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The Curse of Multiple Granularities

* Fine-grained memory capacity management
— Existing virtual memory frameworks result in unnecessary work
— High memory redundancy and low performance

 Bulk data operations
— Existing interfaces require large data transfers
— High latency, bandwidth, and energy

* Non-unit strided access patterns
— Poor spatial locality

— Existing systems optimized to transfer cache lines
— High latency, bandwidth, and energy



Thesis Statement

Our thesis is that

exploiting the untapped potential of existing
hardware structures (processor and DRAM) by
augmenting them with simple, low-cost
features can enable significant improvement in
the efficiency of different memory operations



Contributions of this Dissertation

. Page Overlays — a new virtual memory framework to
enable fine-grained memory management

2. RowClone — a mechanism to perform bulk data copy and
initialization completely inside DRAM

3. Buddy RAM - a mechanism to perform bulk bitwise
operations completely inside DRAM

4. Gather-Scatter DRAM — a mechanism to exploit DRAM
architecture to accelerate strided access patterns

5. Dirty-Block Index — a mechanism to restructure dirty bits
in on-chip caches to suit queries for dirty blocks



Outline for the Talk

1. Page Overlays
— efficient fine-grained memory management

2. Gather-Scatter DRAM
— accelerating strided access patterns

3. RowClone + Buddy RAM
— in-DRAM bulk copy + bitwise operations

4. Dirty-Block Index
— maintaining coherence of dirty blocks
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Shortcomings of Page-granularity Management
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Shortcomings of Page-granularity Management

Virtual Address Space Page Physical Address Space
Tables

Virtual | Physical
page | SN s Conventire

Wouldn't it be nice to map pages at 2
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Fine-grained Memory Management

Higher Performance Fine-grained
(e.g., more efficient data protection
copy-on-write) (simpler programs)

\ /

Fine-grained

Memory Management
More efficient Fine-grained
capacity management metadata management
(avoid internal fragmentation, (better security, efficient software

deduplication) debugging)
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The Page Overlay Framework

Physical Page
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Overlay-on-Write: An Efficient Copy-on-Write

Virtual Address Space Page Physical Address Space
Tables

Virtual Physical
page , Page

Overlay contains
Copy-on- .
Write only modified
cache lines

Write < \
Does not require

full page copy
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Implementation Overview
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Addressing Overlay Cache Lines: Naive Approach

AddVirtuSa I : Use the location of the
ress Space Main Memory overlay - memory

. to tag overlay cache lines

1. Processor must compute the address

2. Does not work with virtually-indexed caches

3. Complicates overlay cache line insertion



Addressing Overlay Cache Lines: Dual Address Design

Virtual Physical
Address Space Address Space Main Memory
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Virtual-to-Overlay Mappings

Virtual Physical
Address Space Address Space Main Memory

Overlay Mapping Table (OMT)

(maintained by memory controller)
i /

Overlay cache
address space

Direct Mapping
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Methodology

Memsim memory system simulator [Seshadri+ PACT 2012]
2.67 GHz, single core, out-of-order, 64 entry instruction window

64-entry L1 TLB, 1024-entry L2 TLB

64KB L1 cache, 512KB L2 cache, 2MB L3 cache
Multi-entry Stream Prefetcher [Srinath+ HPCA 2007]
Open row, FR-FCFS, 64 entry write buffer, drain when full

64-entry OMT cache
DDR3 1066 MHz, 1 channel, 1 rank, 8 banks
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Overlay-on-Write
Copy-on-Write

page Page

Copy-on-
Write

Overlay-on-Write

Physical
Page

Copy-on-

Write

Write

* Lower memory redundancy
* Lower latency
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Fork Benchmark

write Copy-on-Write
Parent Process
i 300 million insts oveﬂay-on-Write
Time >
Fork
(child idles)

Applications from SPEC CPU 2006 (varying write working sets)

* Additional memory consumption
* Performance (cycles per instruction)
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Overlay-on-Write vs. Copy-on-Write on Fork

M Copy-on-Write M Overlay-on-Write

60 8

50 7
_ 6
= 4 g
e B
=) )
£ 24 15%
= g 3
Z )
) "B

o ] [ [

Small Dense Sparse Mean
Write Working Set

20



Page Overlays: Applications

* Overlay-on-Write
* Sparse Data Structure Representation

— Exploit any degree of cache line sparsity
— Allow dynamic insertion of non-zero values

* Flexible Super-page Management

— Share super pages across processes
* Fine-grained Deduplication
* Memory Checkpointing
* Virtualizing Speculation
* Fine-grained Metadata Management
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Outline for the Talk

1. Page Overlays
— efficient fine-grained memory management

2. Gather-Scatter DRAM
— accelerating strided access patterns

3. RowClone + Buddy RAM
— in-DRAM bulk copy + bitwise operations

4. Dirty-Block Index
— maintaining coherence of dirty blocks
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Example 2: Strided access pattern

Field 1 e Field 3
Record 1 } B

In-Memory Record2 (0

Database Table ==

]
Record n . .

Physical layout of the data structure (row store)
B ] [ . ] ] &lll &l.. &... .

~~~~~~~~~~~~~~~

\-_—’ \-——’
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Shortcomings of existing systems

Data unnecessarily High latency
transferred on the :
memory channel and Wasted bandwidth
stored in on-chip cache Wasted cache space
High energy

~
\——5

|<— Cache Line —>|
..‘...&.i

24



Goal: Eliminate inefficiency

Can we retrieve only useful data from memory?

Gather-Scatter DRAM
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DRAM modules have multiple chips

Two Challenges!

Cache Line

Data

—

Cmd/Addr
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Challenge 1: Chip conflicts

Data of each cache line is spread across all the chips!

cacheline0 @O OO0 D
cacheline1 @O OO0 1O

Useful data mapped to only two chips!
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Challenge 2: Shared address bus

__.--=~ All chips share the same address bus!

No flexibility for the processor to read
' different addresses from each chip!

\ One address bus for each chip is costly!
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Gather-Scatter DRAM

Challenge 1: Minimizing chip conflicts

Cacheline-ID-based data shuffling
(shuffle data of each cache line differently)

Challenge 2: Shared address bus

Pattern ID — In-DRAM address translation
(locally compute column address at each chip)
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Cacheline-ID-based data shuffling
(implemented in the memory controller)

A2

) Cache Line

CaChE|ine ID ,"Stage 1 \—\% v A \i/ \:% V V j v-/
1o[1}- \ “j >

\\\ ______ >Stage2 \_/ v l v v }m v-/
N \ E?’.i:;ﬂ
~-»Stage 3 \

Stage “n” enabled only if
nth LSB of cacheline ID is set
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Effect of data shuffling

Before shuffling After shuffling
Chip conflicts Minimal chip conflicts!
::/‘%ﬁ:éﬁ\z 2332352 s
CLO
CL1 »
| pagw

(L2
4:2-8888888

Can be retrieved in a single command
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Gather-Scatter DRAM

Challenge 1: Minimizing chip conflicts

Cacheline-ID-based data shuffling
(shuffle data of each cache line differently)

Challenge 2: Shared address bus

Pattern ID — In-DRAM address translation
(locally compute the cacheline address at each chip)
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Per-chip column translation logic

READ addr, pattern
cmd (TL
addr ——
pattern
~ ~ - I
>

output address

e

I
chip ID

camd = addr  pattern

READ/WRITE
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Gather-Scatter DRAM (GS-DRAM)

32 values contiguously stored in DRAM (from address 0)
COOOCCOOOCoOOOCoOOooOooooooo

read addr 0, pattern 0 (stride =1, default operation)
COO0O0O0O000O0000000OO0O00O0OOao

JO0Od

JO0O000O

read addr 0, pattern 1 (stride = 2)
OO0O0000O000O000O0000O000000O

JO0O000O

read addr 0, pattern 3 (stride = 4)
OO0OO00000000O00OO00O0O0000O00O

JO0000O

read addr 0, pattern 7 (stride = 8)
COOO00000O00O000OOOO00OOOOOoOOOOo
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Methodology

* Simulator
— Gemb5 x86 simulator
— Use “prefetch” instruction to implement pattern load

— Cache hierarchy
e 32KB L1 D/l cache, 2MB shared L2 cache

— Main Memory: DDR3-1600, 1 channel, 1 rank, 8 banks

* Energy evaluations
— McPAT + DRAMPower
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In-memory databases
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Workload

* Database
— 1 table with million records
— Each record =1 cache line
* Transactions
— Operate on a random record
— Varying number of read-only/write-only/read-write fields
* Analytics
— Sum of k columns
* Hybrid
— Transactions thread: random records with 1 read-only, 1 write-only
— Analytics thread: sum of one column
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Transaction throughput and energy

Row Store @ ColumnStore @ GS-DRAM
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Analytics performance and energy

Row Store @ ColumnStore @ GS-DRAM

2.5 120
2 20 2 100
o =
= £ 80
=15 L 5
S g 90
= 1.0 — S
= 40
I_% 05 — 20
0.0 - 0 -




Hybrid Transactions/Analytical Processing

Row Store @ ColumnStore @ GS-DRAM
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Outline for the Talk

1. Page Overlays
— efficient fine-grained memory management

2. Gather-Scatter DRAM
— accelerating strided access patterns

3. RowClone + Buddy RAM
— in-DRAM bulk copy + bitwise operations

4. Dirty-Block Index
— maintaining coherence of dirty blocks
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Today, DRAM is just a storage device!

Processor m DRAM

Bulk data operations => many data transfers
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Inside a DRAM Chip

2D Array |
of DRAM Cells
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DRAM Cell Operation

wordline
capacitor B bitline
v access
transistor
Sense
enable ' Amp
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DRAM Cell Operation
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RowClone: In-DRAM Bulk Data Copy

activate
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Triple-Row Activation

activate
all three
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sense amp

]
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Bitwise AND/OR Using Triple-Row Activation

1q VDD

A A A Output--.

1 ——
8 - A
| —

Cr.l_‘—l

1

Amp

—”
————
-

;
Output==CAP(A+O§CB-5- GA (A
AND B)



Negation Using the Sense Amplifier

Dual Contact Cell
Regular wordline —
Negation wordline —
Sense
Amp
|
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Negation Using the Sense Amplifier

source l ‘ ‘

1

activate l

negation wordline T

enable Sense
sense amp Amp
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Summary of operations

Sense amplifiers - ->—
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Throughput Comparison: Bitwise AND/OR
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Throughput and Energy
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Applications

* Implementation of set operations
— Buddy accelerates bitvector based implementations

— More attractive than red-black trees
* Insert, lookup, union, intersection, difference

* In-memory bitmap indices
— Used by many online web applications
— Buddy improves query performance by 6X
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Outline for the Talk

1. Page Overlays
— efficient fine-grained memory management

2. Gather-Scatter DRAM
— accelerating strided access patterns

3. RowClone + Buddy RAM
— in-DRAM bulk copy + bitwise operations

4. Dirty-Block Index
— maintaining coherence of dirty blocks
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Cache Coherence Problem

Cache

I
I
| \
I

|

List all dirty blocks - Issrcblock®N
from the source row '

= = Is#c block 128 dirty:

SI'C
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Dirty-Block Index

Tag Store
Is block X dirty?
tag
tag
tag
tag Dirty-Block
tag Index
tag A

|

Simple. Several Applications!

of DRAM row R.
Valid bits / \ Dirty bits
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Conclusion

* Different memory resources are managed and accessed at
different granularities

— Results in significant inefficiency for many operations

* Simple, low-cost abstractions
— New virtual memory framework for fine-grained management
— Techniques to use DRAM to do more than store data

* Our mechanisms eliminate unnecessary work
— Reduce memory capacity consumption

— Improve performance
— Reduce energy consumption
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Backup Slides
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End-to-end system support for GS-DRAM

Support for coherence of
New instructions: overlapping cache lines
pattload/pattstore

GS-DRAM

pattload reg, addr, patt

o

cacheline(addr), patt

2
| o
-
(<))
e’
-
(L")
Q.

Memory controller

/

DRAM column(addr), patt
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GS-DRAM improves transaction performance

Execution time for 10000 trans.
Q = N W L5 U1 &\ N OO0 O

1-0-1 2-1-2 0-2-2 2-4-2 5-0-1 2-0-4 6-1-2 4

-2-2
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GS-DRAM with 0dd Stride

* 0dd stride => minimal chip conflicts
— No shuffling required

* Alignment problem
— Objects do not fit perfectly into a DRAM row
— Data may be part of different DRAM rows

* Addressing problem

— A value may be part of different addresses in the same pattern
— Difficult to maintain coherence

64



Buddy RAM - Implementation

Pre-initialized Rows GEEEREREREDEDEDED
Lo JoJoJoJoJoJoJo

1 1 1 I I |
1 1 1 I I |
1 1 1 I I |
Dual Contact Cells ......

Sense
Amplifiers
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Buddy RAM - Activate Activate Precharge (AAP)

* AAP copies result of first activation into row corresponding
to second activation

— Can be used to perform a simple copy

— Bitwise operation if first activation correspond to triple row
activation

* Example: Bitwise AND
— AAP(d1, t1) -> copy row d1 to temporary row t1
— AAP(d2, t2) -> copy row d2 to temporary row t2
— AAP(c0, t3) -> copy control row zero to temporary row t3
— AAP(t1/t2/t3, d3) -> copy t1&t2 to d3
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Bitmap Indices: Buddy improves performance

110 - Se— — N RPN oy SRR
100 4 Baseline B Buddy [ ISURRURRR B S

Execution Time
of the Query

2 Weeks 3 Weeks 4 Weeks 2 Weeks 3 Weeks 4 Weeks
8 million users 16 million users
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