Data Mapping for Higher Performance and Energy Efficiency in Multi-Level Phase Change Memory

HanBin Yoon*, Naveen Muralimanohar[‡], Justin Meza*, Onur Mutlu*, Norm Jouppi[‡] *Carnegie Mellon University, [‡]HP Labs

Carnegie Mellon University

Overview

- MLC PCM: Strengths and weaknesses
- Data mapping scheme for MLC PCM
 - Exploits PCM characteristics for lower latency
 - Improves data integrity
- Row buffer management for MLC PCM

Increases row buffer hit rate

 Performance and energy efficiency improvements

Why MLC PCM?

- Emerging high density memory technology
 Projected 3-12× denser than DRAM¹
- Scalable DRAM alternative on the horizon
 Access latency comparable to DRAM
- Multi-Level Cell: 1 of key strengths over DRAM
 Further increases memory density (by 2×–4×)
- But MLC also has drawbacks

Higher MLC Latencies and Energy

- MLC program/read operation is more complex
 Finer control/detection of cell resistances
- Generally leads to higher latencies and energy
 - ~2× for reads, ~4× for writes (depending on tech. & impl.)

Number of cells Let reads) first of threes (depending on teelling in teelling in teelling on t

MLC Multi-bit Faults

In MLC, single cell failure can lead to multi-bit faults

Motivation

• MLC PCM strength:

- Scalable, dense memory

- MLC PCM weaknesses:
 - Higher latencies
 - Higher energy
 - Multi-bit faults
 - Endurance

Mitigate through bit mapping schemes and row buffer management based on the following observations

Observation #1: Read Asymmetry

Read latency depends on cell state
 – Higher cell resistance → higher read latency

Observation #1: Read Asymmetry

- MSB can be determined before read completes

Observation #2: Program Asymmetry

Program latency depends on cell state

Observation #2: Program Asymmetry

- Single-bit change reduces LSB program latency
- Quicker LSB prog. ← group LSB & MSB separately

Observation #3: Distributed Bit Faults

- Bit mapping affects distribution of bit faults
 - 1 cell failure: 2 faults in 1 block vs. 1 fault each in 2 blocks (ECC-wise better)

- Decoupled bit mapping scheme
 - Reduced read latency for MSB pages (read asym.)
 - Reduced program latency for LSB pages (prog asym.)
 - Distributed bit faults between LSB and MSB blocks
 - Worse endurance

Coalescing Writes

PCM row: Decoupled bit mapping

PCM row: **Decoupled** bit mapping + **block interleaving**

1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	MSB blocks
0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	LSB blocks

- Assuming spatial locality in writebacks
- Interleaving blocks facilitates write coalescing
- Improved endurance ← <u>interleave blocks</u> <u>between LSB & MSB</u>

- LM-Interleaved (LMI) bit mapping scheme
 - Mitigates cell wear

 Opportunity: Two latches per cell in row buffer – Use single row buffer as two "page buffers"

Increased row buffer hit rate

Evaluation Methodology

- Cycle-level x86 CPU-memory simulator
 - CPU: 8 out-of-order cores, 32 KB private L1 per core
 - L2: 512 KB shared per core, DRAM-Aware LLC
 Writeback^{4,5}
 - Dual channel DDR3 1066 MT/s, 2 ranks, aggregate
 PCM capacity 16 GB (2 bits per cell)
- Multi-programmed SPEC CPU2006 workloads
 Misses per kilo-instructions > 10

[⁴Lee+ UTA-TechReport'10; ⁵Stuecheli+ ISCA'10] ¹⁷

Comparison Points and Metrics

- Baseline: Coupled bit mapping
- **Decoupled**: Decoupled bit mapping
- LMI-4: LSB-MSB interleaving every 4 blocks
- LMI-16: LSB-MSB interleaving every 16 blocks
- Weighted speedup (performance) = sum of thread speedups versus when run alone
- Max slowdown (fairness) = highest slowdown experienced by any thread

Memory Lifetime

Baseline Decoupled LMI-4 LMI-16

1.2 Memory Lifetime (norm.) 1 **5-year lifespan** 0.8 feasible for system design? 0.6 **Point of on-going** research... 0.4 0.2 0

Conclusion

- MLC PCM is a scalable, dense memory tech.
 Exhibits higher latency and energy compared to SLC
- 1. LSB-MSB decoupled bit mapping
 - Exploits read asymmetry & program asymmetry
 - Distributes multi-bit faults
- 2. LSB-MSB block interleaving
 - Mitigates cell wear
- 3. Split page buffering
 - Increases row buffer hit rate
- Enhances perf. and energy eff. of MLC PCM

Thank you! Questions?