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Problem: High DRAM Latency

processor 

main 
memory 

high 
latency

Major bottleneck for system performance

stalls: waiting
for data
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DRAM latency continues to be a critical bottleneck
Goal: Reduce DRAM latency at low cost
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Why is DRAM slow?
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processor 
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peripheral logic

bank

mat

high 
latency

DRAM Organization
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DRAM Cell Array: Mat

peripheral logic

cell

mat
mat

sense amplifier
w

o
rd

lin
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d
river

cell

wordline

bitline
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Cell Array (Mat): High Latency
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DRAM Cell Array: High Latency

Outside mat

Inside mat

• Narrow poly wire
– Large resistance
– Large capacitance
 Slow

• Small cell 
– Difficult to detect 

data in small cell 
 Slow

• Thick metal wire
– Small resistance
– Small capacitance
 Fast
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DRAM cell array (mat) is 
the dominant latency bottleneck 

due to three reasons
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1. Long Narrow Wires

1 Long narrow wires:
enables small area,
increases latency
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2. Operating Conditions

2 Operating conditions:
differing latencies,
uses the same standard value 
optimized for the worst case

e.g., small cell vs. normal cell

e.g., hot vs. cool
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3. Distance from Peripheral Logic

3 Distance from peripheral logic:
differing latencies
uses the same standard value 
optimized for the farthest cell

e.g., near cell vs. far cell
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Three Sources of High Latency

2 Operating conditions

3 Distance from peripheral logic

1 Long narrow wires

Goal: Reduce DRAM latency at low cost 
with three approaches 

AL-DRAM

AVA-DRAM

 TL-DRAM



14

Thesis Statement

DRAM latency can be reduced 
by enabling and exploiting 

latency heterogeneity in DRAM
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Tiered-Latency DRAM:
Lowering Latency 
by Modifying the Bitline Architecture

Approach 1

Lee et al., Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture, 
HPCA 2013

Outline

Prior Work

Future Research Direction

1. TL-DRAM Reducing DRAM Latency 
by Modifying Bitline Architecture

2. AL-DRAM Optimizing DRAM Latency 
for the Common-Case

3. AVA-DRAM Lowering DRAM Latency
by Exploiting Architectural Variation

Reducing DRAM Latency 
by Modifying Bitline Architecture1. TL-DRAM
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 Extremely large (≈100X cell)

Long Bitline: Amortize sense amplifier → Small area
Long Bitline: Large bitline cap. → High latency

Long Bitline High Latency
DRAM cell

Sense amplifier

wordline

b
it
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Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency

Trade-Off: Area vs. Latency



18

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
al

iz
ed

 D
R

A
M

 A
re

a

Latency (ns)

64

32

128

256 512 cells/bitline

Commodity 
DRAM

Long Bitline

C
h

ea
p

er

Faster

Fancy DRAM
Short Bitline

Trade-Off: Area vs. Latency



19

Short Bitline

Low Latency 

Long Bitline

Small Area 

Long Bitline

Low Latency 

Short BitlineOur Proposal

Small Area 

Short Bitline Fast

Need Isolation Add Isolation 
Transistors

High Latency

Large Area 

Approximating Best of Both Worlds
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Low Latency 

Our Proposal

Small Area 

Long Bitline

Small Area 

Long Bitline

High Latency

Short Bitline

Low Latency 

Short Bitline

Large Area 

Tiered-Latency DRAM

Low Latency

Small area 
using long 

bitline

Approximating Best of Both Worlds
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Near Segment

Far Segment

Isolation Transistor

• Divide a bitline into two segments with an isolation 
transistor

Sense Amplifier

Tiered-Latency DRAM
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Far SegmentFar Segment

Near Segment

Isolation Transistor

• Turn off the isolation transistor

Isolation Transistor (off)

Sense Amplifier

Near Segment Access

Reduced bitline capacitance

 Low latency & low power

Reduced bitline length
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Near SegmentNear Segment

• Turn on the isolation transistor

Far Segment

Isolation TransistorIsolation Transistor (on)

Sense Amplifier

Far Segment Access

Large bitline capacitance

Additional resistance of isolation transistor

Long bitline length

 High latency & high power
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• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: Mainly due to the isolation transistors

TL-DRAM
Commodity 

DRAM

Near       Far Commodity 
DRAM

Near       Far

TL-DRAM

(52.5ns)

Commodity DRAM vs. TL-DRAM
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Longer near segment length leads to 
higher near segment latency  

Latency vs. Near Segment Length
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Latency vs. Near Segment Length
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• TL-DRAM is a substrate that can be leveraged 
by the hardware and/or software

– Use near segment as hardware-managed cache 
to far segment

Leveraging Tiered-Latency DRAM
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Performance & Energy Evaluation
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• Observation
– Long bitlines are the dominant source of DRAM latency

• Idea
– Divide a long bitline into two shorter segments                                    
 Fast and slow segments

• Tiered-latency DRAM: Enables latency heterogeneity 
– Can leverage this in many ways to improve performance and 

reduce power consumption

• Performance & Power Evaluation 
– When the fast segment is used as a cache to the slow segment 
 Significant performance improvement (>12%) and power 
reduction (>23%) at low area cost (3%)

Summary: TL-DRAM
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Adaptive-Latency DRAM:
Optimizing DRAM Latency
for the Common Operating Conditions

Approach 2 

Lee et al., Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case, 
HPCA 2015

Outline

Prior Work

Future Research Direction

1. TL-DRAM Reducing DRAM Latency 
by Modifying Bitline Architecture

2. AL-DRAM Optimizing DRAM Latency 
for the Common-Case

3. AVA-DRAM Lowering DRAM Latency
by Exploiting Architectural Variation

Reducing DRAM Latency 
by Modifying Bitline Architecture1. TL-DRAM

Optimizing DRAM Latency 
for the Common Case2. AL-DRAM
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DRAM Stores Data as Charge

1. Sensing
2. Restore
3. Precharge

DRAM cell

Sense amplifier

Three steps of 
charge movement
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Sensing RestoreTiming Parameters

Data 0

Data 1

cell

time

ch
ar

ge

Sense amplifier

DRAM Charge over Time

Why does DRAM need the extra timing margin?

In theory margin

cell

Sense amplifier

In practice
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1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for cell that can 
store small amount of charge

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin when operating at 
low temperature 

Two Reasons for Timing Margin

1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for cell that can 
store small amount of charge;

1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for cells that can 
store large amount of charge
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Same size 
Same charge 

Different size 
Different charge 

Same latency Different latency

Large variation in cell size 
Large variation in charge 
Large variation in access latency

DRAM Cells are Not Equal
RealIdeal

Largest cell

Smallest cell
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1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for cells that can 
store large amount of charge

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin when operating at 
low temperature 

Two Reasons for Timing Margin

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin when operating at 
low temperature 

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin when operating at 
low temperature 
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Cells store small charge at high temperature
and large charge at low temperature 
 Large variation in access latency

Charge Leakage ∝ Temperature

Room Temp. Hot Temp. (85°C)

Small leakage Large leakage
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DRAM Timing Parameters
• DRAM timing parameters are dictated by 

the worst case 

– The smallest cell with the smallest charge   
in all DRAM products

– Operating at the highest temperature

• Large timing margin for the common case

 Can lower latency for the common case
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Temperature
Controller

PC

HeaterFPGAs FPGAs

DRAM Testing Infrastructure
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Typical DIMM at 
Low Temperature

Obs 1. Faster Sensing

More charge

Strong charge
flow

Faster sensing

Typical DIMM at Low Temperature
More charge  Faster sensing

Timing
(tRCD)

17% ↓
No Errors

115 DIMM 
characterization
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Obs 2. Reducing Restore Time

Larger cell & 
Less leakage 
Extra charge

No need to fully
restore charge

Typical DIMM at lower temperature
More charge  Restore time reduction

Read (tRAS)

37% ↓
Write (tWR)

54% ↓
No Errors

115 DIMM 
characterization

Typical DIMM at 
Low Temperature
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Empty 
(0V)

Full 
(Vdd)

Half

Obs 3. Reducing Precharge Time

B
it

lin
e

Sense amplifier

Sensing Precharge

Precharge ? – Setting bitline to half-full charge 

Typical DIMM at 
Low Temperature
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Empty (0V) Full (Vdd)

Half

bitline

Not fully 
precharged

More charge
 strong sensing

Access empty cell Access full cell

Timing
(tRP)

35% ↓
No Errors

115 DIMM 
characterization

Typical DIMM at Lower Temperature
More charge  Precharge time reduction

Obs 3. Reducing Precharge Time
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Adaptive-Latency DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer profiles multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature
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Summary: AL-DRAM
• Observation

– DRAM timing parameters are dictated by the worst-case cell  
(smallest cell at highest temperature)

• Our Approach: Adaptive-Latency DRAM (AL-DRAM) 
– Optimizes DRAM timing parameters for the common case 

(typical DIMM operating at low temperatures)

• Analysis: Characterization of 115 DIMMs
– Great potential to lower DRAM timing parameters (17 – 54%) 

without any errors

• Real System Performance Evaluation 
– Significant performance improvement (14% for memory-

intensive workloads) without errors (33 days)
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AVA-DRAM:
Lowering DRAM Latency
by Exploiting Architectural Variation

Approach 3 

Lee et al., AVA-DRAM: Reducing DRAM Latency by Exploiting Architectural Variation, 
under submission

Outline

Prior Work

Future Research Direction

1. TL-DRAM Reducing DRAM Latency 
by Modifying Bitline Architecture

2. AL-DRAM Optimizing DRAM Latency 
for the Common-Case

3. AVA-DRAM Lowering DRAM Latency
by Exploiting Architectural Variation

Optimizing DRAM Latency 
for the Common Case2. AL-DRAM

Lowering DRAM Latency
by Exploiting Architectural Variation3. AVA-DRAM
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Inherently fast

inherently slow

Architectural Variation
slowfast

slo
w

fast

Variability in cell access times is
caused by the physical organization of DRAM

sense amplifier

w
o

rd
lin

e
d

river

across row

distance from 
sense amplifier

across column

distance from 
wordline driver
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Our Approach

• Experimental study for architectural variation
– Goal: Identify & characterize inherently slower 

regions 
– Methodology: Profiling 96 real DRAM modules                                       

by using FPGA-based DRAM test infrastructure

• Exploiting architectural variation 
– AVA Online Profiling: Dynamic & low cost latency 

optimization mechanism
– AVA Data Shuffling: Improving reliability by 

avoiding ECC-uncorrectable errors 

• Experimental study of architectural variation
– Goal: Identify & characterize inherently slower 

regions 
– Methodology: Profile 96 real DRAM modules                                       

by using FPGA-based DRAM test infrastructure
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Internal address

External address

Challenge: External ≠ Internal

External address ≠ Internal address

DRAM chip

IO
 in

terface

A
ddress m

apping
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Expected Characteristics

• Variation
– Some regions are slower than others
– Some regions are more vulnerable than others         

when accessed with reduced latency 

• Repeatability
– Latency (error) characteristics repeat periodically,            

if the same component (e.g., mat) is duplicated 

• Similarity
– Across different organizations (e.g., chip/DIMM) 

if they share same design
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1. Variation & Repeatability in Rows
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512 row
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sw
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Latency characteristics vary across 512 rows

global wordline
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Same organization repeats every 512 rowsLatency characteristics repeat every 512 rows
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1.1. Variation in Rows
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1.2. Repeatability in Rows
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2. Variation in Columns
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IO interface

64 bits

8 bits X 8 burst

global sense amplifier
columncolumncolumncolumn

Different columns  data from different locations
 different characteristics

global wordline
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2. Variation in Columns
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3. Variation in Data Bits
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IO interface

64 bits

8 bits X 8 burst

global sense amplifier

Data in a request  transferred as multiple data bursts
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8-bit data bus per chip
64-bit data bus in memory channel

Processor DIMMRead request

3. Variation in Data Bits

64-bit data from different locations 
in the same row in the same chip

Data bits in a request  different characteristics
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3. Variation in Data Bits
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• Exploiting architectural variation 
– AVA Online Profiling: Dynamic & low cost latency 

optimization mechanism
– AVA Data Shuffling: Improving reliability by 

avoiding ECC uncorrectable errors 

Our Approach

• Experimental study for architectural variation
– Goal: Identify & characterize inherently slower 

regions 
– Methodology: Profiling 96 real DRAM modules                                       

by using FPGA-based DRAM test infrastructure

• Experimental study of architectural variation
– Goal: Identify & characterize inherently slower 

regions 
– Methodology: Profile 96 real DRAM modules                                       

by using FPGA-based DRAM test infrastructure

• Exploiting architectural variation 
– AVA Online Profiling: Dynamic & low cost latency 

optimization mechanism
– AVA Data Shuffling: Improving reliability by 

avoiding ECC-uncorrectable errors 
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1. Challenges of Lowering Latency

• Static DRAM latency
– DRAM vendors need to provide standard timings, 

increasing testing costs
– Doesn’t take into account latency changes over 

time (e.g., aging and wear out)

• Conventional online profiling
– Takes long time (high cost) to profile all DRAM cells

Goal: Dynamic & low cost online latency optimization
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1. AVA Online Profiling

inherently slow

Profile only slow regions to determine latency
Dynamic & low cost latency optimization

sense amplifier

w
o

rd
lin

e
d

river

Architectural-Variation-Aware
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inherently slow

1. AVA Online Profiling

slow cells  

architectural
variation

process
variation

localized errorrandom error

online profilingerror-correcting 
code

Combining error-correcting code & online profiling
 Reliably reduce DRAM latency

Architectural-Variation-Aware

sense amplifier

w
o

rd
lin

e
d

river
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8-bit data bus per chip
64-bit data bus in memory channel

2. Challenge of Conventional ECC
Processor DIMMRead request

Error-Correcting Code (ECC)
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8-bit data bus per chip

Processor DIMMerror

uncorrectable 
by ECC

uncorrectable 
by ECC

Conventional ECC leads to more uncorrectable 
errors due to architectural variation

2. Challenge of Conventional ECC
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8-bit data bus per chip

2. AVA Data Shuffling
Processor DIMMerror

uncorrectable 
by ECC

uncorrectable 
by ECC

Shuffle data burst & shuffle rows
 Reduce uncorrectable errors

shuffling rows

Architectural-Variation-Aware
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2. AVA Data Shuffling
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AVA Shuffling reduces uncorrectable errors 
significantly
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Latency Reduction

AVA-DRAM reduces latency significantly

Read Write
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System Performance Improvement

7.0%
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AVA-DRAM improves performance significantly



70

Summary: AVA-DRAM
• Observation: Architectural Variation

– DRAM has inherently slow regions due to its cell array 
organization, which leads to high DRAM latency

• Our Approach
– AVA Profiling: Profile only inherently slow regions to determine 

latency dynamic & low cost latency optimization
– AVA Shuffling: Distribute data from slow regions to different 

ECC code words  avoid uncorrectable errors

• Analysis: Characterization of 96 DIMMs
– Great potential to lower DRAM timing parameters 

• System Performance Evaluation 
– Significant performance improvement (15% for memory-

intensive workloads)
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Outline

Prior Work

Future Research Direction

1. TL-DRAM Reducing DRAM Latency 
by Modifying Bitline Architecture

2. AL-DRAM Optimizing DRAM Latency 
for the Common Case

3. AVA-DRAM Lowering DRAM Latency
by Exploiting Architectural Variation
Lowering DRAM Latency
by Exploiting Architectural Variation3. AVA-DRAM

Prior Work
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Prior Work
• Low latency DRAM

– Having short bitline

– Heterogeneous bitline

• Cached DRAM
• DRAM with higher parallelism

– Subarray level parallelism

– Parallelizing refreshes with accesses

• Memory scheduling
– Memory scheduling for more parallelism

– Application-Aware Memory Scheduling

• Caching, Paging, and Prefetching
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Prior Work: Low Latency DRAM

• Having shorter bitlines: FCRAM, RL-DRAM

– Lower latency compared to conventional DRAM

– Large area for more sense amplifiers (~55% additional area)

• Having shorter bitline regions: [Son et al., ISCA 13]

– Lower latency for data in shorter bitline regions

– Less efficiency due to statically-partitioned lower latency 
regions  

– Not easy to migrate between fast and slow regions



74

Prior Work: Cached DRAM

• Implementing low-latency SRAM cache in DRAM

– Lower latency for accessing recently-accessed requests

– Large area for SRAM cache (~145% for integrating 6% 
capacity as SRAM cell)

– Complex control for SRAM cache
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Prior Work: More Parallelism
• Subarray-Level Parallelism: [Kim+, ISCA 2012]

– Enables independent accesses to different subarrays (a 
row of mats)

– Does not reduce latency of a single access

• Parallelizing refreshes with accesses: [Chang+, HPCA 14]

– Mitigates latency penalty of DRAM refresh operations

– Does not reduce latency of a single access
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Outline

Prior Work

Future Research Direction

1. TL-DRAM Reducing DRAM Latency 
by Modifying Bitline Architecture

2. AL-DRAM Optimizing DRAM Latency 
for the Common Case

3. AVA-DRAM Lowering DRAM Latency
by Exploiting Architectural Variation

Prior Work

Future Research Direction
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Future Research Direction
• Reducing Latency in 3D-stacked DRAM

– Power delivered from the bottom layer up to to the top layer                                   

 new source of variation in latency

– Evaluate & exploit power network related variation

• Exploiting Variation in Retention Time
– Cells have different retention time based on their contents 

(i.e., 0 vs. 1), but use the same refresh interval

– Evaluate the relationship between the content in a cell and 
retention time & exploit the variation in retention time
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Future Research Direction

• System Design for Heterogeneous-Latency DRAM

– Design a system that allocates frequently-used or more 
critical data to fast regions

– Design a system that optimizes DRAM operating conditions 
for better performance (e.g., reducing DRAM temperature by 
spreading accesses out to different regions)
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Conclusion
• Observation

– DRAM cell array is the dominant source of high latency

• DRAM latency can be reduced 
by enabling and exploiting latency heterogeneity

• Our Three Approaches
– TL-DRAM: Enabling latency heterogeneity                                         

by changing DRAM architecture
– AL-DRAM: Exploiting latency heterogeneity                                     

from process variation and temperature dependency
– AVA-DRAM: Exploiting latency heterogeneity                                     

from architectural variation

• Evaluation & Result
– Our mechanisms enable significant latency reduction    

at low cost and thus improve system performance
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Contributions
• Identified three major sources of high DRAM latency

– Long narrow wires
– Uniform latencies despite different operating conditions
– Uniform latencies despite architectural variation

• Evaluated the impact of varying DRAM latencies
– Simulation with detailed DRAM model
– Profiled real DRAM (96 – 115 DIMMs) with FPGA-based 

DRAM test infrastructure

• Developed mechanisms to lower DRAM latency, 
leading to significant performance improvement  
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