Simple DRAM and Virtual Memory Abstractions
for Highly Efficient Memory Systems

Thesis Oral
Vivek Seshadri

Committee:

Todd Mowry (Co-chair)

Onur Mutlu (Co-chair)

Phillip B. Gibbons

David Andersen

Rajeev Balasubramonian, University of Utah

Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Word granularity Cache line
(4B or 8B) granularity (64B)

————————————————

Memory
Controller

D
-
= S
=
= =
)
W v
i =
o v
=L 7
—
w

oum Emm S S S e S e S

—————————————————

Instruction Set
Architecture

Page granularity
(4KB or larger)

The Curse of Multiple Granularities

* Fine-grained memory capacity management
— Existing virtual memory frameworks result in unnecessary work
— High memory redundancy and low performance

 Bulk data operations
— Existing interfaces require large data transfers
— High latency, bandwidth, and energy

* Non-unit strided access patterns
— Poor spatial locality

— Existing systems optimized to transfer cache lines
— High latency, bandwidth, and energy

Thesis Statement

Our thesis is that

exploiting the untapped potential of existing
hardware structures (processor and DRAM) by
augmenting them with simple, low-cost
features can enable significant improvement in
the efficiency of different memory operations

Contributions of this Dissertation

. Page Overlays — a new virtual memory framework to
enable fine-grained memory management

2. RowClone — a mechanism to perform bulk data copy and
initialization completely inside DRAM

3. Buddy RAM - a mechanism to perform bulk bitwise
operations completely inside DRAM

4. Gather-Scatter DRAM — a mechanism to exploit DRAM
architecture to accelerate strided access patterns

5. Dirty-Block Index — a mechanism to restructure dirty bits
in on-chip caches to suit queries for dirty blocks

Outline for the Talk

1. Page Overlays
— efficient fine-grained memory management

2. Gather-Scatter DRAM
— accelerating strided access patterns

3. RowClone + Buddy RAM
— in-DRAM bulk copy + bitwise operations

4. Dirty-Block Index
— maintaining coherence of dirty blocks

Copy-on-Write

Virtual Address Space Page Physical Address Space
Tables

page | Page Copy entire
Copy-on- 0 page
Write
Write 0 (hange o Allocate
mapping new page

Shortcomings of Page-granularity Management

Virtual Address Space Page Physical Address Space
Tables

page Page Copy entire
Copy-on- 0 page
High memory redundancy -
Write 0 (hange % o Allocate
mappmg Z / new page

Shortcomings of Page-granularity Management

Virtual Address Space Page Physical Address Space
Tables

Virtual | Physical
page | SN s Conventire

Wouldn't it be nice to map pages at 2
finer granularity (smaller than 4KB)!

/

o Allocate
new page

>

0' Change

mapping

Fine-grained Memory Management

Higher Performance Fine-grained
(e.g., more efficient data protection
copy-on-write) (simpler programs)

\ /

Fine-grained

Memory Management
More efficient Fine-grained
capacity management metadata management
(avoid internal fragmentation, (better security, efficient software

deduplication) debugging)

10

The Page Overlay Framework

Physical Page

0

Overlay mai
subset of cache lines

B
T
— Yines

ntains the newer version ofa hge

he overlay contains only

from the virtual page
mantics:

Only cache lines not
present in the overlay
are accessed from the
physical page

11

Overlay-on-Write: An Efficient Copy-on-Write

Virtual Address Space Page Physical Address Space
Tables

Virtual Physical
page , Page

Overlay contains
Copy-on- .
Write only modified
cache lines

Write < \
Does not require

full page copy

12

Implementation Overview

Virtual
Address Space Main Memory
“ges‘- S R Regu.lar
o &R ,! Physical Pages

~

_->--> Overlays

13

Addressing Overlay Cache Lines: Naive Approach

AddVirtuSa I : Use the location of the
ress Space Main Memory overlay - memory

. to tag overlay cache lines

1. Processor must compute the address

2. Does not work with virtually-indexed caches

3. Complicates overlay cache line insertion

Addressing Overlay Cache Lines: Dual Address Design

Virtual Physical
Address Space Address Space Main Memory

>n

Owerdayl pixysecal

size address space

15

Virtual-to-Overlay Mappings

Virtual Physical
Address Space Address Space Main Memory

Overlay Mapping Table (OMT)

(maintained by memory controller)
i /

Overlay cache
address space

Direct Mapping
16

Methodology

Memsim memory system simulator [Seshadri+ PACT 2012]
2.67 GHz, single core, out-of-order, 64 entry instruction window

64-entry L1 TLB, 1024-entry L2 TLB

64KB L1 cache, 512KB L2 cache, 2MB L3 cache
Multi-entry Stream Prefetcher [Srinath+ HPCA 2007]
Open row, FR-FCFS, 64 entry write buffer, drain when full

64-entry OMT cache
DDR3 1066 MHz, 1 channel, 1 rank, 8 banks

17

Overlay-on-Write
Copy-on-Write

page Page

Copy-on-
Write

Overlay-on-Write

Physical
Page

Copy-on-

Write

Write

* Lower memory redundancy
* Lower latency

18

Fork Benchmark

write Copy-on-Write
Parent Process
i 300 million insts oveﬂay-on-Write
Time >
Fork
(child idles)

Applications from SPEC CPU 2006 (varying write working sets)

* Additional memory consumption
* Performance (cycles per instruction)

19

Overlay-on-Write vs. Copy-on-Write on Fork

M Copy-on-Write M Overlay-on-Write

60 8

50 7
_ 6
= 4 g
e B
=))
£ 24 15%
= g 3
Z)
) "B

o] [[

Small Dense Sparse Mean
Write Working Set

20

Page Overlays: Applications

* Overlay-on-Write
* Sparse Data Structure Representation

— Exploit any degree of cache line sparsity
— Allow dynamic insertion of non-zero values

* Flexible Super-page Management

— Share super pages across processes
* Fine-grained Deduplication
* Memory Checkpointing
* Virtualizing Speculation
* Fine-grained Metadata Management

21

Outline for the Talk

1. Page Overlays
— efficient fine-grained memory management

2. Gather-Scatter DRAM
— accelerating strided access patterns

3. RowClone + Buddy RAM
— in-DRAM bulk copy + bitwise operations

4. Dirty-Block Index
— maintaining coherence of dirty blocks

22

Example 2: Strided access pattern

Field 1 e Field 3
Record 1 } B

In-Memory Record2 (0

Database Table ==

]
Record n . .

Physical layout of the data structure (row store)
B] [.]] &lll &l.. &... .

~~~~~~~~~~~~~~~

\-_—’ \-——’

23



Shortcomings of existing systems

Data unnecessarily High latency
transferred on the :
memory channel and Wasted bandwidth
stored in on-chip cache Wasted cache space
High energy

~
\——5

|<— Cache Line —>|
..‘...&.i

24



Goal: Eliminate inefficiency

Can we retrieve only useful data from memory?

Gather-Scatter DRAM

- °
(Power-of-2 strides)
\
g
///\\\:\\
7 7 A S
7 / \ ~ N
s / N ~ ~
s \ ~ S
7’ / ~ -
s / \ S o S
e ~
-, / | ~ ~
. S ~
7’ / \ N~ ~ -
7 / ~ ~
d \ S N~
¥ / N \\ S o
~ ~
N ~
‘ A A A A
\ / / / / /A
N 4 N 4 N 4 N 4 N 4
~ - ~ - ~ - ~ - ~ -

25



DRAM modules have multiple chips

Two Challenges!

Cache Line

Data

—

Cmd/Addr

26



Challenge 1: Chip conflicts

Data of each cache line is spread across all the chips!

cacheline0 @O OO0 D
cacheline1 @O OO0 1O

Useful data mapped to only two chips!

27



Challenge 2: Shared address bus

__.--=~ All chips share the same address bus!

No flexibility for the processor to read
' different addresses from each chip!

\ One address bus for each chip is costly!

28



Gather-Scatter DRAM

Challenge 1: Minimizing chip conflicts

Cacheline-ID-based data shuffling
(shuffle data of each cache line differently)

Challenge 2: Shared address bus

Pattern ID — In-DRAM address translation
(locally compute column address at each chip)

29



Cacheline-ID-based data shuffling
(implemented in the memory controller)

A2

) Cache Line

CaChE|ine ID ,"Stage 1 \—\% v A \i/ \:% V V j v-/
1o[1}- \ “j >

\\\ ______ >Stage2 \_/ v l v v }m v-/
N \ E?’.i:;ﬂ
~-»Stage 3 \

Stage “n” enabled only if
nth LSB of cacheline ID is set

30



Effect of data shuffling

Before shuffling After shuffling
Chip conflicts Minimal chip conflicts!
::/‘%ﬁ:éﬁ\z 2332352 s
CLO
CL1 »
| pagw

(L2
4:2-8888888

Can be retrieved in a single command

31



Gather-Scatter DRAM

Challenge 1: Minimizing chip conflicts

Cacheline-ID-based data shuffling
(shuffle data of each cache line differently)

Challenge 2: Shared address bus

Pattern ID — In-DRAM address translation
(locally compute the cacheline address at each chip)

32



Per-chip column translation logic

READ addr, pattern
cmd (TL
addr ——
pattern
~ ~ - I
>

output address

e

I
chip ID

camd = addr  pattern

READ/WRITE

33



Gather-Scatter DRAM (GS-DRAM)

32 values contiguously stored in DRAM (from address 0)
COOOCCOOOCoOOOCoOOooOooooooo

read addr 0, pattern 0 (stride =1, default operation)
COO0O0O0O000O0000000OO0O00O0OOao

JO0Od

JO0O000O

read addr 0, pattern 1 (stride = 2)
OO0O0000O000O000O0000O000000O

JO0O000O

read addr 0, pattern 3 (stride = 4)
OO0OO00000000O00OO00O0O0000O00O

JO0000O

read addr 0, pattern 7 (stride = 8)
COOO00000O00O000OOOO00OOOOOoOOOOo

34



Methodology

* Simulator
— Gemb5 x86 simulator
— Use “prefetch” instruction to implement pattern load

— Cache hierarchy
e 32KB L1 D/l cache, 2MB shared L2 cache

— Main Memory: DDR3-1600, 1 channel, 1 rank, 8 banks

* Energy evaluations
— McPAT + DRAMPower

35



In-memory databases

Layouts Workloads

Row Store ----- » Transactions

/
/
/

Column Store gighrilel B 1 F.1 ) { (<

- / /
/ /
/ /
/ /
/ /
/
-/

AT -~ Hybrid

Database
Table

36



Workload

* Database
— 1 table with million records
— Each record =1 cache line
* Transactions
— Operate on a random record
— Varying number of read-only/write-only/read-write fields
* Analytics
— Sum of k columns
* Hybrid
— Transactions thread: random records with 1 read-only, 1 write-only
— Analytics thread: sum of one column

37



Transaction throughput and energy

Row Store @ ColumnStore @ GS-DRAM

60

S © ©o o
n & M N

(*sues3 0000L 10} fw)
AbJ13uj

3X

30

m O wn O wn o

N N = =

(puolas/suol|jiw)

indybnouyy

10 —
0

38



Analytics performance and energy

Row Store @ ColumnStore @ GS-DRAM

2.5 120
2 20 2 100
o =
= £ 80
=15 L 5
S g 90
= 1.0 — S
= 40
I_% 05 — 20
0.0 - 0 -




Hybrid Transactions/Analytical Processing

Row Store @ ColumnStore @ GS-DRAM
2

30
= 1.8
25 é 16 ——
A — 14
S < @
s 3 § 1.2
S 215 =
S =S S 08
I-E g 10 ‘|é 06
5 o’ 04
<
— 0.2
0 - 0
Transactions Analytics

40



Outline for the Talk

1. Page Overlays
— efficient fine-grained memory management

2. Gather-Scatter DRAM
— accelerating strided access patterns

3. RowClone + Buddy RAM
— in-DRAM bulk copy + bitwise operations

4. Dirty-Block Index
— maintaining coherence of dirty blocks

41



Today, DRAM is just a storage device!

Processor m DRAM

Bulk data operations => many data transfers

42



Inside a DRAM Chip

2D Array |
of DRAM Cells

43



DRAM Cell Operation

wordline
capacitor B bitline
v access
transistor
Sense
enable ' Amp

44



DRAM Cell Operation

deviationin

‘ " bitline voltage
raise ,

: ]
wordline ﬁ WY, +6

’ k\ f
v | RS connects cell
cell lostsrdgnigs - to bitline

to Hitlige |

0 Sense

enable Amp

sense amp
vy,

45



RowClone: In-DRAM Bulk Data Copy

activate

source 0 1 Vao/op+ 0

activate

nation © L
destination

o

s ; Sense
It dets copied /' enable | Amp
dla gets copie //, sense amp
source to --
destination

46



Triple-Row Activation

activate
all three
Yows

0 Yalpp+ O

L]

Sense

enable =~ Amp
sense amp

]

47



Bitwise AND/OR Using Triple-Row Activation

1q VDD

A A A Output--.

1 ——
8 - A
| —

Cr.l_‘—l

1

Amp

—”
————
-

;
Output==CAP(A+O§CB-5- GA (A
AND B)



Negation Using the Sense Amplifier

Dual Contact Cell
Regular wordline —
Negation wordline —
Sense
Amp
|

49



Negation Using the Sense Amplifier

source l ‘ ‘

1

activate l

negation wordline T

enable Sense
sense amp Amp

50



Summary of operations

Sense amplifiers - ->—

51



Throughput Comparison: Bitwise AND/OR

250

)

~

) 4-Core

S 200 *\

- \ Buddy (4 banks)

o

2150 .

(=) \

= \

S S \

= 100 S

; 2-Core N

S e Yo Buddy (1 bank)

E 50 \\‘s \\\ y
........ Seo N

<< 1-Core ™ ~~accmee oo ----~----~~::-:-:~@

0 I I I I [ [ [ -I- [ [
[a'a] [a'a] (~'a] (~'a] [a'a] (== (~'=] (~'a] (~'a] (~'a] (~'a]
e > > ] > = = = = = =
P S ~ v — = ~N = ® - P>
— ~ (Vo)



Throughput and Energy

S N OO0 WO
| — I —

esult (higher is better)
(=]

GB/s of R
=

Baseline

B Buddy (1 bank)

S O —
e N A O
0o O O O

N B O
(— B — B — |

Energy (nJ per KB) (lower is better)
o0
(=)

.J]J{

S
> & & &

F

\‘SQ
@@ \\‘*@



Applications

* Implementation of set operations
— Buddy accelerates bitvector based implementations

— More attractive than red-black trees
* Insert, lookup, union, intersection, difference

* In-memory bitmap indices
— Used by many online web applications
— Buddy improves query performance by 6X

54



Outline for the Talk

1. Page Overlays
— efficient fine-grained memory management

2. Gather-Scatter DRAM
— accelerating strided access patterns

3. RowClone + Buddy RAM
— in-DRAM bulk copy + bitwise operations

4. Dirty-Block Index
— maintaining coherence of dirty blocks

55



Cache Coherence Problem

Cache

I
I
| \
I

|

List all dirty blocks - Issrcblock®N
from the source row '

= = Is#c block 128 dirty:

SI'C

56



Dirty-Block Index

Tag Store
Is block X dirty?
tag
tag
tag
tag Dirty-Block
tag Index
tag A

|

Simple. Several Applications!

of DRAM row R.
Valid bits / \ Dirty bits

57



Acknowledgments

Todd Mowry and Onur Mutlu

Phil Gibbons and Mike Kozuch

Dave Andersen and Rajeev Balasubramonian
LBA and SAFARI

Deb!

CALCM and PDL

Squash partners

Friends

Family — parents and brother

58



Conclusion

* Different memory resources are managed and accessed at
different granularities

— Results in significant inefficiency for many operations

* Simple, low-cost abstractions
— New virtual memory framework for fine-grained management
— Techniques to use DRAM to do more than store data

* Our mechanisms eliminate unnecessary work
— Reduce memory capacity consumption

— Improve performance
— Reduce energy consumption

59



Simple DRAM and Virtual Memory Abstractions
for Highly Efficient Memory Systems

Thesis Oral
Vivek Seshadri

Committee:

Todd Mowry (Co-chair)

Onur Mutlu (Co-chair)

Phillip B. Gibbons

David Andersen

Rajeev Balasubramonian, University of Utah

Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy



Backup Slides

61



End-to-end system support for GS-DRAM

Support for coherence of
New instructions: overlapping cache lines
pattload/pattstore

GS-DRAM

pattload reg, addr, patt

o

cacheline(addr), patt

2
| o
-
(<))
e’
-
(L")
Q.

Memory controller

/

DRAM column(addr), patt

62



GS-DRAM improves transaction performance

Execution time for 10000 trans.
Q = N W L5 U1 &\ N OO0 O

1-0-1 2-1-2 0-2-2 2-4-2 5-0-1 2-0-4 6-1-2 4

-2-2

63



GS-DRAM with 0dd Stride

* 0dd stride => minimal chip conflicts
— No shuffling required

* Alignment problem
— Objects do not fit perfectly into a DRAM row
— Data may be part of different DRAM rows

* Addressing problem

— A value may be part of different addresses in the same pattern
— Difficult to maintain coherence

64



Buddy RAM - Implementation

Pre-initialized Rows GEEEREREREDEDEDED
Lo JoJoJoJoJoJoJo

1 1 1 I I |
1 1 1 I I |
1 1 1 I I |
Dual Contact Cells ......

Sense
Amplifiers

65



Buddy RAM - Activate Activate Precharge (AAP)

* AAP copies result of first activation into row corresponding
to second activation

— Can be used to perform a simple copy

— Bitwise operation if first activation correspond to triple row
activation

* Example: Bitwise AND
— AAP(d1, t1) -> copy row d1 to temporary row t1
— AAP(d2, t2) -> copy row d2 to temporary row t2
— AAP(c0, t3) -> copy control row zero to temporary row t3
— AAP(t1/t2/t3, d3) -> copy t1&t2 to d3

66



Bitmap Indices: Buddy improves performance

110 - Se— — N RPN oy SRR
100 4 Baseline B Buddy [ ISURRURRR B S

Execution Time
of the Query

2 Weeks 3 Weeks 4 Weeks 2 Weeks 3 Weeks 4 Weeks
8 million users 16 million users

67



