Simple DRAM and Virtual Memory Abstractions for Highly Efficient Memory Systems

Thesis Oral

Vivek Seshadri

Committee:

Todd Mowry (Co-chair)

Onur Mutlu (Co-chair)

Phillip B. Gibbons

David Andersen

Rajeev Balasubramonian, University of Utah

Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy

The Curse of Multiple Granularities

- Fine-grained memory capacity management
 - Existing virtual memory frameworks result in unnecessary work
 - High memory redundancy and low performance
- Bulk data operations
 - Existing interfaces require large data transfers
 - High latency, bandwidth, and energy
- Non-unit strided access patterns
 - Poor spatial locality
 - Existing systems optimized to transfer cache lines
 - High latency, bandwidth, and energy

Thesis Statement

Our thesis is that

exploiting the untapped potential of existing hardware structures (processor and DRAM) by augmenting them with simple, low-cost features can enable significant improvement in the efficiency of different memory operations

Contributions of this Dissertation

- 1. Page Overlays a new virtual memory framework to enable fine-grained memory management
- 2. RowClone a mechanism to perform bulk data copy and initialization completely inside DRAM
- 3. Buddy RAM a mechanism to perform bulk bitwise operations completely inside DRAM
- 4. Gather-Scatter DRAM a mechanism to exploit DRAM architecture to accelerate strided access patterns
- 5. Dirty-Block Index a mechanism to restructure dirty bits in on-chip caches to suit queries for dirty blocks

Outline for the Talk

- 1. Page Overlays
 - efficient fine-grained memory management
- 2. Gather-Scatter DRAM
 - accelerating strided access patterns
- 3. RowClone + Buddy RAM
 - in-DRAM bulk copy + bitwise operations
- 4. Dirty-Block Index
 - maintaining coherence of dirty blocks

Copy-on-Write

Shortcomings of Page-granularity Management

Shortcomings of Page-granularity Management

Fine-grained Memory Management

The Page Overlay Framework

Overlay-on-Write: An Efficient Copy-on-Write

Implementation Overview

Addressing Overlay Cache Lines: Naïve Approach

Addressing Overlay Cache Lines: Dual Address Design

Virtual-to-Overlay Mappings

Methodology

- Memsim memory system simulator [Seshadri+ PACT 2012]
- 2.67 GHz, single core, out-of-order, 64 entry instruction window
- 64-entry L1 TLB, 1024-entry L2 TLB
- 64KB L1 cache, 512KB L2 cache, 2MB L3 cache
- Multi-entry Stream Prefetcher [Srinath+ HPCA 2007]
- Open row, FR-FCFS, 64 entry write buffer, drain when full
- 64-entry OMT cache
- DDR3 1066 MHz, 1 channel, 1 rank, 8 banks

Overlay-on-Write

Copy-on-Write

Overlay-on-Write

- Lower memory redundancy
- Lower latency

Fork Benchmark

- Additional memory consumption
- Performance (cycles per instruction)

Overlay-on-Write vs. Copy-on-Write on Fork

Page Overlays: Applications

- Overlay-on-Write
- Sparse Data Structure Representation
 - Exploit any degree of cache line sparsity
 - Allow dynamic insertion of non-zero values
- Flexible Super-page Management
 - Share super pages across processes
- Fine-grained Deduplication
- Memory Checkpointing
- Virtualizing Speculation
- Fine-grained Metadata Management

Outline for the Talk

- 1. Page Overlays
 - efficient fine-grained memory management
- 2. Gather-Scatter DRAM
 - accelerating strided access patterns
- 3. RowClone + Buddy RAM
 - in-DRAM bulk copy + bitwise operations
- 4. Dirty-Block Index
 - maintaining coherence of dirty blocks

Example 2: Strided access pattern

Physical layout of the data structure (row store)

Shortcomings of existing systems

Goal: Eliminate inefficiency

Can we retrieve only useful data from memory?

DRAM modules have multiple chips

Challenge 1: Chip conflicts

Data of each cache line is spread across all the chips!

Useful data mapped to only two chips!

Challenge 2: Shared address bus

Gather-Scatter DRAM

Challenge 1: Minimizing chip conflicts

Cacheline-ID-based data shuffling (shuffle data of each cache line differently)

Challenge 2: Shared address bus

Pattern ID – In-DRAM address translation (locally compute column address at each chip)

Cacheline-ID-based data shuffling

(implemented in the memory controller)

Effect of data shuffling

Can be retrieved in a single command

Gather-Scatter DRAM

Challenge 1: Minimizing chip conflicts

Cacheline-ID-based data shuffling (shuffle data of each cache line differently)

Challenge 2: Shared address bus

Pattern ID – In-DRAM address translation (locally compute the cacheline address at each chip)

Per-chip column translation logic

Gather-Scatter DRAM (GS-DRAM)

```
32 values contiguously stored in DRAM (from address 0)
read addr \mathbf{0}, pattern \mathbf{0} (stride = 1, default operation)
read addr 0, pattern 1 (stride = 2)
read addr 0, pattern 3 (stride = 4)
read addr 0, pattern 7 (stride = 8)
```

Methodology

Simulator

- Gem5 x86 simulator
- Use "prefetch" instruction to implement pattern load
- Cache hierarchy
 - 32KB L1 D/I cache, 2MB shared L2 cache
- Main Memory: DDR3-1600, 1 channel, 1 rank, 8 banks
- Energy evaluations
 - McPAT + DRAMPower

In-memory databases

Workload

Database

- 1 table with million records
- Each record = 1 cache line

Transactions

- Operate on a random record
- Varying number of read-only/write-only/read-write fields

Analytics

Sum of k columns

Hybrid

- Transactions thread: random records with 1 read-only, 1 write-only
- Analytics thread: sum of one column

Transaction throughput and energy

Analytics performance and energy

Row Store Column Store **GS-DRAM** 2.5 120 Execution Time (mSec) **2X** 100 2.0 Energy (mJ) 80 1.5 60 1.0 40 0.5 20 0.0

Hybrid Transactions/Analytical Processing

Outline for the Talk

- 1. Page Overlays
 - efficient fine-grained memory management
- 2. Gather-Scatter DRAM
 - accelerating strided access patterns
- 3. RowClone + Buddy RAM
 - in-DRAM bulk copy + bitwise operations
- 4. Dirty-Block Index
 - maintaining coherence of dirty blocks

Today, DRAM is just a storage device!

Bulk data operations => many data transfers

Inside a DRAM Chip

DRAM Cell Operation

DRAM Cell Operation

RowClone: In-DRAM Bulk Data Copy

Triple-Row Activation

activate all three rows

Bitwise AND/OR Using Triple-Row Activation

Output =
$$C^{AB}(A^{+}O^{BC}B)^{+}C^{A}\sim C$$
 (A

AND B)

Negation Using the Sense Amplifier

Negation Using the Sense Amplifier

Summary of operations

Throughput Comparison: Bitwise AND/OR

Throughput and Energy

Applications

- Implementation of set operations
 - Buddy accelerates bitvector based implementations
 - More attractive than red-black trees
 - Insert, lookup, union, intersection, difference
- In-memory bitmap indices
 - Used by many online web applications
 - Buddy improves query performance by 6X

Outline for the Talk

- 1. Page Overlays
 - efficient fine-grained memory management
- 2. Gather-Scatter DRAM
 - accelerating strided access patterns
- 3. RowClone + Buddy RAM
 - in-DRAM bulk copy + bitwise operations
- 4. Dirty-Block Index
 - maintaining coherence of dirty blocks

Cache Coherence Problem

Dirty-Block Index

Acknowledgments

- Todd Mowry and Onur Mutlu
- Phil Gibbons and Mike Kozuch
- Dave Andersen and Rajeev Balasubramonian
- LBA and SAFARI
- Deb!
- CALCM and PDL
- Squash partners
- Friends
- Family parents and brother

Conclusion

- Different memory resources are managed and accessed at different granularities
 - Results in significant inefficiency for many operations
- Simple, low-cost abstractions
 - New virtual memory framework for fine-grained management
 - Techniques to use DRAM to do more than store data
- Our mechanisms eliminate unnecessary work
 - Reduce memory capacity consumption
 - Improve performance
 - Reduce energy consumption

Simple DRAM and Virtual Memory Abstractions for Highly Efficient Memory Systems

Thesis Oral

Vivek Seshadri

Committee:

Todd Mowry (Co-chair)

Onur Mutlu (Co-chair)

Phillip B. Gibbons

David Andersen

Rajeev Balasubramonian, University of Utah

Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Backup Slides

End-to-end system support for GS-DRAM

GS-DRAM improves transaction performance

GS-DRAM with Odd Stride

- Odd stride => minimal chip conflicts
 - No shuffling required
- Alignment problem
 - Objects do not fit perfectly into a DRAM row
 - Data may be part of different DRAM rows
- Addressing problem
 - A value may be part of different addresses in the same pattern
 - Difficult to maintain coherence

Buddy RAM – Implementation

Buddy RAM – Activate Activate Precharge (AAP)

- AAP copies result of first activation into row corresponding to second activation
 - Can be used to perform a simple copy
 - Bitwise operation if first activation correspond to triple row activation
- Example: Bitwise AND
 - AAP(d1, t1) -> copy row d1 to temporary row t1
 - AAP(d2, t2) -> copy row d2 to temporary row t2
 - AAP(c0, t3) -> copy control row zero to temporary row t3
 - AAP(t1/t2/t3, d3) -> copy t1&t2 to d3

Bitmap Indices: Buddy improves performance

