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PROBLEM

Device failures disrupt
data center workloads







PROBLEM 1: INTERDEPENDENCE

SERUER CACHE DATABASE

PROGRAM PROGRAM PROGRAM

The programs running in modern data centers
make up larger workloads.
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PROBLEM 2: DISTRIBUTION

WEB SERVER CACHE DATABASE
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Workloads in modern aata centers
are distributed across many servers.
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PROBLEM 2: DISTRIBUTION
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PROBLEM 3: COMMODITY HW

Modern data centers trade off reliability for
using simpler, commodity hardware.
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TECHNOLOGY NEWS DECEMBER 12, 2070 / 9:14 PM / 8 YEARS AGO

hardware failure
GitHuU
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Fail-Slow at Scale: Evidence of Hardware
Performance Faults in Large Production Systems

Haryadi S. Gunawi', Riza O. Suminto', Russell Sears”, Casey Golliher?,
Swaminathan Sundararaman’, Xing Lin*, Tim Emami®*, Weiguang Sheng”,
Nematollah Bidokhti®, Caitie McCaffrey®, Gary Grider’, Parks M. Fields’,

Kevin Harms®, Robert B. Ross®, Andree Jacobson”, Robert Ricci'?, Kirk Webb!",
Peter Alvaro'!, H. Birali Runesha'?, Mingzhe Hao', and Huaicheng Li

'"University of Chicago, *Pure Storage, *Parallel Machines, “NetApp, >Huawei, °Twitter,
"Los Alamos National Laboratory, ®Argonne National Laboratory, “New Mexico Consortium,
'OUniversity of Utah, '"University of California, Santa Cruz, and '*UChicago Research Computing Center

[FAST'18]

"A fail-slow hardware can collapse the entire cluster performance;
for example, a deqgraded NIC made many jobs lock task slots/containers in
healthy machines, hence new jobs cannot find enough free slots."
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GOAL

Measure, model, and learn from device failures
to improve data center reliability



CHALLENGES

1. Most device reliability studies are small scale

2. Prior large scale studies hard to generalize

3. Limited evaluation of techniques in the wild



THESIS STATEMENT

If we measure the device failures in modern data centers,
then we can learn the reasons why devices fail,
develop models to predict device failures, and

learn from failure trends to make recommendations
to enable workloads to tolerate device failures.
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MEASURE MODEL EVALUATE
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CONTRIBUTIONS

1. Large scale failure studies

SV

SSDs
[DSN '15] | SIGMETRICS "15] IMC "18]

We shed new light on device trends from the field
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CONTRIBUTIONS

2. Statistical failure models

Memory errcr model
."&,d--..i.'
ehia 1)
Ceooclw
x 0% 25% 50% 75% 10C%
Percentile

[DSN "15] [ SIGMETRICS "15] [IMC "18]

We enable the community to apply what we learn
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CONTRIBUTIONS

3. Evaluate best practices in the field
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- s @
£
c
a
-
100
0% 25% 50% 75% 100%
Percentile

SSDs Network

Page offlining  OS write buftering Software-based
networks

We provide insight into how to tolerate failures
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OUTLINE

1. Modern data center backgrouna

2. Large scale device failure studies

® Memory: DRAM
o Storage: SSDs
o Network: Switches and WAN

3. Conclusion



30



3



32



o o

i1/

/f

) o
{XFRAXS
Ny S iy T

< 7 <7
(DA DL D<) 80%”4%

Al i

..,
7 \9(]1\0‘ MO(‘.o

st

A

\«‘\
X Pl PN o) ».W»obr

4_,\
ARBX T

-

Edge Node

|SP

Internet

33



w14

Top of Rack Switch

Data Center Fabric

Core Switches
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Server Rack

Server Sleds

Devices
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MEMORY

Dynamic Random Access Memory (DRAM)
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STORAGE

Solid State Drives (SSDs)
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WHY DO DEVICES FAIL?

N PR,
S B AN
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® Retention ® Endurance ® Bugs
® Disturbance  ® Disturbance  ® Faulty hardware
® Endurance @ Temperature @ Human error
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DATA CENTER DIVERSITY

® Different system configurations

® Diverse workloads (Web, Database, Cache, Media)
® Diverse CPU/memory/storage requirements

o Different device organizations

® (apacity, frequency, vendors, ...
® Across various stages of lifecycle




KEY OBSERVATIONS

1. Large scale data centers have diverse device populations

2. Large sample sizes mean we can build accurate models

3. We can observe infrequent failure types at large scale



RELIABILITY EVENTS
ERROR

® How failures manifest in software using a device

FAULT

® The underlying reason why a device fails
® Permanent: the fault appears every time
® Transient: the appears only sometimes




LARGE SCALE STUDIES

[DSN "15] [ SIGMETRICS "15] [IMC "18]
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Dual
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MEASURING DRAM ERRORS

® Measured every logged error

® Across Facebook's fleet
® For 14 months
® |\letadata associated with each error

® Parallelized Map-Reduce to process
® Used R for further analysis




ANALYTICAL METHODOLOGY

® Measure server characteristics

® Examined all servers with errors (error group)
® Sampled servers without errors (control group)

® Bucket devices based on characteristics

® Measure relative failure rate

® Of error group vs. control group
® \Vithin each bucket



KEY DRAM CONTRIBUTIONS

Errors follow a power-law distribution
Denial of service due to socket/channel
Higher density = more failures

DIMM architectural effects on reliability
Workload intluence on failures

Model, page-ofilining, page randomization




Number of logged errors

POWER-LAW DISTRIBUTION

8

107
10°

- 1

[— Measured | ® 1% of servers = 97.8% errors

—  Power law
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Normalized device number




POWER LAW DISTRIBUTION

® 1% of servers = 97.8% errors
® Average is 55X median

|— Measured
10 — Powerjlaw

A

10° -
0.0 0.2 04 06 0.8 1.0

10 -
10° A
Normalized device number

10° -
101 -
10"

Number of logged errors




POWER LAW DISTRIBUTION

% - _ \ ® 1% of servers = 97.8% errors
: \ @ Average is 55X median

?2 o ® Pareto distribution fits

2 04 |— Measured | ® Devices without errors

" gs | Pareto (R =0.97) tend to stay without errors

10° 10 10* 10° 10°
Number of logged errors



Fraction of errors

SOCKET/CHANNEL ERRORS

S - ® (Contribute majority of errors
8'-# o
T 5EXEER

58 308

P, 6 S, (%_



Fraction of servers

SOCKET/CHANNEL ERRORS

® (Contribute majority of errors
® (Concentrated on a few hosts
® Symptoms = server DoS

1.00
1.00
|

0.50
0.50
|

Fraction of errors

0.00
0.00

Socket

Socket
Channel

Channel



Relative server failure rate

HIGHER DENSITY TRENDS

® (apacity, NO! Density, YES!
VAN’

| | |
2 3 16 24

1.00
|

0.50
|

0.00
|

DIMM capacity (GB)



Relative server failure rate

HIGHER DENSITY TRENDS

® (apacity, NO! Density, YES!
® Higher density, more failure
® Due to smallerteature
Sizes

1.00
|

0.50
| |

0.00
|

Chip density (Gb)



DIMM architecture

® Chips per DIMM, transfer width

® 31048 chips
® x4,x8 =4 or8 bits per cycle
® [lectrical implications




Relative server failure rate

ARCHITECTURAL EFFECTS

o— 1Gb—=— 2Gb—-— 4Gb

® forthe same transfer width:
® More chips = more failures

1.00
|

0.50
|

0.00
|

Data chips per DIMM



Relative server failure rate

ARCHITECTURAL EFFECTS

o— 1Gb—=— 2Gb—-— 4Gb

s _ : ® forthe same transter width:
ny ® More chips = more failures
., . ® [or different transter widths:
: . L .
- Morg bits = more failures
I I | ® |[ikely related to

|
8 16 32 48 electrical noise
Data chips per DIMM



Relative server failure rate

1.00

0.50

=

0.00

WORKLOAD INFLUENCE

® No consistent trends across
CPU and memory utilization

® Butworkload varies by ~6X
® May be due to distribution

for read/write behavior

O QO B 0 0

e S 8 & £ %

;'o CCD_Q ® &

T = ®© QO =
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MODELING MEMORY FAILURES

® Use statistical reqression model
® (Compare control group versus error group
® [ogistic(linear) regression in R
® Trained using data from analysis

® Enable exploratory analysis



MODELING MEMORY FAILURES

Density
: Relative
Chips server
failure

Age

rate



MODELING MEMORY FAILURES

Density
: Relative
Chips server
A ge failure
rate

In [f/(l o F)] — ﬂlntercept (Capaczty IBC ) (DenSU)’ZGb ,BD lyZGb) (DenSlty4Gb IBD ty4Gb) (Chips ) IBChipS)
+(CPU % - ,BCPUU/) + (Age - Bage) + (CPUs - Bcpus)



EXPLORATORY ANALYSIS

Factor Low-end High-end (HE)
Capacity 4GB 16 GB
Density2Gb 1 0
Density4Gb 0 1
Chips 16 32 Inputs
CPU% 50% 25%
Age 1 1

CPUs 8 16

Predicted relative
failure rate

0.12 0.78 Output

6.5X difference in yearly failures



TOOL AVAILABLE ONLINE

Memory error model

Field. DSN, 2015.

System characteristics (from

Table Il)

Capacity (GB) o
16

Processor cores i
16

DIMM chips o
32

System age (years) o
1

Chip density i

4Gb ~

CPU utilization (%) o

25

From Justin Mezg, Qiang Wu, Sanjeev Kumar, and Onur Mutlu: Revisiting Memory Errors in Large-Scale Production Data Centers: Analys's and Modeling of New Trends from the

Predicted relative server failure rate per Month ~ (see §ll.E)

Predicted relative server failure rate

0.88

0.87

0.86

0.85

0.84

0.83

0.82

0.81

C.8

0.79

0.78
2015 2016 2017 2078
Year

http.//www.ece.cmu.edu/~safari/tools/memerr/



http://www.ece.cmu.edu/~safari/tools/memerr/

Page oftlining

® System-level technique to reduce errors

® When a page has an error, take the page offline
® (opy its contents to a new location
® Poison the page to prevent allocation



Normalized logged errors
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® Firststudy at large scale

® (lusterof 12,276 servers



Normalized logged errors
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Normalized logged errors

© o o o -
N B~ O 0 O

O
=

PAGE OFFLINING AT SCALE

Initial
{ testing

—>

® Firststudy at large scale
: e Clusterof 12,276 servers
“gepioyes | ® Reduced error rate by 67%
- @ Prior simulations: 86 to 94%

0 10 20 30 40 50 57

® Did notaccountfor OS
Day of study failures to lock page



DRAM WEAROUT IN THE FIELD

g 8 ® DRAM shows signs of wear

;«‘? . ® |dea: What it we performed

= S wear leveling in DRAM?

: 5 ® (an be done in OS without

a4 moditying hardware

Server age (years)

—o— 1 Gb, 12 cores 4~ 2 Gb, 8 cores —<— 2 Gb, 16 cores
—m— 2Gb,4cores < 2Gb, 12 cores <+ 4 Gb, 16 cores



1

2
3
4
5
6

PAGE RANDOMIZATION

Input: The address of a physical page to randomize.
Lock the page.

Flush any pending updates to the page.

Randomly select a new free page to allocate.

Migrate the contents of the old page to the new page.

Update the page table mappings and remove any stale TLB entires.
Unlock the page.

Prototype implemented in Debian 6.0.7 kernel



Time spent randomizing pages

PAGE RANDOMIZATION

L)L ———
Frequency
25% - 256 GB/day
-- 256 GB/week
20% — 256 GB/30 days | e e
15 ---eerereeereeneenseensee e et e
1 R ——
O% ..' ___________

0 0102030405060.708091.0

Memory capacity utilization (U)

® (Can perform with low
overhead (< 5%)

® (Canfine-tune desired rate
of randomization



KEY DRAM CONTRIBUTIONS

® Errorsfollow a power-law distribution

® Denial of service due to socket/channel

® Higher density = more failures

® Architectural effects on reliability

® \Workload intluence on failures

® Model, page-offlining, page randomization




RELATED WORK

® DRAM errors at Google
[Schroeder+ SIGMETRICS'09]

® Component failures + simulated page offlining
Hwang+ ASPLOS'12]

® FError correction, location, multi-DIMM errors
[Sridharan+ SC'12, SC'13; DeBardeleben+ SELSE'14]




LARGE SCALE STUDIES

[DSN "15] [ SIGMETRICS "15] [IMC "18]

81









Flash chips




SSD controller

= translates addresses
= schedules accesses
- performs wear leveling




10011111 11001111 11000011 00001101
1010111011100101 11111001 01111011
00011001 11011101 11100011 11113000
11011111 01001101 11110000 10111111
00000001 11011110 00000101 01010110
00001011 10000010 111113110 00011100

Stored data

.....
-

-

01001100 01001101 11010010 01000000
10011100 10111111 10101111 11000101

ECC metadata



TYPES OF SSD FAILURES

Ones that cause SMALL ERRORS

® 10's of flipped bits per KB
® Silently corrected by SSD controller

Ones that cause LARGE ERRORS

® 100's of tlipped bits per KB

® (orrected by host using driver
® Referred to as SSD failure




MEASURING SSD FAILURES

® Examined lifetime hardware counters

® Across Facebook's fleet

® Devices deployed between 6 months and 4 years
® 15TBto 50TB read and written

® Planar, Multi-Level Cell (MLC)

® Snapshot-based analysis
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KEY SSD CONTRIBUTIONS

Distinct lifecycle periods

Read disturbance not prevalent in the fielo
Higher temperatures cause more failures
Amount of data written by OS is misleading
Write amplification trends from the field




rrors per SSD (log scale)

FAILURE MODELING

® Builta model across 6 SSD

server configurations
® Weibull (0.3, 5e3)
® Most errors are from a small

S set of SSDs

00 02 04 06 08 1.0

Normalized SSD number



Storage litecycle background:
the bathtub curve for disk drives

Failure
rate

Usage

[Schroeder+,FAST'07]



Storage litecycle background:
the bathtub curve for disk drives

Early
failure
period

Wearout
period

Failure
rate

Useful life
period

Usage

[Schroeder+,FAST'07]



SSD LIFECYCLE PERIODS

E 1Y
RNy
o _ * 720GB, 1SSD
N
o 720GB, 2 SSDs
o ] | | | | |

0 40 80
Data written (TB)



SSD LIFECYCLE PERIODS

S - Wearout period
S B YA
3 § B , / f<— Useful life period
O
% —

o |8 Earlyfailure period

S T T T T T 1

0 40 80

Data written (TB)



SSD LIFECYCLE PERIODS

S - Wearout period
S B YA
Early 3 § N / \/ f<— Useful life period
detection A W /
period & 1/ | |
o |8 Earlyfailure period
S T T T T T 1
0 40 80

Data written (TB)



SSD LIFECYCLE PERIODS

® \Ve believe there are two distinct pools of flash cells
® The "weak" pool fails first, during early detection
® The "strong" pool follows the bathtub curve

® Burn-in testing is important to help the SSD identify
the weak pool of cells




Read disturbance errors

® (Charge drift from reads to neighboring cells
® Documented in prior controlled studies on chips




READ DISTURBANCE ERRORS

A e ® SSDs with the most reads
£ 2] (RW=214)
T g e o —H
= T T T T 1
oO.Oe+OO 1.5e+14
& 4 1.2TB,1SSD
£ g1 (RW=1.15)
) S ,»MM
=3 Cabibiih. s SRR SR

0.0e+00 1.0e+14 2.0e+14

Data read (B)



READ DISTURBANCE ERRORS

1 3.2TB,15SD
(RIW = 2.14)

o -
|||||||

-1 1.2TB, 155D
| (R'W=1.15)

IIIIII

® SSDs with the most reads

® No statistically significant
difrerence at low data read
versus high data read



TEMPERATURE DEPENDENCE




TEMPERATURE DEPENDENCE

lemperature
sensor




SSD failure rate

0.50 1.00
| | |

720GB, 155D

/20GB, 2 SSDs

0.00
|

30 40 50 60

Average temperature (°C)

TEMPERATURE DEPENDENCE

® Highertemperature =
more failures



TEMPERATURE DEPENDENCE

On some devices,
high temperature
may throttle or
shut down 55D



SSD failure rate

1.00
|

0.50

0.00

TEMPERATURE DEPENDENCE

1.21B, 155D
3.21B, 155D

30 40 50 60 70

Average temperature (°C)

® Throttling is an effective
technique to reduce failures

® Potentially decreases device
performance, however



Access patterns and SSD writes

System buffering
® Data served from OS caches

® Decreases 55D usage

Write amplification
® Updates to small amounts of data

® [ncreases erasing and copying




System caching reduces
the impact of SSD writes

Page cache



SSD failure rate

OS WRITES MISLEADING

S - ® No statistically significant
- /¥ correlation with failures at
3 - 'f“ high write volume
1/ ¥ 1.218,255Ds
o 3.21B, 2 53Ds
o | | | | | | |

0 15 30
Data written to OS (TB)



Data written to

flash cells (TB)

O~

NO
-

OS WRITES MISLEADING

-

+

0

/20GB, 2 SSDs

15 30
Data written to OS (TB)

® No statistically significant
correlation with failures at
high write volume

® Data written to OS versus
SSD is not correlated for
high write volume



Flash devices use a

translation layer
to locate data




Iranslation layer

Logical Physical
address address
space space

<offsetq, size>
<offsety, size)>

117



Sparse data layout

more translation metadata
potential for higher write amplification




Dense data layout

less translation metadata
potential for lower write amplification




WRITE AMPLIFICATION

S - ® Sparse data shows signs
§ - of higher failure rates
= 2- ® [ikely due to write
A - amplification
- 720GB, 155D
= | | | |
\\C’%\O Trans| t'1 data (G 2 ’b\S%\
QQ’ ranslation data (GB) CDQ



KEY SSD CONTRIBUTIONS

Distinct lifecycle periods

Read disturbance not prevalent in the fielo
Higher temperatures cause more failures
Amount of data written by OS is misleading
Write amplification trends from the field




RELATED WORK

® Examined chip-level failures
F.g., [Cai+ DATE'12,ICCD'12, DATE'13,1CCD"13, DSN'15, HPCA'17]
® Examined a simulated SSD controller with 45 flash chips
[Grupp+ FAST'12]
® Reliability of SSD controllers (NOT chips)
[Ouyang+ ASPLOS'14]
® Microsoft and Google SSDs over multiple years
[Narayanan+ SYSTOR'16, Schroeder+ FAST'16]




LARGE SCALE STUDIES

[DSN "15] [ SIGMETRICS "15] [IMC "18]
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WAN

Internet ISP Edge Node Core Switches Data Center Fabric Rack Switch

124



SOFTWARE-AIDED NETWORKS

® Simple, custom switches
® Software-based fabric networks
® Automated repair of common failures




MEASURING NETWORK FAILURE

-

DATA CENTER
NETWORK

WIDE AREA
NETWORK

' 4 q
P | r
/1 /1 ;
4 g 'y g /I
~ ~ o
/ 71 A 71
l [ M 4 4 £ 1
AT AT YA, o rAY YR YA YA ¥ !t\ A
¢ AR TN A AT AT ARG ATGN
\./ QLN L) 4 S V2NV 2 AV ZaA VLAY W/ T~
- . - a s agr - »
S8 S S, <8 L L LS
— -

® Incident reports ® Vendor repair tickets

® Across Facebook's fleet ® Across Facebook's fleet

® Qver / years ® QOver 14 months
® Details on faulty device, severity, ... ® Details on location, timing, ...



INCIDENT REPORTS

cause
Software Failures
that result in
Incidents (with reports)



KEY NETWORK CONTRIBUTIONS

Software-aided networks greatly reduce errors
High bandwidth switches cause more incidents
Rack switches are a bottleneck for reliability
Data center WAN reliability models




NETWORK DESIGN TRENDS

iy / ® Older hard-wired networks

® OXincidentincrease
over 4 years
Hard-wired network




NETWORK DESIGN TRENDS

o ® (lder hard-wired networks
S o7 ® 9Xincidentincrease
4 overdyears

/ ® Newer software-aided designs
_ ® ?Xfewerincidents

® 7.8Xona per-device basis
Hard-wired network Software-aided network

2011 2012 2013 2014 2015 2016 2017



SWITCH TYPE TRENDS

2011 2012 2013 2014 2015 2016 2017

Hard-wired Software-aided

Highest bandwidth mcore mcsa mcsw mesw mssw arsw arsw [owest bandwidth
Moderate bandwidth




SWITCH TYPE TRENDS
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SWITCH TYPE TRENDS
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Rack switches make up

82%

of network devices




WAN architecture
Edge nodes

® Route requests across different network paths
® (Connected by multiple links

Links

® (Optical fiber cables that connect edges




MODELING WAN RELIABILITY

Failure rate Repair rate
Fdge

Link



MODELING WAN RELIABILITY

Failure rate Repair rate
Fdge  O(months) | O(hours)

Link  O(months) O(days)



MODELING WAN RELIABILITY
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KEY NETWORK CONTRIBUTIONS

Software-aided networks greatly reduce errors
High bandwidth switches cause more incidents
Rack switches are a bottleneck for reliability
Data center WAN reliability models




RELATED WORK

® |dentify network incidents as leading cause
[Barroso+ DCaaC, Gunawi+ SoCC'6, Oppenheimer+ USITS'03,
Brewer Google Tech. Rep. 17, Wang+ DSN'17]
® Hard-wired network studies
[Zhuo+ SIGCOMM'17, Gill+ SIGCOMM'11, Potharaju+ IMC'13]
® Complementary large scale works focused on device trends
[Potharaju+ SoCC'13, Turner+ SIGCOMM'10,
Govindan+ SIGCOMM'16]



LARGE SCALE STUDIES
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THESIS STATEMENT

If we measure the device failures in modern data centers,
then we can learn the reasons why devices fail,
develop models to predict device failures, and

learn from failure trends to make recommendations
to enable workloads to tolerate device failures.
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CONCLUSION

The problem of understanding why data center devices fail

can be solved by using the scale of modern data centers

to observe failures and by building robust statistical models
to understand the implications of the failure trends.




CONTRIBUTIONS

1. Large scale failure studies
We shed new light on device trends from the field

2. Statistical failure models
We enable the community to apply what we learn

3. Evaluate best practices in the field
We provide insight into how to tolerate failures



LIMITATIONS

Only examined one company's data centers

Do not consider combination of device effects

Do not consider silent data corruption



FUTURE RESEARCH

Further field study based analysis
Other devices, statistical techniques, environments

HW/SW cooperative techniques
Use learnings to inform design decisions

Introspective fault monitoring and reduction
Systems that can identify and adapt their behavior



THESIS PUBLICATIONS

Large scale reliability studies

® DRAM [Meza+ DSN'15]
® SSDs[Meza+ SIGMETRICS'15]
® Network[Meza+ IMC'18]



OTHER PhD PUBLICATIONS

Non-volatile memory Datacenter Energy

® DRAM + NVM [Meza+ CAL"12] e Sustainable DC Design
Persistent Memory [Meza+ WEED"13] [Chang+ ASPLOS'12]
Multi-Level Cell [Yoon+ TACO'14]

Row Buffers Locality [Yoon+ [CCD'15]

Row Buffer Sizes [Meza+ ICCD'12]

Main memory architecture

® Bit Flips[Luo+ DSN'14]
® Qverview [Mutlu+ KIISE'15]
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EARLIER PUBLICATIONS

Energy efficiency studies

® JouleSort [Rivoire+ Computer'07]

® DB Energy [Harizopoulos+ CIDR'09]

® OLTP Energy [Meza+ ISLPED'09]

® Sustainable DC Design [Meza+ IMCE'10]

® Sustainable Server Design [Chang+ HotPower'10]
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FACEBOOK PUBLICATIONS

Systems architecture + reliability

® Power Management|[Wu+ ISCA'16]

® Time Series DBs [Pelkonen+ VLDB'15]

® Load Testing [Veeraraghavan+ OSDI'16]

® Disaster Recovery [Veeraraghavan+ OSDI'18]
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More Techniques?

® Ve believe our DRAM work provides a promising direction
® Analyze failures, build models, design techniques
® Atthe same time, we wanted to focus on:
® |nstrumentation + analysis of new devices (SSDs)
® (30ing more in depth in software-level effects (networks)
® \\Ve sketch how to extend our methodology in the thesis



Other Data Centers

® \Ve tie our results to fundamental device properties
® \Ve build models that control for data center specifics
® [ g., DRAM: Workload has an effect, but our models
can factor that in to other features (e.g., CPU util)
® \\e do see evidence of similarities to other data centers
® [.g., Networks: Data center networks =~ B4, WAN =~ B2
in [Jain+SIGCOMM'13, Govindan+SIGCOMM'16]




How Widespread is the Impact?

fail-slow behavior
nd SSDs we observe il-slov e
) Ffrglievhg:vices can cause cascading failures [FAST'18]
® For Network deyices, o
failure domain is large e e
leading to widespread  suis g
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Nematollah Bidokht;is, Caitie McCaffre 6 ider
ﬁ -t Kevin Harms®, Rober *

*Twitter.
Consortium,
Computing Center
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DRAM Failure Details

® Retention

® (ells must be refreshed

® \/ariable retention time complicates matters
® Disturbance

® Bittlips due to charged particles

® Data pattern disturbance & RowHammer efrect
® Endurance

® \Vear out due to physical phemonena
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SSD Failure Details

® Endurance
® (ells wear out after many program-erase cycles
® Floating gate loses ability to adequately store charge

® [emperature
® Shrinks and expands boards and components
® Arrhenius effect ages cells at accelerated rate

® Disturbance
® Pass through voltage causes neighboring cell disturbance

® Program failures, retention failures
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Network Failure Details

Hardware (see DRAM and SSD failure details)
Unplanned tiber cuts

® Fverything from anchors dragging to backhoes
BUQS

® Switches run a variety of software, can be bugqy
Operational mistakes

® Attempting to repair a switch without turning it off



Exploratory analysis

Factor Low-end | High-end (HE) | HE/| density | HE/| CPUs
Capacity 4GB 16 GB 4GB 16 GB
Density2Gb 1 0 1 0
Density4Gb 0 1 0 1
Chips 16 32 16 32
CPU% 50% 25% 25% 50%
Age 1 1 1 1
CPUs 3 16 16 | 3
Predicted

relative 0.12 0.78 0.51
failure rate




WRITE AMPLIFICATION

Graph search Key-value store
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Relative server failure rate
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DC fabric has fewer incidents

3E-3

2E-3
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Incidents per device
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Main cause across all severities
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Edge node MTBF distribution
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Edge node MTTR distribution
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Fiber vendor MTBF distribution
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Fiber vendor MTTR distribution
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Minimizing backbone outages

y = 402. 8862 34089 \
= 51 394 256p /
y = 330. 5163 4371p

Capacity plan
objective = six 9's > Node1: Links A, B
Node 2: Links X, Y

Simulation




