache misses, ACT uses cache miss rate,
measured as L1 MPKI (misses per kilo-instruction), as a network intensity metric. This metric is stable (independent
of throttling decisions) and easy to measure at each core. Other work [8] also uses L1 MPKI to measure application
intensity.
Forming Clusters: Algorithm 1 shows ACT’s per-epoch clustering procedure. The algorithm is epoch-based: it
collects information about application network intensity (L1 MPKI) over a fixed-length epoch, and at the end of the
epoch, decides how to throttle for the next epoch. The algorithm first sorts all applications by observed MPKI (misses
per kilo-instruction) in the last epoch. It then iterates over all applications in this order (low to high MPKI) and builds
clusters one at a time.

First, the never-throttled cluster is filled until the sum of MPKI values for all applications in the cluster exceeds
the never-throttled cluster capacity NeverCap, a fixed algorithm parameter (we describe its effects in §6.4). Thus, the

5

SAFARI Technical Report No. 2011-006 (September 6, 2011)

lowest-intensity applications are granted unthrottled access. By filling to a capacity, rather than using a per-application
threshold, we handle the case where all applications are high-intensity: in this case, unthrottling the lowest-intensity
of these applications benefits performance, because there are no lower-intensity applications that would benefit from
an unsaturated network.

Once the never-throttled cluster is filled, sometimes-throttled clusters are created. These clusters are created one
at a time, and applications are added to the most recent cluster until a new cluster is started. The algorithm fills
each cluster to the sometimes-throttled cluster capacity SometimesCap, another algorithm parameter. SometimesCap
specifies the maximum sum of MPKI values for applications in each sometimes-throttled cluster. Together with
the never-throttled cluster capacity, this constraint limits the maximum network load due to unthrottled applications,
because at any given time, exactly one sometimes-throttled cluster is unthrottled. Finally, once applications’ MPKI
values become too large for a single sometimes-throttled cluster, the applications are added to the always-throttled
cluster.

Algorithm 1 ACT: Clustering Algorithm
at the beginning of each epoch:
empty all clusters
sort N applications by MPKI measurements MPKIi
for sorted application i in N do

if total MPKI of never-throttled cluster +MPKIi ≤ NeverCap then
Add application i to the never-throttled cluster

else if MPKI of the latest sometimes-throttled cluster +MPKIi ≤ SometimesCap then
Add application i to the latest sometimes-throttled cluster

else if MPKIi ≤ SometimesCap then
Create a new sometimes-throttled cluster
Add application i to the new sometimes-throttled cluster

else
Add application i to the always-throttled cluster

end if
end for

Throttling Clusters: The always-throttled cluster remains throttled continuously. The sometimes-throttled clusters
are unthrottled one at a time, in round-robin order, while all other sometimes-throttled clusters are throttled. The
throttling timeslice is a fixed interval that evenly divides into the epoch. Because the number of timeslices in an epoch
may not be a multiple of the number of sometimes-throttled clusters, the choice of first unthrottled cluster in an epoch
is randomized to avoid bias.
Controlling Throttling Rate: Every throttled cluster is throttled at a global rate. This rate is controlled dynamically
as network load rises and falls. When the system is lightly loaded, no throttling is necessary. As load increases,
the throttling mechanism becomes as aggressive as necessary to increase performance. This is accomplished with a
feedback-based throttling rate adjustment based on network load.

To measure network load, we use network utilization, which is the average number of links occupied by traffic in
the network at a given time over the total number of links. It ranges from 0% to 100%. Beyond a certain utilization,
deflections cause performance degradation, and using throttling to reduce utilization increases system performance, as
shown in prior work [29]. A certain range of network utilizations, fixed for a given network size and topology, will
provide good performance for many workloads. This is because traffic in real network-intensive workloads tends to
have a relatively homogeneous distribution, due to a large number of deflections. Because of this, we adjust throttling
rates according to a fixed network utilization target. Sensitivity to the network utilization target is evaluated in §6.5.

Algorithm 2 shows the adjustment mechanism. At each epoch, this algorithm compares actual network utilization
with a target utilization set statically for the network design, and adjusts the throttling rate as necessary. Per-epoch
rate steps are given in Table 1: the rate moves with larger steps when it is lower, and smaller steps when it is higher,
because most applications are more sensitive to throttling at higher throttling rates. The throttling rate has a maximum
at 95%, based on empirical sensitivity sweeps that show a large performance drop beyond that point. Note that when
the baseline network utilization is below the target, ACT will converge to a rate of 0%, effectively deactivating the
mechanism.

6

SAFARI Technical Report No. 2011-006 (September 6, 2011)

Algorithm 2 ACT: Throttling-Rate Adjustment
initially: throttle rate← 0
at the beginning of each epoch:
if netUtil ≥ targetNetUtil then

if throttle rate < max throttle rate then
increase throttle rate for all clusters by throttling rate delta

end if
else if netUtil ≤ targetNetUtil then

if throttle rate > 0 then
decrease throttle rate for all clusters by throttling rate delta

end if
end if

Table 1: Throttle-Rate Adjustment

Current Throttling Rate Throttling Rate Delta
0% – 70% 10%
70% – 90% 2%
90% – 100% 1%

Parameter Setting
System topology 4x4 and 8x8 mesh; core and shared cache slice at every node
Core model Out-of-order, 128-entry instruction window, 16 MSHRs
Private L1 cache 64 KB, 4-way associative, 32-byte block size
Shared L2 cache perfect (always hits) shared, cache-block-interleaved mapping
Cache coherence directory-based with cache-to-cache transfers, perfect striped directory
Interconnect Links 1-cycle latency, 128-bit width (1-flit request packets, 4 flit data packets)
Bufferless router 2-cycle latency, FLIT-BLESS [27] or CHIPPER [12] (§6.2)
Buffered router 2-cycle latency, 8 VCs, 8 flits per VC, oldest-first arbitration
Simulation parameters 5M cycle warmup, 25M cycle active execution
Multiprogrammed Workloads 60 in 4x4, 60 in 8x8, drawn from SPEC CPU2006 [32]
Multithreaded Workloads (§6.2) 4 from SPLASH-2 [36], 16 threads in a 4x4-CMP

Table 2: Simulation parameters.

5 Experimental Methodology
Simulator Model: We use an in-house cycle-accurate instruction-trace-driven simulator for our evaluation. We model
a 4x4- or 8x8-mesh CMP. Table 2 shows the detailed configuration of our system. Note that we model perfect shared
caches, as also evaluated for CHIPPER [12], BLESS [27] and previous work on throttling [29]. This configuration
forces all shared-cache accesses to be hits, removing memory latency from consideration. Thus, the NoC becomes
the system bottleneck. This configuration allows us to study high-load behavior, and is a realistic situation for cache-
resident workloads.

Because only the L1 caches require warming with a perfect shared cache, 5M cycles of warmup is found to be
sufficient. 25M cycles of execution gives stable results for the application phases simulated.
Workload Formation: We focus on network-intensive workloads for our main evaluations since the problem we
are solving occurs only when the network is under high load. In a sensitivity study in §6.2, we will separately
show behavior in network non-intensive workloads. In order to form suitable workloads for the main evaluations, we
split the SPEC CPU2006 [32] benchmark set into three categories: High, Medium and Low. We perform cache-miss
profiling over the instruction traces captured from representative sections of each benchmark, and split based on MPKI
thresholds. In particular, High-intensity benchmarks have MPKI greater than 50, Medium-intensity benchmarks fall
between 5 and 50 MPKI, and Low-intensity benchmarks form the remainder, as shown in Table 3.

Based on these categories, we form workload classes with predefined ratios of High, Medium and Low-intensity
applications. We take four classes that contain high-intensity applications: H (all applications High), HM (High/Medium),
HML (High/Medium/Low), and HL (High/Low). For each workload, we pick the intensity of each node’s application
randomly from the given categories, and then pick an application for each node randomly from the appropriate list.
We evaluate 15 workloads per class.

We also evaluate multithreaded workloads in §6.2 using SPLASH-2 [36] applications. For these workloads, a 4x4
network runs 16 threads of a single application. Simulations are run for a fixed number of barriers (i.e., main loop
iterations) and total execution times are compared.
Algorithm Parameters: Table 4 gives empirical values for our algorithm’s parameters. We evaluate the effects
of parameters and their sensitivity in §6.5. Cluster capacity parameters (NeverCap and SometimesCap) are treated
specially in §6.4, as they control a performance-fairness tradeoff. Note that we define two variants of ACT, ACT-

7

SAFARI Technical Report No. 2011-006 (September 6, 2011)

Low-Intensity Apps MPKI Medium-Intensity Apps MPKI High-Intensity Apps MPKI
perlbench 0.1 gromacs 7.4 libquantum 53.1
calculix 0.3 hmmer 8.1 GemsFDTD 55.0

sjeng 1.2 astar 10.9 lbm 57.1
namd 1.2 cactusADM 12.8 soplex 57.6
gcc 1.4 bzip2 19.6 mcf 122.4
wrf 1.4 omnetpp 22.4

tonto 1.5 xalancbmk 27.2
dealII 1.5 sphinx3 27.7
gobmk 2.6 milc 27.9
povray 2.9 leslie3D 42.4
h264ref 4.2

Table 3: L1 Cache Misses Per Kilo-Instruction (MPKI) of 26 SPEC 2006 benchmarks.

Perf and ACT-Fair, with different cluster capacity parameters. These variants are tuned for performance and fairness,
respectively.

Algorithm Parameter Value
Epoch Length 100K cycles

Timeslice Length 1000 cycles
Network Utilization Target 60% (4x4); 55% (8x8)

NeverCap never-throttled cluster capacity 150 (ACT-Perf), 50 (ACT-Fair)
SometimesCap sometimes-throttled cluster capacity 50 (ACT-Perf), 150 (ACT-Fair)

Table 4: Cluster-Throttling Algorithm Parameters

Metrics: To measure system performance, we use the well-known Weighted Speedup metric [31, 11] (Eqn. 1), which
is shown to be equivalent to System Throughput [11], for our evaluation. All IPCalone

i values are measured on the
baseline bufferless network. To ensure no bias in selecting metrics to report our system performance, we also present
our results in two more metrics: System IPC [11](Eqn. 2) and Harmonic Speedup [25, 11](Eqn. 3), which is inversely
proportional to Average Normalized Turnaround Time [11]. Note that we mainly present results in weighted speedup
since these metrics show similar trends, which we will show in §6.

WeightedSpeedup =
N

∑
i=1

IPCshared
i

IPCalone
i

(1)

SystemIPC =
N

∑
i=1

IPCshared
i (2)

HarmonicSpeedup =
N

∑
N
i=1

IPCalone
i

IPCshared
i

(3)

Additionally, we report fairness – intuitively, equal treatment or progress for all applications – for all workloads.
Unlike several previous works [2, 13, 25, 28, 31], which define fairness as the ratio of maximum to minimum applica-
tion slowdown, we measure fairness as the maximum application slowdown (Eqn. 4) [8, 22, 23, 34], because it favors
mechanisms that improve the slowest applications’ performance explicitly (rather than equalize slowdowns at the cost
of performance). For this metric, lower is better (more fair), hence it measures unfairness. Because of this inversion,
we report the harmonic mean rather than arithmetic mean of fairness for workload classes and overall conclusions.

Un f airness = max
i

IPCalone
i

IPCshared
i

(4)

8

SAFARI Technical Report No. 2011-006 (September 6, 2011)

Performance and Fairness Gaps: We discuss the performance gap and fairness gap quantitatively in our evaluations.
The performance gap is defined in terms of weighted speedup, and exists between the bufferless (BLESS) baseline
and buffered baseline. For a mechanism to close 50% of the gap, it must achieve 50% of the improvement over
bufferless that the buffered baseline achieves. The fairness gap is defined in terms of minimum speedup, or the inverse
of maximum slowdown, because maximum slowdown is an inverse (lower-is-better) metric, but is otherwise defined
analogously.
Comparisons to Other Mechanisms: We compare our mechanism to two other throttling techniques. The first is a
homogeneous throttling mechanism. This uses network utilization as a measure of congestion, and implements the
throttling rate adjustment in Algorithm 2. In contrast to ACT, all nodes are throttled at the same rate, without any
clusters. The second comparison is to an implementation of prior work on throttling in bufferless networks in Nychis
et al. [29], which we call “heterogeneous throttling.”
Power Model: To model network power, we use a similar model for BLESS and buffered networks to that used in [12].
This model takes detailed event counts from cycle-accurate network simulations. The model is based on synthesized
Verilog models for control logic and ORION [35] estimates for the router datapath, buffers (when applicable) and
network links, assuming 65nm technology.

6 Experimental Evaluation
System Performance: The top panel of Figure 3 shows the normalized system performance (measured as weighted
speedup) of bufferless and buffered baselines, AFC, simple throttling (homogeneous and heterogeneous), and two
variants of our mechanism, ACT-Perf and ACT-Fair, optimized for performance and fairness respectively (§6.4). Re-
sults are split by workload intensity classes, as defined in §5. We focus on 4 network-intensive workload classes, each
with 15 workloads.

First, the buffered network outperforms the bufferless baseline significantly. This is the performance gap motivated
in §3. In a 4x4 CMP, the buffered network has 25.7% higher performance than the bufferless baseline on average in
these network-intensive workloads. Adaptive Flow Control [18], which dynamically switches each router between

 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

HL HML HM H Avg

N
o
rm

.
W

ei
g
h
te

d
 S

p
ee

d
u
p

4x4

BLESS
Buffered

AFC
Homogeneous

Heterogeneous
ACT-Perf
ACT-Fair

 0

 1

 2

 3

 4

 5

HL HML HM H Avg

U
n
fa

ir
n
es

s
(M

ax
 S

lo
w

d
o
w

n
)

 0.5

 0.75

 1

 1.25

 1.5

HL HML HM H Avg

N
o
rm

.
N

et
w

o
rk

 P
o
w

er

Workload Classes

HL HML HM H Avg
 0.8
 0.9
 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

N
o
rm

.
W

ei
g
h
te

d
 S

p
ee

d
u
p

8x8

HL HML HM H Avg
 0

 1

 2

 3

 4

 5

 6

 7

 8

U
n
fa

ir
n
es

s
(M

ax
 S

lo
w

d
o
w

n
)

HL HML HM H Avg
 0.5

 0.75

 1

 1.25

 1.5

N
o
rm

.
N

et
w

o
rk

 P
o
w

er

Workload Classes

Figure 3: Performance, fairness, and power for 60 network-intensive workloads in 4x4 and 8x8 CMPs.

9

SAFARI Technical Report No. 2011-006 (September 6, 2011)

bufferless and buffered modes, provides nearly the same performance as a buffered network because it is able to
enable its buffers when needed.

Both homogeneous and heterogeneous throttling improve performance over the bufferless baseline, at 5.9% and
4.3% respectively in a 4x4 network. Both variants of ACT, ACT-Perf and ACT-Fair (§6.4), outperform homogeneous
and heterogeneous throttling, providing the best performance of the throttling techniques. ACT-Perf, optimized for
performance, attains 11.9% performance improvement in 4x4 networks, and 10.2% in 8x8, closing 46.4% and 40.0%
of the performance gaps, respectively.

Homogeneous throttling achieves performance gains simply by reducing network load, using ACT’s throttling
rate adjustment algorithm. However, homogeneous throttling has no clusters, and so cannot throttle applications
differently according to their intensities, as ACT does (§4.1). ACT achieves an additional 6% performance gain over
the baseline bufferless network due to this distinction. In addition, in the all-High class, homogeneous throttling has
little performance benefit, because it applies the maximum throttling rate in an unsuccessful attempt to bring network
utilization down to the target. In contrast, ACT’s never-throttled cluster is able to capture several of the applications
in the workload, because it fills to a capacity and no lower-intensity applications are present. ACT is able to extract a
sizeable performance gain with this configuration.

ACT outperforms heterogeneous throttling in all cases for two reasons: it dynamically adjusts throttling rate to
match the workload intensity, and it is able to make finer-grained and more accurate throttling distinctions. ACT uses
a single global throttling rate controlled by a feedback loop that observes current network utilization. The mechanism
controls the impact of throttling on each application by the way that it builds clusters and timeslices them. In contrast,
heterogeneous throttling uses an open-loop throttling rate adjustment that applies a distinct throttling rate to each
application based on its network intensity. Thus, heterogeneous throttling can sometimes over- or under-throttle the
workload. In addition, its distribution of network access between applications is less precise than ACT’s timeslicing
because individual application performance can be very sensitive to throttling rates.

Figure 4 presents the system performance in weighted speedup, system IPC, and harmonic speedup without nor-
malization to BLESS in both 4x4 and 8x8 networks. We report three separate performance metrics to show that our
results are robust against choice of metric. ACT improves system IPC by 13.3% (10.7%) , and harmonic speedup by
9.2% (11.4%) relative to BLESS in a 4x4 (8x8) network. In comparison, a buffered network improves these metrics
by 20.8% (19.1%) and 25.1% (27.3%) respectively. As shown, ACT closes 63.9% (56.0%) of the system IPC gap and
36.7% (41.7%) of the harmonic speedup gap. In general, the trends are shown to be similar for all the metrics, so our
conclusions drawn from weighted speedup do not depend on any particular performance metric.

Measured using the harmonic speedup, which captures both system throughput and fairness [25, 11], ACT-Perf
exhibits less performance improvement over homogeneous throttling than when using weighted speedup: 2.7% in a
4x4 network and 6.0% in a 8x8 network. This smaller improvement is because harmonic speedup incorporates fairness
as well as throughput; as the middle panel of Figure 3 shows, ACT-Perf actually results in higher average system
unfairness than homogeneous throttling in a 4x4 network. However, despite the impact that increased unfairness has
on harmonic speedup, ACT-Perf still provides an absolute improvement over all other evaluated throttling mechanisms.
Fairness: Figure 3 (middle panel) shows fairness (measured as maximum slowdown) for all evaluated mechanisms.
In these plots, a higher number indicates a higher maximum slowdown and thus worse fairness. The first conclusion
is that a bufferless network has worse fairness on average, due to lower network bandwidth capacity and higher
congestion, which starves applications of service and causes large slowdowns. The fairness gap is 24.8% (27.2%) on
average in a 4x4 (8x8) network. Second, homogeneous throttling closes only a portion of this gap on average, because
it treats all applications to be the same, whereas some applications are more sensitive to throttling than others. It can
improve fairness more in the HL and HML classes because it closes a greater portion of the performance gap, and thus
increases all applications’ performance. In the HM and H classes, it is almost as unfair as the baseline bufferless case.

The heterogeneous throttling mechanism actually worsens fairness on average and in all workload classes in a
4x4 network, and on average and in all but one class in an 8x8 network. This is because the mechanism explicitly
optimizes for system performance: it throttles applications that have lower instructions-per-flit (instructions retired
per unit of network traffic) measurements, or those that lead to less system performance gain for a given amount of
network throughput [29]. This can significantly impact individual applications’ performance, because applications
with lower instructions-per-flit measurements can be starved of service.

On average, ACT-Fair achieves better fairness than homogeneous and heterogeneous throttling, and shows 14.5%
fairness improvement in 4x4 and 15.1% in 8x8 networks from the bufferless baseline. ACT-Fair closes 43.4% of
the fairness gap with buffered networks in 4x4 networks and 55.6% in 8x8. ACT attains better fairness by treating
each application according to its network intensity (§4.1). By throttling network-intensive applications at all times,

10

SAFARI Technical Report No. 2011-006 (September 6, 2011)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

HL HML HM H Avg

W
ei

g
h
te

d
 S

p
ee

d
u
p

4x4
BLESS

Homogeneous
Heterogeneous

ACT-Fair

ACT-Perf
Buffered

AFC

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

HL HML HM H Avg

S
y
st

em
 I

P
C

 0

 0.2

 0.4

 0.6

 0.8

HL HML HM H Avg

H
ar

m
o
n
ic

 S
p
ee

d
u
p

Workload Classes

HL HML HM H Avg
 0

 8

 16

 24

 32

 40

 48

W
ei

g
h
te

d
 S

p
ee

d
u
p

8x8

HL HML HM H Avg
 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

S
y
st

em
 I

P
C

HL HML HM H Avg
 0

 0.2

 0.4

 0.6

 0.8

H
ar

m
o
n
ic

 S
p
ee

d
u
p

Workload Classes

Figure 4: Performance results in Weighted Speedup, System IPC, and Harmonic Speedup for 60 network-intensive
workloads in 4x4 and 8x8 CMPs.

ACT reduces network load and allows better network access for the other applications. Timesliced throttling of
sometimes-throttled clusters allows many medium-intensity applications to have a chance at unthrottled injection,
while still reducing network load overall. ACT’s fairness improvement over homogeneous throttling demonstrates
that this application-awareness yields significant gains.

Finally, a clear improvement in fairness is visible from ACT-Perf to ACT-Fair. In 4x4 networks, ACT-Perf has
similar or slightly lower fairness to simple homogeneous throttling on average, whereas ACT-Fair achieves better
fairness than any other throttling technique, at the cost of some system performance. This tradeoff occurs due to
clustering thresholds, and we evaluate the effect explicitly in §6.4. In 8x8 networks, the reduction of general network
congestion is a more dominant effect than the differences in cluster formation between ACT-Perf and ACT-Fair, and
so both ACT variants improve fairness over other throttling techniques. Together, ACT-Perf and ACT-Fair show two
extremes of a tradeoff spectrum that ACT allows between fairness and performance.
Network Power: Figure 3 (bottom panel) shows normalized network power. ACT reduces network power due to
decreased network utilization: power reduces by 15.4% on average in 4x4 and 5.4% on average in 8x8 networks.
Combined with the performance improvements, this yields reduced network and system energy overall. Homogeneous
throttling achieves a slightly larger power reduction because it is more aggressive at reducing network utilization across
all nodes. In exchange for this reduction, however, it achieves less performance and fairness. ACT thus presents a
better tradeoff, especially when full-system power (in addition to network power) is considered: the reduced execution
time due to improved system performance, coupled with reduced network and system power, can lead to significant
energy reductions.

6.1 Effect on Other Bufferless Interconnects
CHIPPER: We show the effect of ACT on another low-cost bufferless interconnect, CHIPPER [12], which makes
tradeoffs that sacrifice some performance in order to allow for a simple router design. ACT is also directly applicable
to CHIPPER, because CHIPPER is a simplified deflection-based bufferless routing design.

Figure 5 shows performance and fairness for a CHIPPER baseline, and ACT-Perf on CHIPPER, in a 4x4 network.

11

SAFARI Technical Report No. 2011-006 (September 6, 2011)

Unmodified CHIPPER performs 1% worse on average across all high-intensity workloads than BLESS. ACT on
CHIPPER attains 6.8% performance improvement over the CHIPPER baseline, or 5.8% over BLESS. Note that ACT
has not been optimized for this configuration. Nonetheless, we conclude that ACT is also effective on other bufferless
network designs.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

HL HML HM H Avg

N
o

rm
al

iz
ed

 W
ei

g
h

te
d

 S
p

ee
d

u
p

Workload Classes

BLESS
Buffered

ACT-Perf

CHIPPER
CHIPPER+ACT

HL HML HM H Avg
 0

 1

 2

 3

 4

 5

U
n

fa
ir

n
es

s
(M

ax
 S

lo
w

d
o

w
n

)

Workload Classes

Figure 5: ACT-Perf on CHIPPER [12], a low-cost bufferless network, for a 4x4 network. Parameters are identical to
ACT-Perf in our main evaluation, except for a network utilization target of 45%.

6.2 Behavior with Low-Intensity and Multithreaded Workloads
Low-intensity multiprogrammed workloads: We evaluate the same set of low-intensity workloads shown earlier in
Figure 1 in §3 in order to show that ACT has no negative effects where little performance gap exists. Figure 6a shows
performance and fairness for these workload categories in a 4x4 network. In all-Low and Medium-Low workloads,
all systems perform essentially the same. In Medium-intensity workloads, the performance gap begins to emerge,
showing a few percent in performance drop from buffered to bufferless networks. A small fairness gap also starts to
emerge. ACT-Fair is able to recapture some of the fairness lost in bufferless networks even when the network has not
yet reached high load.
Scientific multithreaded workloads: Although ACT as described in this work is not explicitly designed for mul-
tithreaded workloads, it can still provide benefits for such workloads by reducing network contention. We evaluate
standard ACT on four 16-threaded workloads from SPLASH-2 [36] in a 4x4 network. Normalized speedups are shown
in Figure 6b. In luc and lun, ACT closes most or all of the performance gap. The largest performance gap exists
in fft, at 11.7%. However, ACT does not close this gap because it is not aware of cooperating threads. ACT does
not close this gap because it is not aware of cooperating threads. In other words, because threads of a multithreaded
program have dependencies between them, and slowing down one thread (by throttling it) might also impact the exe-
cution speed of other threads and the program as a whole, ACT can no longer throttle network nodes independently,
as we have described so far. ACT could be easily extended to handle this case by treating all threads in a process as
a single unit with one total MPKI, and assigning the threads atomically to one cluster. We do not evaluate such an
extension but leave it for future work.

6.3 Implementation Cost
Our mechanism consists of three parts: measurement of MPKI and network utilization cluster and throttling-rate
computation each epoch, and throttling and timeslicing at the routers.

First, MPKI and network utilization can be measured easily in hardware with simple integer counter structures reset
every epoch. Second, throttling rates and timeslicing must be enforced at each router. Throttling can be implemented
as a fixed duty cycle in which injection is allowed, or using a pseudorandom number generator. Timeslicing requires
a timer that can be programmed with a repeating schedule to activate throttling. Note that no global coordination
is required, since the NoC has a global clock domain. Finally, the cluster formation computation must be done in
some central place. The algorithm consists of (i) a sort by MPKI and (ii) one pass over the application list. Although a
detailed model is outside the scope of this work, such a computation should require at most several thousand cycles out
of a 100K-cycle epoch, running on one central CPU node. This computation and communication overhead that occurs
every epoch, is small given a 100K-cycle epoch. Assuming the computation takes 1000 cycles, then the overhead is
minimal at 1% on one single core.

12

SAFARI Technical Report No. 2011-006 (September 6, 2011)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

L ML M Avg

N
o

rm
al

iz
ed

 W
ei

g
h
te

d
 S

p
ee

d
u

p

Workload Classes

Buffered
BLESS

AFC
Homogeneous

Hotnets
ACT-Perf
ACT-Fair

L ML M Avg
 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

U
n
fa

ir
n

es
s

(m
ax

 s
lo

w
d

o
w

n
)

Workload Classes

(a) Low-intensity workloads in a 4x4 network

fft luc lun radix
 0.8

 0.9

 1

 1.1

 1.2

 1.3

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

Workloads

BLESS
Buffered

ACT

(b) Multithreaded workloads

Figure 6: Several evaluations of ACT in workloads with low network intensity.

6.4 Cluster Sizes, Fairness and Performance
Two algorithm parameters, NeverCap (never-throttled cluster capacity) and SometimesCap (sometimes-throttled clus-
ter capacity), control cluster formation and have important effects on the fairness and performance of ACT. Recall
from §4.2 that the never-throttled cluster capacity defines the maximum sum of MPKI measurements for applications
placed in the never-throttled cluster. Likewise, the sometimes-throttled cluster capacity defines the maximum MPKI
sum for applications in any particular sometimes-throttled cluster, and applications with MPKI larger than this capac-
ity are placed in the always-throttled cluster. Each parameter thus defines the total network intensity of a particular
type of cluster.

Together, NeverCap and SometimesCap define the total network intensity of the applications that will be un-
throttled at any given time (i.e., the never-throttled and one particular sometimes-throttled cluster): we call this the
“unthrottled capacity.” Thus, this sum also controls what portion of the nodes are throttled. If too few nodes are throt-
tled, then ACT will be unable to bring the network utilization of a high-intensity workload down to the target, even if
the throttling rate takes its maximum value. Such a situation will result in very unfair treatment of the few applications
that are throttled (because of the high throttling rate) and small performance gains overall (because network utiliza-
tion is lowered only slightly). Conversely, if too many nodes are throttled, ACT converges to simple homogeneous
throttling, and loses the performance and fairness advantages shown in §6 over this scheme.

To examine performance sensitivity to the sum NeverCap + SometimesCap, we hold SometimesCap = 0 and
sweep NeverCap. This removes sometimes-throttled clusters completely, leaving only the never-throttled and always-
throttled clusters. The lowest-intensity applications fill the never-throttled cluster until the cluster’s total MPKI reaches
NeverCap, and the remaining applications are then placed in the always-throttled cluster. In this controlled sweep,
NeverCap = 0 corresponds to homogeneous throttling, because all applications are placed in the always-throttled
cluster; and as NeverCap exceeds the total MPKI of all applications in the network, the system converges to the
baseline network, because all applications are placed in the never-throttled cluster. System performance for this sweep
is shown in Figure 7. In 4x4 networks, the best performance occurs at a low-intensity cluster capacity of 150 MPKI.
Note that our primary evaluations use a capacity of 200 rather than 150 MPKI in 4x4 networks, which performs nearly
as well in this sweep. We conclude that the total unthrottled capacity has a significant impact on ACT’s effectiveness.

Next, the distribution of the unthrottled capacity between the NeverCap and SometimesCap capacities trades off
fairness and performance. Figure 8 shows five different configurations of ACT in 4x4 networks where NeverCap+
SometimesCap is held constant but the distribution is swept (points are notated (NeverCap,SometimesCap, ACT-Fair
corresponds to (50,150), and ACT-Perf corresponds to (150,50)). When more capacity is given to the never-throttled
cluster, it captures a larger portion of the lowest-intensity applications in the workload (because it fills up to its capacity,
and may contain several medium-intensity as well as low-intensity applications when it is large enough). Granting this
capacity improves performance up to a point, because lower-intensity applications can make more forward progress
with less load on the network. When this capacity is increased past a certain point, however, the sometimes-throttled
clusters receive a much smaller share of the unthrottled capacity, and the performance of many medium-intensity

13

SAFARI Technical Report No. 2011-006 (September 6, 2011)

 10

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

 0 50 100 150 200 250 300 350 400

W
ei

g
h

te
d

 S
p

ee
d

u
p

Low-Intensity Cluster Capacity (MPKI)

Figure 7: Performance as a function of unthrottled capacity.

applications is degraded because they are placed into the always-throttled cluster. When SometimesCap = 0, the
sometimes-throttled clusters disappear completely.

On the other hand, when more capacity is given to sometimes-throttled clusters and less to the never-throttled
cluster, the unthrottled capacity is distributed to more medium-intensity applications via timeslicing. Because many
applications are unthrottled for short periods while the overall network load is reduced, the system is more fair because
all of these applications can make forward progress. At the same time, performance reduces because less capacity is
given to the never-throttled cluster, and applications that were previously in this cluster must wait for a turn for
unthrottled access in the sometimes-throttled clusters. Beyond a certain point, this effect also reduces fairness, because
too few low-intensity applications (which can make fast forward progress) obtain unthrottled network access.

Overall, we conclude that ACT shows a range of configurations that trade off fairness and performance based on
the distribution of unthrottled cluster capacity.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

HL HML HM H Avg

N
o
rm

al
iz

ed
 W

ei
g
h
te

d
 S

p
ee

d
u
p

Workload Classes

Baseline
ACT (0,200)

ACT (50,150)

ACT (100,100)
ACT (150,50)
ACT (200,0)

HL HML HM H Avg
 0

 1

 2

 3

 4

 5

U
n
fa

ir
n
es

s
(M

ax
 S

lo
w

d
o
w

n
)

Workload Classes

Figure 8: Fairness-performance tradeoff with never-throttled and sometimes-throttled cluster capacities.

6.5 Sensitivity to Algorithm Parameters
Epoch and timeslice length: Epoch length has little effect on performance and fairness improvements (less than 1%
delta in performance from 20K to 1M cycles), due to stability of application behavior over that time period. Timeslice
length has little effect once it is long enough; beyond 1K cycles, performance varies by less than 1%. Thus, we
use 100K cycles and 1K cycles for epoch and timeslice length, respectively, allowing for up to 100 clusters in each
epoch. The choice of epoch length trades off between responsiveness and overhead. A shorter epoch captures more
fine-grained changes in application behavior, but with higher overhead and less stable measurements. A longer epoch
gives more stable samples and amortizes recomputation over more time, but does not capture fine-grained changes in
behavior.
Target network utilization: This parameter controls the throttling aggressiveness of ACT and thus its effectiveness.
Figure 9, sweeping from 0% to 100% in ACT-Perf, shows that weighted speedup peaks at between 50% and 65%
network utilization for a 4x4 network, with less than 1% variation at points within this range. In addition, Figure 9
shows that fairness is best in this range. Beyond 65%, performance drops significantly because throttling is not
aggressive enough and the network remains congested. When the target is too low, throttling is too aggressive, and
is capped at the maximum throttling rate (thus, performance remains stable and does not degrade if the target is too
aggressive).

14

SAFARI Technical Report No. 2011-006 (September 6, 2011)

 10

 10.2

 10.4

 10.6

 10.8

 11

 11.2

 11.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ei

g
h
te

d
 S

p
ee

d
u
p

Network Utilization Target
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 2

 2.2

 2.4

 2.6

 2.8

 3

U
n
fa

ir
n
es

s
(M

ax
 S

lo
w

d
o
w

n
)

Network Utilization Target

Figure 9: Performance and fairness sensitivity to network utilization target in a 4x4 network over 20 sweep workloads.

7 Related Work
To our knowledge, ACT is the first work to apply source throttling to a bufferless NoC with explicit goals of both
performance and fairness. Other work studies throttling in the NoC and elsewhere, tackles NoC congestion, and
targets the bufferless-buffered performance gap using various alternate approaches.
Congestion Control in Buffered NoCs: The congestion problem, and more generally the problem of optimizing
network-intensive workloads, has been explored in many previous works [8, 9, 15, 29, 33]. Various approaches use
available buffers [21], available virtual channels [5], output queue size [30] or a combination of these [15] to detect
congestion. When congestion is detected, options include congestion-aware routing [15], throttling [33], or simply
boosting the NoC operating frequency.

Thottethodi et al. [33] proposed a mechanism that applies source throttling and dynamically adjusts aggressive-
ness, as in ACT. However, ACT differs in that it splits applications into distinct clusters and throttles clusters hetero-
geneously, whereas [33] throttles all nodes homogeneously.

While these mechanisms tackle congestion in buffered networks, fundamental differences between buffered and
bufferless networks limit applicability of prior work. Because deflection spreads traffic throughout the network, net-
work congestion is a global problem, and it tends to affect all nodes. Controlling global network load is most important.
In a buffered NoC, localized congestion leads to a focus on detecting hotspots. Furthermore, bufferless networks suffer
from starvation, the inability to inject traffic, at high load [29]. Thus a significant portion of a packet’s time is spent in
injection queues, and source throttling can control congestion more easily than in-network prioritization or adaptive
routing.
Congestion Control in Bufferless NoCs: Nychis et al. [29] proposed a throttling-based approach to reduce conges-
tion in bufferless NoCs. We compare to this work as “heterogeneous throttling” in our main evaluations. Whereas
heterogeneous throttling partitions applications into throttled and not-throttled categories every epoch, and then applies
differing throttling rates to each throttled application, ACT uses timesliced sometimes-throttled clusters and applies
the same throttling rate to all throttled applications. Doing so allows ACT to be much simpler, because it does not need
to determine per-application throttling rates that are best for performance and fairness. ACT also adjusts throttling rate
with a closed loop to adapt to different network loads. These two major differences lead to significant performance
and fairness improvements, as demonstrated in §6.
Bridging the Performance Gap between Bufferless and Buffered Routing: Adaptive Flow Control [18] combines
a bufferless and buffered router, and dynamically switches between the two modes depending on load. As shown in
our evaluations, this technique closes the performance gap with buffered networks at high load. However, it loses the
power/energy advantage of bufferless design at this point, because buffers are turned on. Additionally, it imposes an
area penalty over both a buffered baseline (for additional control logic) and a bufferless baseline (for VC buffers).
Note that ACT is orthogonal to AFC because ACT improves bufferless performance without switching to a buffered
mode. AFC and ACT could be combined, by activating ACT in a congested bufferless network first, and switching to
buffered mode with AFC only when the performance gain of ACT is insufficient. Delaying or eliminating a switch to
buffered mode could improve the energy efficiency of a hybrid bufferless-buffered system.
Throttling-based Approaches in Other Parts of the System: Cheng et al. [3] proposed to reduce load in the memory
system with a Memory Task Limit, which uses a timeslicing-based approach to schedule memory episodes of many
threads to reduce interference. FST, proposed by Ebrahimi et al. [10], improves fairness in a shared memory system
by source-throttling applications that interfere with others based on explicit measurements of application interference.
Both MTL and FST are orthogonal to ACT, and ACT can be combined with mechanisms in other parts of the shared

15

SAFARI Technical Report No. 2011-006 (September 6, 2011)

memory hierarchy.
Cluster-Based Performance and Fairness Techniques: Thread Cluster Memory scheduling (TCM) [23] is a memory
scheduler that targets performance and fairness. TCM groups threads into clusters for request prioritization, and
performs a particular shuffling algorithm to ensure fairness. In contrast, ACT uses round-robin clusters as a simple
way to turn throttling on and off for groups of applications. TCM and ACT work in different subsystems and solve
orthogonal problems.

8 Conclusion
We presented Adaptive Cluster Throttling (ACT), an application-aware throttling mechanism that improves perfor-
mance and fairness of a NoC-based CMP system. ACT partitions applications into clusters based on network inten-
sity, and then alternately throttles some of the clusters in a timesliced way. ACT improves the average performance by
11.9% (10.2%) and provides a fairness improvement of 14.5% (15.1%) on average compared to traditional bufferless
4x4 (8x8) NoCs under high load. It retains the benefits of a simple bufferless router design in reduced power and
area, while bridging nearly half the performance gap of such networks with traditional buffered networks at high load.
Thus, a bufferless NoC with ACT could be a compelling option for interconnect in general-purpose CMPs.

9 Acknowledgments
We thank members of CALCM (Computer Architecture Lab at Carnegie Mellon) for their insightful feedback and
contribution of ideas to this work. We gratefully acknowledge the support of NSF CAREER Award CCF-0953246,
NSF Grant CCF-1147397, Gigascale Systems Research Center, Intel Corporation ARO Memory Hierarchy Program,
and Carnegie Mellon CyLab. We also acknowledge equipment and gift support from Intel.

References
[1] S. Borkar. Thousand core chips: a technology perspective. DAC-44, 2007. 2

[2] F. Cazorla et al. QoS for high-performance SMT processors in embedded systems. IEEE Micro, 24(4):24 – 31, Jul-Aug 2004.
3, 8

[3] H. Cheng, C. Lin, J. Li, and C. Yang. Memory latency reduction via thread throttling. MICRO-43, 2010. 15

[4] W. Dally. Virtual-channel flow control. IEEE Par. and Dist. Sys., 1992. 3

[5] W. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer networks using virtual channels. IEEE TPDS,
4(4):466 – 475, Apr 1993. 15

[6] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004. 3

[7] W. J. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks. DAC-38, 2001. 2

[8] R. Das, O. Mutlu, T. Moscibroda, and C. Das. Application-aware prioritization mechanisms for on-chip networks. MICRO-42,
2009. 3, 5, 8, 15

[9] J. Duato et al. A new scalable and cost-effective congestion management strategy for lossless multistage interconnection
networks. HPCA-11, 2005. 15

[10] E. Ebrahimi, C. Lee, O. Mutlu, and Y. Patt. Fairness via source throttling: a configurable and high-performance fairness
substrate for multi-core memory systems. ASPLOS, 2010. 3, 15

[11] S. Eyerman and L. Eeckhout. System-level performance metrics for multiprogram workloads. MICRO-41, 2008. 8, 10

[12] C. Fallin, C. Craik, and O. Mutlu. CHIPPER: A low-complexity bufferless deflection router. HPCA-17, 2011. 1, 2, 3, 7, 9,
11, 12

[13] R. Gabor and S. W. adn A Mendelson. Fairness and throughput in switch on event multithreading. MICRO-39, 2006. 3, 8

[14] C. Gómez et al. Reducing packet dropping in a bufferless NoC. EuroPar-14, 2008. 1, 2

[15] P. Gratz, B. Grot, and S. W. Keckler. Regional congestion awareness for load balance in networks-on-chip. HPCA-14, 2008.
2, 15

[16] B. Grot, J. Hestness, S. Keckler, and O. Mutlu. Express cube topologies for on-chip interconnects. HPCA-15, 2009. 2

16

SAFARI Technical Report No. 2011-006 (September 6, 2011)

[17] M. Hayenga, N. E. Jerger, and M. Lipasti. Scarab: A single cycle adaptive routing and bufferless network. MICRO-42, 2009.
1, 2

[18] S. A. R. Jafri, Y.-J. Hong, M. Thottethodi, and T. Vijaykumar. Adaptive flow control for robust performance and energy.
MICRO-43, 2010. 2, 9, 15

[19] J. Kim. Low-cost router microarchitecture for on-chip networks. MICRO-42, 2009. 2

[20] J. Kim and W. Dally. Flattened butterfly: A cost-efficient topology for high-radix networks. ISCA-34, 2007. 2

[21] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. Das. A low latency router supporting adaptivity for on-chip
interconnects. DAC-42, 2005. 15

[22] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: a scalable and high-performance scheduling algorithm for
multiple memory controllers. HPCA-16, 2010. 3, 8

[23] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread cluster memory scheduling. MICRO-43, 2010. 8, 16

[24] Z. Lu, M. Zhong, and A. Jantsch. Evaluation of on-chip networks using deflection routing. GLSVLSI-16, 2006. 2

[25] K. Luo et al. Balancing thoughput and fairness in SMT processors. ISPASS, 2001. 3, 8, 10

[26] G. Michelogiannakis, D. Sanchez, W. Dally, and C. Kozyrakis. Evaluating bufferless flow-control for on-chip networks.
NOCS, 2010. 2

[27] T. Moscibroda and O. Mutlu. A case for bufferless routing in on-chip networks. ISCA-36, 2009. 1, 2, 3, 7

[28] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip multiprocessors. MICRO-40, 2007. 3, 8

[29] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu. Next generation on-chip networks: What kind of congestion control do
we need? Hotnets-IX, 2010. 2, 4, 6, 7, 9, 10, 15

[30] A. Singh, W. Dally, A. Gupta, and B. Towles. GOAL: a load-balanced adaptive routing algorithm for torus networks. ISCA-30,
2003. 15

[31] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous multithreaded processor. ASPLOS-9, 2000. 8

[32] Standard Performance Evaluation Corporation. SPEC CPU2006. http://www.spec.org/cpu2006. 3, 7

[33] M. Thottethodi, A. Lebeck, and S. Mukherjee. Self-tuned congestion control for multiprocessor networks. HPCA-7, 2001.
15

[34] H. Vandierendonck and A. Seznec. Fairness metrics for multi-threaded processors. IEEE Computer Architecture Letters, Feb
2011. 8

[35] H. Wang, X. Zhu, L. Peh, and S. Malik. Orion: a power-performance simulator for interconnection networks. MICRO-35,
2002. 9

[36] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 programs: characterization and methodological
considerations. ISCA-22, 1995. 7, 12

17

http://www.spec.org/cpu2006

