Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery

Yu Cai, <u>Yixin Luo</u>, Erich F. Haratsch*, Ken Mai, Onur Mutlu

Carnegie Mellon University, *LSI Corporation

You Probably Know

•Many use cases:

+ High performance, low energy consumption

NAND Flash Memory Challenges

Requires erase before program (write)High raw bit error rate

Limited Flash Memory Lifetime Goal: Extend flash memory lifetime Raw bit error rate (RBER) at low cost Nen P/E Cycle Lifetime ectable RBER 3000

Program/Erase (P/E) Cycles (or Writes Per Cell) 4

Retention Loss

Charge leakage over time

One dominant source of flash memory errors [DATE '12, ICCD '12]

Before I show you how we extend flash lifetime ...

NAND Flash 101

Threshold Voltage (V_{th}) $\Theta \Theta \Theta \Theta \Theta$ \ominus Flash cell Flash cell 1 Normalized V_{th}

Threshold Voltage (V_{th}) Distribution

Threshold Voltage Reduces Over Time

After some retention loss:

Fixed Read Reference Voltage Becomes Suboptimal

After some retention loss:

Raw bit errors

<u>Goal 1:</u> Design a low-cost mechanism that dynamically finds the optimal read reference voltage

Retention Failure

After **significant** retention loss:

Uncorrectable errors

<u>Goal 1:</u> Design a low-cost mechanism that dynamically finds the optimal read reference voltage

<u>Goal 2:</u> Design an offline mechanism to recover data after detecting uncorrectable errors

To understand the effects of retention loss: - Characterize retention loss using real chips

To understand the effects of retention loss: - Characterize retention loss using real chips

<u>Goal 1:</u> Design a low-cost mechanism that dynamically finds the optimal read reference voltage

<u>Goal 2:</u> Design an offline mechanism to recover data after detecting uncorrectable errors

Characterization Methodology

FPGA-based flash memory testing platform [Cai+,FCCM '11]

Characterization Methodology

- •FPGA-based flash memory testing platform
- •Real 20- to 24-nm MLC NAND flash chips
- •0- to 40-day worth of retention loss
- •*Room temperature (20^oC)*
- •*O to 50k P/E Cycles*

Characterize the effects of retention loss

1. Threshold Voltage Distribution

2. Optimal Read Reference Voltage

3. RBER and P/E Cycle Lifetime

1. Threshold Voltage (V_{th}) Distribution

1. Threshold Voltage (V_{th}) Distribution

Finding: Cell's threshold voltage decreases over time

2. Optimal Read Reference Voltage (OPT)

Finding: OPT decreases over time

3. RBER and P/E Cycle Lifetime

P/E Cycles

3. RBER and P/E Cycle Lifetime

Reading data with 7-day worth of retention loss.

Finding: Using actual OPT achieves the longest lifetime

SAFARI

V_{ref} closer to

Characterization Summary

- Due to *retention loss*
 - Cell's threshold voltage (V_{th}) decreases over time
 - Optimal read reference voltage (OPT) decreases over time

Using the actual OPT for reading - Achieves the longest lifetime To understand the effects of retention loss: - Characterize retention loss using real chips

<u>Goal 1:</u> Design a low-cost mechanism that dynamically finds the optimal read reference voltage

<u>Goal 2:</u> Design an offline mechanism to recover data after detecting uncorrectable errors

Naïve Solution: Sweeping V_{ref}

<u>Key idea:</u> Read the data multiple times with different read reference voltages until the raw bit errors are correctable by ECC

✓ Finds the optimal read reference voltage

★Requires many read-retries → higher read latency

Comparison of Flash Read Techniques

Flash Read Techniques	<i>Lifetime (P/E Cycle)</i>	Performance (Read Latency)
Fixed V _{ref}	×	
Sweeping V _{ref}		X
Our Goal		

Observations

1. The optimal read reference voltage gradually decreases over time

<u>Key idea:</u> Record the old OPT as a prediction (V_{pred}) of the actual OPT

<u>Benefit:</u> Close to actual OPT -> Fewer read retries

2. The amount of retention loss is similar across pages within a flash block

<u>Key idea:</u> Record only one V_{pred} for each block

<u>Benefit:</u> Small storage overhead (768KB out of 512GB)

Retention Optimized Reading (ROR)

Components:

1. Online pre-optimization algorithm

- Periodically records a V_{pred} for each block

2. Improved read-retry technique

- Utilizes the recorded $V_{\mbox{\scriptsize pred}}$ to minimize read-retry count

1. Online Pre-Optimization Algorithm

- Triggered periodically (e.g., per day)
- Find and record an OPT as per-block V_{pred}
- Performed in background

33

2. Improved Read-Retry Technique

- Performed as normal read
- $\bullet V_{pred}$ already close to actual OPT
- Decrease V_{ref} if V_{pred} fails, and retry

Retention Optimized Reading: Summary

Flash Read Techniques	<i>Lifetime (P/E Cycle)</i>	Performance (Read Latency)
Fixed V _{ref}	×	
Sweeping V _{ref}	64%个	
ROR	64% ↑	 ✓ Nom. Life: 2.4% ↓ Ext. Life: 70.4% ↓

To understand the effects of retention loss: - Characterize retention loss using real chips

<u>Goal 1:</u> Design a low-cost mechanism that dynamically finds the optimal read reference voltage

<u>Goal 2:</u> Design an offline mechanism to recover data after detecting uncorrectable errors

Retention Failure

After **significant** retention loss:

Uncorrectable errors

Leakage Speed Variation

Initially, Right After Programming

After Some Retention Loss

Eventually: Retention Failure

Retention Failure Recovery (RFR)

<u>Key idea:</u> Guess original state of the cell from its leakage speed property

Three steps

- 1. Identify risky cells
- 2. Identify fast-/slow-leaking cells
- 3. Guess original states

RFR Evaluation

To understand the effects of retention loss: - Characterize retention loss using real chips

<u>Goal 1:</u> Design a low-cost mechanism that dynamically finds the optimal read reference voltage

<u>Goal 2:</u> Design an offline mechanism to recover data after detecting uncorrectable errors

Conclusion

Problem: Retention loss reduces flash lifetime

Overall Goal: Extend flash lifetime at low cost

<u>Flash Characterization:</u> Developed an understanding of the effects of retention loss in real chips

<u>Retention Optimized Reading:</u> A low-cost mechanism that dynamically finds the optimal read reference voltage

- 64% lifetime \uparrow , 70.4% read latency \downarrow

<u>Retention Failure Recovery:</u> An offline mechanism that recovers data after detecting uncorrectable errors

- Raw bit error rate 50% \downarrow , reduces data loss

Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery

Yu Cai, <u>Yixin Luo</u>, Erich F. Haratsch*, Ken Mai, Onur Mutlu

Carnegie Mellon University, *LSI Corporation

Backup Slides

RFR Motivation

Data loss can happen in many ways

- 1. High P/E cycle
- 2. High temperature \rightarrow accelerates retention loss
- 3. High retention age (lost power for a long time)

What if there are other errors?

<u>Key:</u> RFR does not have to correct all errors

Example:

- ECC can correct 40 errors in a page
- •Corrupted page has 20 retention errors, 25 other errors (45 total errors)
- •After RFR: 10 retention errors, 30 other errors (40 total errors \rightarrow ECC correctable)

Threshold Voltage (V_{th}) Mean

Finding: V_{th} shifts faster in higher voltage states

Raw Bit Error Rate (RBER)

Reading data with 7-day retention age.

Finding: The actual OPT achieves the lowest RBER

Online Pre-Optimization Algorithm

- Periodically learn and record OPT for page 255 as per-block starting read reference voltage (V₀)
 - Page 255 has the shortest retention age
 - Other pages within the block have longer retention age and retention age will increase over time
- <u>Step 1:</u> Read with $V_{ref} = old V_{O_r}$ record RBER
- <u>Step 2</u>: Decrease $V_{ref} = V_{ref} \Delta V^*$ compare RBER
- <u>Step 3:</u> Increase $V_{ref} = V_{ref} + \Delta V$ compare RBER
- <u>Step 4:</u> Record new $V_0 = V_{ref} \mid minimal RBER$

*AV is the smallest step size for changing read reference voltage.

Naive Read-Retry Latency Diagnosis II

Read page A (Stage-0):

Observation: Average ECC latency ∝ RBER

*We provide detailed analysis of ECC latency in the paper.

High temperature accelerates retention loss

Fast- and Slow-Leaking Cells

*Similar trends are found in P2 state, as shown in the paper.

Fast- and Slow-Leaking Cells Threshold voltage marks after 28 days: PDF -3σ -2σ -1σ μ 1σ 2σ 3σ

Normalized V

61

Fast- and Slow-Leaking Cells

*Similar trends are found in P2 state, as shown in the paper.

