The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser Onur Mutlu omutlu@ethz.ch http://users.ece.cmu.edu/~omutlu/ June 9, 2016 DAC Invited Talk Carnegie Mellon ## The Main Memory System - Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor - Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits ## The DRAM Scaling Problem - DRAM stores charge in a capacitor (charge-based memory) - Capacitor must be large enough for reliable sensing - Access transistor should be large enough for low leakage and high retention time - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] As DRAM cell becomes smaller, it becomes more vulnerable ## Testing DRAM Scaling Issues ... Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014) Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015) <u>AVATAR: A Variable-Retention-Time (VRT)</u> <u>Aware Refresh for DRAM Systems</u> (Qureshi et al., DSN 2015) An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013) The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014) #### Modern DRAM is Prone to Disturbance Errors Repeatedly opening and closing a row enough times within a refresh interval induces disturbance errors in adjacent rows in most real DRAM chips you can buy today #### Most DRAM Modules Are Vulnerable A company **B** company **C** company Up to 1.0×10⁷ errors Up to 2.7×10⁶ errors Up to 3.3×10^5 errors #### Recent DRAM Is More Vulnerable All modules from 2012-2013 are vulnerable ``` loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop ``` - 1. Avoid cache hits - Flush X from cache - 2. Avoid *row hits* to X - Read Y in another row Download from: https://github.com/CMU-SAFARI/rowhammer ``` loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop ``` ``` loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop ``` ``` loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop ``` # Observed Errors in Real Systems | CPU Architecture | Errors | Access-Rate | |---------------------------|--------|-------------| | Intel Haswell (2013) | 22.9K | 12.3M/sec | | Intel Ivy Bridge (2012) | 20.7K | 11.7M/sec | | Intel Sandy Bridge (2011) | 16.1K | 11.6M/sec | | AMD Piledriver (2012) | 59 | 6.1M/sec | - A real reliability & security issue - In a more controlled environment, we can induce as many as ten million disturbance errors #### One Can Take Over an Otherwise-Secure System ## Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Abstract. Memory isolation is a key property of a reliable and secure computing system — an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology # Project Zero Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014) News and updates from the Project Zero team at Google Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015) Monday, March 9, 2015 Exploiting the DRAM rowhammer bug to gain kernel privileges ## RowHammer Security Attack Example - "Rowhammer" is a problem with some recent DRAM devices in which repeatedly accessing a row of memory can cause bit flips in adjacent rows (Kim et al., ISCA 2014). - Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014) - We tested a selection of laptops and found that a subset of them exhibited the problem. - We built two working privilege escalation exploits that use this effect. - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015) - One exploit uses rowhammer-induced bit flips to gain kernel privileges on x86-64 Linux when run as an unprivileged userland process. - When run on a machine vulnerable to the rowhammer problem, the process was able to induce bit flips in page table entries (PTEs). - It was able to use this to gain write access to its own page table, and hence gain read-write access to all of physical memory. ## Security Implications It's like breaking into an apartment by repeatedly slamming a neighbor's door until the vibrations open the door you were after # Selected Readings on RowHammer (I) - Our first detailed study: Rowhammer analysis and solutions (June 2014) - Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu, <u>"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"</u> Proceedings of the <u>41st International Symposium on Computer Architecture</u> (**ISCA**), Minneapolis, MN, June 2014. [<u>Slides (pptx) (pdf)</u>] [<u>Lightning Session Slides (pptx) (pdf)</u>] [<u>Source Code and Data</u>] - Our Source Code to Induce Errors in Modern DRAM Chips (June 2014) - https://github.com/CMU-SAFARI/rowhammer - Google Project Zero's Attack to Take Over a System (March 2015) - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015) - https://github.com/google/rowhammer-test - Double-sided Rowhammer # Selected Readings on RowHammer (II) - Remote RowHammer Attacks via JavaScript (July 2015) - http://arxiv.org/abs/1507.06955 - https://github.com/IAIK/rowhammerjs - Gruss et al., DIMVA 2016. - CLFLUSH-free Rowhammer - "A fully automated attack that requires nothing but a website with JavaScript to trigger faults on remote hardware." - "We can gain unrestricted access to systems of website visitors." - ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks (March 2016) - http://dl.acm.org/citation.cfm?doid=2872362.2872390 - Aweke et al., ASPLOS 2016 - CLFLUSH-free Rowhammer - Software based monitoring for rowhammer detection ### Root Causes of Disturbance Errors - Cause 1: Electromagnetic coupling - Toggling the wordline voltage briefly increases the voltage of adjacent wordlines - Slightly opens adjacent rows → Charge leakage - Cause 2: Conductive bridges - Cause 3: Hot-carrier injection Confirmed by at least one manufacturer # Experimental DRAM Testing Infrastructure Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM <u>Disturbance Errors</u> (Kim et al., ISCA 2014) Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015) AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015) An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013) The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014) # Experimental DRAM Testing Infrastructure #### RowHammer Characterization Results - 1. Most Modules Are at Risk - 2. Errors vs. Vintage - 3. Error = Charge Loss - 4. Adjacency: Aggressor & Victim - 5. Sensitivity Studies - 6. Other Results in Paper - 7. Solution Space # 4. Adjacency: Aggressor & Victim Note: For three modules with the most errors (only first bank) Most aggressors & victims are adjacent # Access Interval (Aggressor) Note: For three modules with the most errors (only first bank) Less frequent accesses → Fewer errors # Refresh Interval Note: Using three modules with the most errors (only first bank) More frequent refreshes → Fewer errors # O Data Pattern Errors affected by data stored in other cells # 6. Other Results (in Paper) - Victim Cells ≠ Weak Cells (i.e., leaky cells) - Almost no overlap between them - Errors not strongly affected by temperature - Default temperature: 50°C - At 30°C and 70°C, number of errors changes <15% - Errors are repeatable - Across ten iterations of testing, >70% of victim cells had errors in every iteration # 6. Other Results (in Paper) cont'd - As many as 4 errors per cache-line - Simple ECC (e.g., SECDED) cannot prevent all errors - Number of cells & rows affected by aggressor - Victims cells per aggressor: ≤110 - Victims rows per aggressor: ≤9 - Cells affected by two aggressors on either side - Very small fraction of victim cells (<100) have an error when either one of the aggressors is toggled #### Some Potential Solutions Make better DRAM chips Cost • Refresh frequently Power, Performance Sophisticated ECC Cost, Power Access counters Cost, Power, Complexity ## **Naive Solutions** - 1 Throttle accesses to same row - Limit access-interval: ≥500ns - Limit number of accesses: $\leq 128 \text{K} (=64 \text{ms}/500 \text{ns})$ - 2 Refresh more frequently - Shorten refresh-interval by $\sim 7x$ Both naive solutions introduce significant overhead in performance and power ## Apple's Patch for RowHammer https://support.apple.com/en-gb/HT204934 Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5 Impact: A malicious application may induce memory corruption to escalate privileges Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could have led to memory corruption. This issue was mitigated by increasing memory refresh rates. CVE-ID CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014) HP and Lenovo released similar patches ## **Our Solution** PARA: <u>Probabilistic Adjacent Row Activation</u> #### Key Idea – After closing a row, we activate (i.e., refresh) one of its neighbors with a low probability: p = 0.005 #### Reliability Guarantee - When p=0.005, errors in one year: 9.4×10^{-14} - By adjusting the value of p, we can vary the strength of protection against errors # Advantages of PARA - PARA refreshes rows infrequently - Low power - Low performance-overhead - Average slowdown: 0.20% (for 29 benchmarks) - Maximum slowdown: 0.75% - PARA is stateless - Low cost - Low complexity - PARA is an effective and low-overhead solution to prevent disturbance errors # Requirements for PARA - Better coordination between memory controller and DRAM - Memory controller should know which rows are physically adjacent ## More on RowHammer Analysis ## Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ Carnegie Mellon University ²Intel Labs #### RowHammer: Reliability Analysis and Security Implications Yoongu Kim¹, Ross Daly, Jeremie Kim¹, Chris Fallin, Ji Hye Lee¹, Donghyuk Lee¹, Chris Wilkerson², Konrad Lai, and Onur Mutlu¹ **Carnegie Mellon University** Intel Labs SAFARI # Future of Main Memory ■ DRAM is becoming less reliable → more vulnerable #### Large-Scale Failure Analysis of DRAM Chips - Analysis and modeling of memory errors found in all of Facebook's server fleet - Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field" Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] [DRAM Error Model] #### Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu Carnegie Mellon University * Facebook, Inc. ### DRAM Reliability Reducing Chip density (Gb) #### Future of Main Memory - DRAM is becoming less reliable → more vulnerable - Due to difficulties in DRAM scaling, other problems may also appear (or they may be going unnoticed) - Some errors may already be slipping into the field - Read disturb errors (Rowhammer) - Retention errors - Read errors, write errors - **...** - These errors can also pose security vulnerabilities #### DRAM Data Retention Time Failures - Determining the retention time of a cell/row is getting more difficult - Retention failures may already be slipping into the field #### Analysis of Data Retention Failures [ISCA'13] #### An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms Jamie Liu* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 jamiel@alumni.cmu.edu Ben Jaiyen Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 bjaiyen@alumni.cmu.edu Yoongu Kim Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 yoonguk@ece.cmu.edu Chris Wilkerson Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054 chris.wilkerson@intel.com Onur Mutlu Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 onur@cmu.edu #### Two Challenges to Retention Time Profiling Data Pattern Dependence (DPD) of retention time Variable Retention Time (VRT) phenomenon #### Two Challenges to Retention Time Profiling - Challenge 1: Data Pattern Dependence (DPD) - Retention time of a DRAM cell depends on its value and the values of cells nearby it - When a row is activated, all bitlines are perturbed simultaneously #### Data Pattern Dependence - Electrical noise on the bitline affects reliable sensing of a DRAM cell - The magnitude of this noise is affected by values of nearby cells via - □ Bitline-bitline coupling → electrical coupling between adjacent bitlines - □ Bitline-wordline coupling → electrical coupling between each bitline and the activated wordline #### Two Challenges to Retention Time Profiling - Challenge 2: Variable Retention Time (VRT) - Retention time of a DRAM cell changes randomly over time - a cell alternates between multiple retention time states - Leakage current of a cell changes sporadically due to a charge trap in the gate oxide of the DRAM cell access transistor - When the trap becomes occupied, charge leaks more readily from the transistor's drain, leading to a short retention time - Called Trap-Assisted Gate-Induced Drain Leakage - □ This process appears to be a random process [Kim+ IEEE TED'11] - Worst-case retention time depends on a random process → need to find the worst case despite this 45 #### Modern DRAM Retention Time Distribution Newer device families have more weak cells than older ones Likely a result of technology scaling #### Industry Is Writing Papers About It, Too #### **DRAM Process Scaling Challenges** #### Refresh Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance THE MEMORY FORUM 2014 ## Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel #### Mitigation of Retention Issues [SIGMETRICS'14] #### The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study Samira Khan†* samirakhan@cmu.edu Donghyuk Lee[†] donghyuk1@cmu.edu Yoongu Kim[†] yoongukim@cmu.edu Alaa R. Alameldeen* alaa.r.alameldeen@intel.com chris.wilkerson@intel.com Chris Wilkerson* Onur Mutlu[†] onur@cmu.edu [†]Carnegie Mellon University *Intel Labs #### Handling Variable Retention Time [DSN'15] ## AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems Moinuddin K. Qureshi[†] Dae-Hyun Kim[†] [†]Georgia Institute of Technology {moin, dhkim, pnair6}@ece.gatech.edu Samira Khan[‡] Prashant J. Nair[†] Onur Mutlu[‡] [‡]Carnegie Mellon University { samirakhan, onur}@cmu.edu #### How Do We Keep Memory Secure? - DRAM - Flash memory - Emerging Technologies - Phase Change Memory - STT-MRAM - RRAM, memristors - **...** #### How Do We Keep Memory Secure? - Understand: Solid methodologies for failure modeling and discovery - Modeling based on real device data small scale and large scale - Architect: Principled co-architecting of system and memory - Good partitioning of duties across the stack - Design & Test: Principled electronic design, automation, testing - High coverage and good interaction with system reliability methods #### Understand with Experiments (DRAM) #### Understand with Experiments (Flash) [Cai+, DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015] NAND Daughter Board #### Another Time: NAND Flash Vulnerabilities Onur Mutlu, #### "Error Analysis and Management for MLC NAND Flash Memory" Technical talk at <u>Flash Memory Summit 2014</u> (**FMS**), Santa Clara, CA, August 2014. <u>Slides (ppt) (pdf)</u> Cai+, "Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis," DATE 2012. Cai+, "Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime," ICCD 2012. Cai+, "Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling," DATE 2013. Cai+, "Error Analysis and Retention-Aware Error Management for NAND Flash Memory," Intel Technology Journal 2013. Cai+, 'Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation," ICCD 2013. Cai+, "Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories," SIGMETRICS 2014. Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery," HPCA 2015. Cai+, 'Read Disturb Errors n MLC NAND Flash Memory: Characterization and Mitigation," DSN 2015. Luo+, "WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management," MSST 2015. Meza+, "A Large-Scale Study of Flash Memory Errors in the Field," SIGMETRICS 2015. #### Large-Scale Flash SSD Error Analysis - First large-scale field study of flash memory errors - Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "A Large-Scale Study of Flash Memory Errors in the Field" Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), Portland, OR, June 2015. [Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] [Coverage on TechSpot] [Coverage on The Tech Report] #### A Large-Scale Study of Flash Memory Failures in the Field Justin Meza Carnegie Mellon University meza@cmu.edu Qiang Wu Facebook, Inc. gwu@fb.com Sanjeev Kumar Facebook, Inc. skumar@fb.com Onur Mutlu Carnegie Mellon University onur@cmu.edu #### Summary - Memory reliability is reducing - Reliability issues open up security vulnerabilities - Very hard to defend against - Rowhammer is an example - Its implications on system security research are tremendous & exciting - Good news: We have a lot more to do. - Understand: Solid methodologies for failure modeling and discovery - Modeling based on real device data small scale and large scale - Architect: Principled co-architecting of system and memory - Good partitioning of duties across the stack - Design & Test: Principled electronic design, automation, testing - High coverage and good interaction with system reliability methods # The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser Onur Mutlu omutlu@ethz.ch http://users.ece.cmu.edu/~omutlu/ June 9, 2016 DAC Invited Talk Carnegie Mellon #### More Detail #### RowHammer in Popular Sites and Press - https://en.wikipedia.org/wiki/Row_hammer - https://twitter.com/hashtag/rowhammer?f=realtime - http://www.rowhammer.com/ - http://www.zdnet.com/article/flipping-dram-bits-maliciously/ - http://www.infoworld.com/article/2894497/security/rowhammerhardware-bug-threatens-to-smashnotebook- - http://www.zdnet.com/article/rowhammer-dram-flaw-could-bewidespread-says-google/ - http://arstechnica.com/security/2015/03/cutting-edge-hack-givessuper-user-status-by-exploiting-dramweakness/ - https://www.youtube.com/watch?v=H63dUfGBpxE - http://www.wired.com/2015/03/google-hack-dram-memory-electric-leaks/ - https://www.grc.com/sn/sn-498-notes.pdf #### Recap: The DRAM Scaling Problem #### **DRAM Process Scaling Challenges** #### Refresh Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance THE MEMORY FORUM 2014 ## Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel 60 #### DRAM Retention Failure Analysis Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms" Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf) ## An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms Jamie Liu* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 jamiel@alumni.cmu.edu Ben Jaiyen Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 bjaiyen@alumni.cmu.edu Yoongu Kim Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 yoonguk@ece.cmu.edu Chris Wilkerson Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054 chris.wilkerson@intel.com Onur Mutlu Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 onur@cmu.edu #### **Towards an Online Profiling System** #### **Key Observations:** - Testing alone cannot detect all possible failures - Combination of ECC and other mitigation techniques is much more effective - But degrades performance - Testing can help to reduce the ECC strength - Even when starting with a higher strength ECC #### **Towards an Online Profiling System** Run tests periodically after a short interval at smaller regions of memory #### Online Mitigating of DRAM Failures Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu, "The Efficacy of Error Mitigation Techniques for DRAM Retention **Failures: A Comparative Experimental Study**" Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides (pptx) (pdf)] Poster (pptx) (pdf)] [Full data sets] #### The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study Samira Khan⁺∗ samirakhan@cmu.edu Donghyuk Lee† donghyuk1@cmu.edu Yoongu Kim[†] yoongukim@cmu.edu Alaa R. Alameldeen* alaa.r.alameldeen@intel.com chris.wilkerson@intel.com Chris Wilkerson* Onur Mutlu[†] onur@cmu.edu [†]Carnegie Mellon University *Intel Labs #### Memory Errors in Facebook Fleet - Analysis and modeling of memory errors found in all of Facebook's server fleet - Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field" Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] [DRAM Error Model] #### Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu Carnegie Mellon University * Facebook, Inc. 65 Error/failure occurrence Page offlining at scale New reliability trends Technology scaling Modeling errors Architecture & workload Error/failure occurrence Pag Errors follow a **power-law** distribution and a large number of errors occur due to **sockets**/ channels Modeling errors Architecture & work.load Error/failure occurrence We find that *newer* cell fabrication technologies have *higher failure rates* Technology scaling trends Modeling errors Architecture & workload Error/failure occurrence Chips per DIMM, transfer Page width, and workload type (not necessarily CPU/memory utilization) affect reliability Modeling errors Architecture & work.load Error/failure occurrence Page We have made publicly available a statistical model for assessing server memory reliability Modeling errors Architecture & work.load Error/failure occurrence Page offlining at scale First large-scale study of page offlining; real-world limitations of technique trends Modeling errors Architecture & workload ### Server error rate ## Memory error distribution ## Memory error distribution ## Errors in Flash Memory (I) ### 1. Retention noise study and management - Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime, ICCD 2012. - 2) Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu, <u>Data Retention in MLC NAND Flash Memory: Characterization, Optimization</u> <u>and Recovery</u>, HPCA 2015. - 3) Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu, WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management, MSST 2015. #### 2. Flash-based SSD prototyping and testing platform Yu Cai, Erich F. Haratsh, Mark McCartney, Ken Mai, <u>FPGA-based solid-state drive prototyping platform</u>, FCCM 2011. ## Errors in Flash Memory (II) ### 3. Overall flash error analysis - 5) Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, <u>Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis</u>, DATE 2012. - 6) Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, <u>Error Analysis and Retention-Aware Error Management for NAND Flash Memory</u>, ITJ 2013. ### 4. Program and erase noise study 7) Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, <u>Threshold Voltage Distribution in MLC NAND Flash Memory:</u> <u>Characterization, Analysis and Modeling</u>, DATE 2013. ## Errors in Flash Memory (III) #### 5. Cell-to-cell interference characterization and tolerance - 8) Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai, Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation, ICCD 2013. - 9) Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Osman Unsal, Adrian Cristal, and Ken Mai, Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories, SIGMETRICS 2014. ### 6. Read disturb noise study 10) Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, and Onur Mutlu, Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation, DSN 2015. #### 7. Flash errors in the field 11) Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, <u>A Large-Scale Study of Flash Memory Errors in the Field</u>, SIGMETRICS 2015. ### More on Flash Retention Errors Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu, "Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery" Proceedings of the 21st International Symposium on High-Performance Computer <u>Architecture</u> (**HPCA**), Bay Area, CA, February 2015. [Slides (pptx) (pdf)] # Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery Yu Cai, Yixin Luo, Erich F. Haratsch*, Ken Mai, Onur Mutlu Carnegie Mellon University, *LSI Corporation yucaicai@gmail.com, yixinluo@cs.cmu.edu, erich.haratsch@lsi.com, {kenmai, omutlu}@ece.cmu.edu ### More on Flash Read Disturb Errors Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, and Onur Mutlu, "Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on Dependable</u> <u>Systems and Networks</u> (**DSN**), Rio de Janeiro, Brazil, June 2015. # Read Disturb Errors in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch*, Ken Mai, Onur Mutlu Carnegie Mellon University, *Seagate Technology yucaicai@gmail.com, {yixinluo, ghose, kenmai, onur}@cmu.edu ### More on Flash Error Analysis Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, "Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis" Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden, Germany, March 2012. Slides (ppt) # Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis Yu Cai¹, Erich F. Haratsch², Onur Mutlu¹ and Ken Mai¹ Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA ²LSI Corporation, 1110 American Parkway NE, Allentown, PA ¹{yucai, onur, kenmai}@andrew.cmu.edu, ²erich.haratsch@lsi.com ### More Detail on Flash Error Analysis Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, "Error Analysis and Retention-Aware Error Management for NAND Flash Memory" Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013. Intel® Technology Journal | Volume 17, Issue 1, 2013 ## ERROR ANALYSIS AND RETENTION-AWARE ERROR MANAGEMENT FOR NAND FLASH MEMORY ## Google's RowHammer Attack The following slides are from Mark Seaborn and Thomas Dullien's BlackHat 2015 talk https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf ## Kernel exploit - x86 page tables entries (PTEs) are dense and trusted - They control access to physical memory - A bit flip in a PTE's physical page number can give a process access to a different physical page - Aim of exploit: Get access to a page table - Gives access to all of physical memory - Maximise chances that a bit flip is useful: - Spray physical memory with page tables - Check for useful, repeatable bit flip first ## x86-64 Page Table Entries (PTEs) - Page table is a 4k page containing array of 512 PTEs - Each PTE is 64 bits, containing: Figure 5-21. 4-Kbyte PTE-Long Mode - Could flip: - "Writable" permission bit (RW): 1 bit → 2% chance - Physical page number: 20 bits on 4GB system → 31% chance What happens when we map a file with read-write permissions? Indirection via page tables. PTEs in physical memory help resolve virtual addresses to physical pages. We can fill physical memory with PTEs. Each of them points to pages in the same physical file mapping. If a bit in the right place in the PTE flips ... PTEs in physical memory help resolve virtual addresses to physical pages. We can fill physical memory with PTEs. Each of them points to pages in the same physical file mapping. If a bit in the right place in the PTE flips the corresponding virtual address now points to a wrong physical page - with RW access. PTEs in physical memory help resolve virtual addresses to physical pages. We can fill physical memory with PTEs. Each of them points to pages in the same physical file mapping. If a bit in the right place in the PTE flips the corresponding virtual address now points to a wrong physical page - with RW access. Chances are this wrong page contains a page table itself. PTEs in physical memory help resolve virtual addresses to physical pages. We can fill physical memory with PTEs. Each of them points to pages in the same physical file mapping. If a bit in the right place in the PTE flips the corresponding virtual address now points to a wrong physical page - with RW access. Chances are this wrong page contains a page table itself. An attacker that can read / write page tables ... PTEs in physical memory help resolve virtual addresses to physical pages. We can fill physical memory with PTEs. Each of them points to pages in the same physical file mapping. If a bit in the right place in the PTE flips the corresponding virtual address now points to a wrong physical page - with RW access. Chances are this wrong page contains a page table itself. An attacker that can read / write page tables can use that to map **any** memory read-write. ### **Exploit strategy** Privilege escalation in 7 easy steps ... - 1. Allocate a large chunk of memory - Search for locations prone to flipping - Check if they fall into the "right spot" in a PTE for allowing the exploit - 4. Return that particular area of memory to the operating system - Force OS to re-use the memory for PTEs by allocating massive quantities of address space - 6. Cause the bitflip shift PTE to point into page table - 7. Abuse R/W access to all of physical memory In practice, there are many complications.