A Casefor ML P-Aware Cache Replacement

Moinuddin K. Qureshi

Daniel N. Lynch Onur Mutlu YaeN. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{moin, lynch, onur, patt} @hps.utexas.edu

Abstract

Performance loss due to long-latency memory accesses can be
reduced by servicing multiple memory accesses concurrently. The
notion of generating and servicing long-latency cache misses in
parallel is called Memory Level Parallelism (MLP). MLP is not
uniform across cache misses — some misses occur in isolation
while some occur in parallel with other misses. Isolated misses are
more costly on performance than parallel misses. However, tradi-
tional cache replacement is not aware of the MLP-dependent cost
differential between different misses. Cache replacement, if made
MLP-aware, can improve performance by reducing the number of
performance-critical isolated misses.

This paper makes two key contributions. First, it proposes
a framework for MLP-aware cache replacement by using a run-
time technique to compute the MLP-based cost for each cache
miss. It then describes a simple cache replacement mechanism
that takes both MLP-based cost and recency into account. Second,
it proposes a novel, low-hardware overhead mechanism called
Sampling Based Adaptive Replacement (SBAR), to dynamically
choose between an MLP-aware and a traditional replacement pol-
icy, depending on which one is more effective at reducing the
number of memory related stalls. Evaluations with the SPEC
CPU2000 benchmarks show that MLP-aware cache replacement
can improve performance by as much as 23%.

1. Introduction

As the imbalance between processor and memory speeds in-
creases, the focus on improving system performance moves to the
memory system. Currently, processors are supported by large on-
chip caches that try to provide faster access to recently-accessed
data. Unfortunately, when there is a miss at the largest on-chip
cache, instruction processing stalls after a few cycles [10], and
the processing resources remain idle for hundreds of cycles [23].
The inability to process instructions in parallel with long-latency
cache misses results in substantial performance loss. One way
to reduce this performance loss is to process the cache misses in
parallel.r Techniques such as non-blocking caches [12], out-of-
order execution with large instruction windows, runahead execu-
tion [5][15], and prefetching improve performance by parallelizing
long-latency memory operations. The notion of generating and
servicing multiple outstanding cache misses in parallel is called
Memory Level Parallelism (MLP) [6].

1Unless stated otherwise, cache refers to the largest on-chip cache.
Cache miss refers to a miss in the largest on-chip cache. Multiple concur-
rent misses to the same cache block are treated as a single miss. Parallel
miss refers to a miss that is serviced while there is at least one more miss
outstanding. |solated missrefers to a miss that is not serviced concurrently
with any other miss.

1.1. Not All Misses are Created Equal

Servicing misses in parallel reduces the number of times the
processor has to stall due to a given number of long-latency mem-
ory accesses. However, MLP is not uniform across all memory ac-
cesses in a program. Some misses occur in isolation (e.g., misses
due to pointer-chasing loads), whereas some misses occur in paral-
lel with other misses (e.g., misses due to array accesses). The per-
formance loss resulting from a cache miss is reduced when mul-
tiple cache misses are serviced in parallel because the idle cycles
waiting for memory get amortized over all the concurrent misses.
Isolated misses hurt performance the most because the proces-
sor is stalled to service just a single miss. The non-uniformity in
MLP and the resultant non-uniformity in the performance impact
of cache misses opens up an opportunity for cache replacement
policies that can take advantage of the variation in MLP. Cache re-
placement, if made MLP-aware, can save isolated (relatively more
costly) misses instead of parallel (relatively less costly) misses.

Unfortunately, traditional cache replacement algorithms are not
aware of the disparity in performance loss that results from the
variation in MLP among cache misses. Traditional replacement
schemes try to reduce the absolute number of misses with the im-
plicit assumption that reduction in misses correlates with reduction
in memory related stall cycles. However, due to the variation in
MLP, the number of misses may or may not correlate directly with
the number of memory related stall cycles. We demonstrate how
ignoring MLP information in replacement decisions hurts perfor-
mance with the following example. Figure 1(a) shows a loop con-
taining 11 memory references. There are no other memory access
instructions in the loop and the loop iterates many times.

Let K (K > 4) be the size of the instruction window of the
processor on which the loop is executed. Points A, B, C, D, and E
each represent an interval of at least K instructions. Between point
A and point B, accesses to blocks P1, P2, P3, and P4 occur in the
instruction window at the same time. If these accesses result in
multiple misses then those misses are serviced in parallel, stalling
the processor only once for the multiple parallel misses. Similarly,
accesses between point B and point C will lead to parallel misses
if there is more than one miss, stalling the processor only once
for all the multiple parallel misses. Conversely, accesses to block
S1, S2, or S3 result in isolated misses and the processor will be
stalled once for each such miss. We analyze the behavior of this
access stream for a fully-associative cache that has space for four
cache blocks, assuming the processor has already executed the first
iteration of the loop.

First, consider a replacement scheme which tries to minimize
the absolute number of misses, without taking MLP information
into account. Belady’s OPT [2] provides a theoretical minimum
for the number of misses by evicting a block that is accessed fur-

D E

A P1 P2 P3 P4

P4 P3 P2P1

&— 68—~

(a) An access pattern. A miss to an S block (S1,52,S3) results in an Isolated miss. A miss
to a P block (P1,P2,P3,P4) can be serviced in parallel with misses to other P blocks.

Hit/Miss H'\i/l‘;z’sl:g’fvm Hit: P4,P3,P2,P1 Miss: S1 Miss: S2 Miss: S3
e A s s s e &
St

(b) Execution timeline for one iteration with Belady’s OPT replacement
Hit/Miss Miss: lglégfa:'LP4 Miss:Hg::S,llj;g,Pl Hit: S1 Hit: 52 Hit: 53
e e e L
St

(c) Execution timeline for one iteration with MLP-aware replacement

Figure 1. The drawback of not including MLP information in replacement decisions.

thest in the future. Figure 1(b) shows the behavior of Belady’s
OPT for the given access stream. At point B, blocks P1, P2,
P3, and P4 were accessed in the immediate past and will be ac-
cessed again in the immediate future. Therefore, the cache con-
tains blocks P1, P2, P3, and P4 at point B. This results in hits for
the next accesses to blocks P4, P3, P2, and P1, and misses for the
next accesses to blocks S1, S2, and S3. To guarantee the minimum
number of misses, Belady’s OPT evicts P4 to store S1, S1 to store
S2, and S2 to store S3. Since the misses to S1, S2, and S3 are iso-
lated misses, the processor incurs three long-latency stalls between
points C and A’. At point A, the cache contains P1, P2, P3, and S3
which results in a miss for P4, stalling the processor one more
time. Thus, for each iteration of the loop, Belady’s OPT causes
four misses (S1, S2, S3, and P4) and four long-latency stalls.
Second, consider a simple MLP-aware policy, which tries to
reduce the number of isolated misses. This policy keeps in cache
the blocks that lead to isolated misses (S1, S2, S3) rather than the
blocks that lead to parallel misses (P1, P2, P3, P4). Such a policy
evicts the least-recently used P-block from the cache. However,
if there is no P-block in the cache, then it evicts the least-recently
used S-block. Figure 1(c) shows the behavior of such an MLP-
aware policy for the given access stream. The cache has space for
four blocks and the loop contains only 3 S-blocks (S1, S2, and S3).
Therefore, the MLP-aware policy never evicts an S-block at any
point in the loop. After the first loop iteration, each access to S1,
S2, and S3 results in a hit. At point A, the cache contains S1, S2,
S3, and P1. From point A to B, the access to P1 hits in the cache,
and the accesses to P2, P3, and P4 miss in the cache. However,
these misses are serviced in parallel, therefore the processor incurs
only one long-latency stall for these three misses. The cache evicts
P1 to store P2, P2 to store P3, and P3 to store P4. So, at point B, the
cache contains S1, S2, S3, and P4. Between point B and point C,
the access to block P4 hits in the cache, while accesses to blocks
P3, P2, and P1 miss in the cache. These three misses are again
serviced in parallel, which results in one long-latency stall. Thus,
for each loop iteration, the MLP-aware policy causes six misses
([P2, P3, P4] and [P3, P2, P1]) and only two long-latency stalls.

Note that Belady’s OPT uses oracle information, whereas the
MLP-aware scheme uses only information that is available to the
microarchitecture. Whether a miss is serviced in parallel with
other misses can easily be detected in the memory system, and
the MLP-aware replacement scheme uses this information to make
replacement decisions. For the given example, even with the ben-
efit of an oracle, Belady’s OPT incurs twice as many long-latency
stalls compared to a simple MLP-aware policy.? This simple ex-
ample demonstrates that it is important to incorporate MLP infor-
mation into replacement decisions.

1.2. Contributions

Based on the observation that the aim of a cache replacement
policy is to reduce memory related stalls, rather than to reduce the
raw number of misses, we propose MLP-aware cache replacement
and make the following contributions:

1. As a first step to enable MLP-aware cache replacement, we
propose a run-time algorithm that can compute MLP-based
cost for in-flight misses.

2. We show that, for most benchmarks, the MLP-based cost
repeats for consecutive misses to individual cache blocks.
Thus, the last-time MLP-based cost can be used as a pre-
dictor for the next-time MLP-based cost.

3. We propose a simple replacement policy called the Linear
(LIN) policy which takes both recency and MLP-based cost
into account to implement a practical MLP-aware cache re-
placement scheme. Evaluation with the SPEC CPU2000
benchmarks shows performance improvement of up to 23%
with the LIN policy.

2We use Belady’s OPT in the example only to emphasize that the con-
cept of reducing the number of misses and making the replacement scheme
MLP-aware are independent. However, Belady’s OPT is impossible to im-
plement because it requires knowledge of the future. Therefore, we will
use LRU as the baseline replacement policy for the remainder of this pa-
per. For the LRU policy, each iteration of the loop shown in Figure 1 causes
six misses ([P2, P3, P4], S1, S2, S3) and four long-latency stalls.

4. The LIN policy does not perform well for benchmarks in
which the MLP-based cost differs significantly for consec-
utive misses to an individual cache block. We propose the
Tournament Selection (TSEL) mechanism to select between
LIN and LRU, on a per-set basis, depending on which policy
results in the least number of memory related stall cycles.

5. Itis expensive to implement the TSEL mechanism on a per-
set basis for all the sets in the cache. Based on the key in-
sight that a few sampled sets can be used to decide the re-
placement policy globally for the cache, we propose a novel,
low-hardware-overhead adaptation mechanism called Sam-
pling Based Adaptive Replacement (SBAR). SBAR allows
dynamic selection between LIN and LRU while incurring a
storage overhead of 1854B (less than 0.2% of the area of the
baseline 1MB cache).

2. Background

Out-of-order execution inherently improves MLP by continu-
ing to execute instructions after a long-latency miss. Instruction
processing stops only when the instruction window becomes full.
If additional misses are encountered before the window becomes
full, then these misses are serviced in parallel with the stalling
miss. The analytical model of out-of-order superscalar processors
proposed by Karkhanis and Smith [11] provides fundamental in-
sight into how parallelism in L2 misses can reduce the cycles per
instruction incurred due to L2 misses.

The effectiveness of an out-of-order engine’s ability to increase
MLP is limited by the instruction window size. Several proposals
[15][1][4][25] have looked at the problem of scaling the instruc-
tion window for out-of-order processors. Chou et al. [3] analyzed
the effectiveness of different microarchitectural techniques such as
out-of-order execution, value prediction, and runahead execution
on increasing MLP. They concluded that microarchitecture opti-
mizations can have a profound impact on increasing MLP. They
also formally defined instantaneous MLP as the number of useful
long-latency off-chip accesses outstanding when there is at least
one such access outstanding. MLP can also be improved at the
compiler level. Read miss clustering [17] is a compiler technique
in which the compiler reorders load instructions with predictable
access patterns to improve memory parallelism.

All of the techniques described thus far try to improve MLP by
overlapping long-latency memory operations. MLP is not uniform
across all memory accesses in a program though. While some
of the misses are parallelized, many misses still occur in isola-
tion. It makes sense to make this variation in MLP visible to the
cache replacement algorithm. Cache replacement, if made MLP-
aware, can increase performance by reducing the number of iso-
lated misses at the expense of parallel misses. To our knowledge
no previous research has looked at including MLP information in
replacement decisions. Srinivasan et al. [22][21] analyzed the crit-
icality of load misses for out-of-order processors. But, criticality
and MLP are two different properties. Criticality, as defined in
[22], is determined by how long instruction processing continues
after a load miss, whereas, MLP is determined by how many addi-
tional misses are encountered while servicing a miss.

Cost-sensitive replacement policies for on-chip caches were in-
vestigated by Jeong and Dubois [8][9]. They proposed variations
of LRU that take cost (any numerical property associated with a

cache block) into account. In general, any cost-sensitive replace-
ment scheme, including the ones proposed in [9], can be used for
implementing an MLP-aware replacement policy. However, to use
any cost-sensitive replacement scheme, we first need to define the
cost of each cache block based on the MLP with which it was ser-
viced. As the first step to enable MLP-aware cache replacement,
we introduce a run-time technique to compute MLP-based cost.

3. Computing ML P-Based Cost

For current instruction window sizes, instruction processing
stalls shortly after a long-latency miss occurs. The number of cy-
cles for which a miss stalls the processor can be approximated by
the number of cycles that the miss spends waiting to get serviced.
For parallel misses, the stall cycles can be divided equally among
all concurrent misses.

3.1. Algorithm

The information about the number of in-flight misses and the
number of cycles a miss is waiting to get serviced can easily be
tracked by the MSHR (Miss Status Holding Register). Each miss
is allocated an MSHR entry before a request to service that miss is
sent to memory [12]. To compute the MLP-based cost, we add a
field mip_cost to each MSHR entry. The algorithm for calculating
the MLP-based cost of a cache miss is shown in Algorithm 1.

Algorithm 1 Calculate MLP-based cost for cache misses

init_mlp_cost(miss):
miss.mlp_cost =0

/* when miss enters MSHR */

update_mlp_cost(): [* called every cycle*/
N < Number of outstanding demand missesin MSHR
for each demand missin the MSHR
miss.mlp_cost += (1/N)

When a miss is allocated an MSHR entry, the mlp_cost field
associated with that entry is initialized to 0. We count instruction
accesses, load accesses, and store accesses that miss in the largest
on-chip cache as demand misses. All misses are treated on correct
path until they are confirmed to be on the wrong path. Misses on
the wrong path are not counted as demand misses. Each cycle, the
mlp_cost of all demand misses in the MSHR is incremented by the
amount 1/(Number of outstanding demand misses in MSHR).>*
When a miss is serviced, the mlp_cost field in the MSHR repre-
sents the MLP-based cost of that miss. Henceforth, we will use
mlp-cost to denote MLP-based cost.

3The number of adders required for the proposed algorithm is equal
to the number of MSHR entries. However, for the baseline machine with
32 MSHR entries, time sharing four adders among the 32 entries has only
a negligible effect on the absolute value of the MLP-based cost. For all
our experiments, we assume that the MSHR contains only four adders for
calculating the MLP-based cost. If more than four MSHR entries are valid,
then the adders are time-shared between all the valid entries using a simple
round-robin scheme.

“We also experimented by increasing the mlp_cost only during cycles
when there is a full window stall. However, we did not find any significant
difference in the relative value of mlp_cost or the performance improve-
ment provided by our proposed replacement scheme. Therefore, for sim-
plicity, we assume that the mlp_cost is updated every cycle.

5 art-base . mcf-base . twolf-base . vpr-base . facerec-base ammp-base . 7 galgel-base
40 40 40 40 40 40 40

30 30 30 30 30 30

20 20 20 20 20 20

10 10 10 10 10 10

0
o & PP
bzip2-base

R

equake-base 0 0 parser-base

0 0 0
0 & PLPLEPE © & PELPLPPE © & PP
= sixtrk-base

0
o & PLPP
mgrid-base

0
SF o @
apsi-base . oL

PP

lucas-base

P S

50 50

40 40 40

40 40 40

30 30 30

20 20

20

30

30 30

20

20

20

10 10

10

10 10

10

COPTESPDF © 0 PLESPDF © @ PLPEPPPF © S PLPPPPF © @ PLESPPF © 0 PPPPPPF © & PPFEPPPS

Figure 2. Distribution of mlp-COSt. The horizontal axis represents the value of mlp-COSt in cycles and the vertical axis represents
the percentage of total misses. The dot on the horizontal axis represents the average value of mlp-COSt.

[Benchmark | art [mcf [twolf | vpr [facerec | ammp [galgel | equake [bzip2 | parser [apsi [sixtrack | lucas | mgrid |
delta < 60 86% | 86% | 52% | 50% 96% 82% 71% 78% 43% 43% 85% 100% 84% 18%
60 < delta < 120 7% 7% 12% 14% 0% 10% 9% 12% 15% 5% 5% 0% 6% 16%
delta > 120 % % 36% | 36% 4% 8% 20% 10% 42% 52% 10% 0% 10% 66%

[Averagedelta | 30 | 21 | 98 | 100 | 9 | 32 | 82 | 40 | 126 | 190 | 28 | 1 [52 | 187]

Table 1. The first three rows represent the percentage of deltas that were between 0-59 cycles, 60-119 cycles, and more than 120
cycles respectively. The last row represents the average value of delta.

3.2. Distribution of mlp-cost

Figure 2 shows the distribution of mlp-cost for 14 SPEC
benchmarks measured on an eight-wide issue, out-of-order pro-
cessor with a 128-entry instruction window. An isolated miss takes
444 cycles (400-cycle bank access + 44-cycle bus delay) to get ser-
viced. The vertical axis represents the percentage of all misses and
the horizontal axis corresponds to different values of mlp-cost.
The graph is plotted with 60-cycle intervals, with the leftmost bar
representing the percentage of misses that had a value of 0 < mlp-
cost < 60 cycles. The rightmost bar represents the percentage of
all misses that had an mlp-cost of more than 420 cycles. All iso-
lated misses (and some parallel misses that are serialized because
of DRAM bank conflicts) are accounted for in the right-most bar.

For each benchmark, the average value of mlp-cost is much
less than 444 cycles (number of cycles needed to serve an isolated
miss). For art, more than 85% of the misses have an mlp-cost of
less than 120 cycles indicating a high parallelism in misses. For
mcf, about 40% of the misses have an mlp-cost between 180 and
240 cycles, which corresponds to two misses in parallel. Mcf also
has about 9% of its misses as isolated misses. Facerec has two
distinct peaks, one for the misses that occur in isolation and the
other for the misses that occur with a parallelism of two. Twolf,
vpr, facerec, and parser have a high percentage of isolated misses
and hence the peak for the rightmost bar. The results for all of
these benchmarks clearly indicate that there exists non-uniformity
in mlp-cost which can be exploited by MLP-aware cache replace-
ment. The objective of MLP-aware cache replacement is to reduce
the number of isolated (i.e., relatively more costly) misses without
substantially increasing the total number of misses. mlp-cost can
serve as a useful metric in designing an MLP-aware replacement
scheme. However, for the decision based on mlp-cost to be mean-

ingful, we need a mechanism to predict the future mip-cost of a
miss given the current mip-cost of a miss. For example, a miss
that happens in isolation once can happen in parallel with other
misses the next time, leading to significant variation in the mlp-
cost for the miss. If mlp-cost is not predictable for a cache block,
the information provided by the mip-cost metric is not useful. The
next section examines the predictability of mlp-cost.

3.3. Predictability of the mip-cost metric

One way to predict the future mlp-cost value of a block is to
use the current mlp-cost value of that block. The usefulness of
this scheme can be evaluated by measuring the difference between
the mlp-cost for successive misses to a cache block. We call the
absolute difference in the value of mlp-cost for successive misses
to a cache block as delta. For example, let cache block A have
mlip-cost values of {444 cycles, 80 cycles, 80 cycles, 220 cycles}
for the four misses it had in the program. Then, the first delta for
block A is 364 (||444 —80||) cycles, the second delta for block A is
0 (]|80— 80|[) cycles, and the third delta for block A is 140 (||80 —
220]|) cycles. To measure delta, we do an off-line analysis of all
the misses in the program. Table 1 shows the distribution of delta.
A small delta value means that mlp-cost does not significantly
change between successive misses to a given cache block.

For all the benchmarks, except bzip2, parser, and mgrid, the
majority of the delta values are less than 60 cycles. The average
delta value is also fairly low, which means that the next-time mlp-
cost for a cache block remains fairly close to the current mip-cost.
Thus, the current mip-cost can be used as a predictor of the next
mlp-cost of the same block in MLP-aware cache replacement.
We describe our experimental methodology before discussing the
design and implementation of an MLP-aware cache replacement
scheme based on these observations.

4. Experimental M ethodology

4.1. Configuration

We perform our experiments using an execution-driven simu-
lator that models the Alpha ISA. Table 2 describes the baseline
configuration. Our baseline processor is an aggressive eight-wide
issue, out-of-order superscalar with a 128-entry instruction win-
dow. Because our studies deal with the memory system, we model
bank conflicts, queueing delays, and port contention in detail. An
isolated miss requires 444 cycles (400-cycle memory access + 44-
cycle bus delay) to get serviced. Store instructions that miss in the
L2 cache do not block the window unless the store buffer is full.

Instruction 16KB, 64B line-size, 4-way with LRU replacement;
Cache 8-wide fetch with 2 cycle access latency.
64K-entry gshare/64K-entry PAs hybrid with

Branch
: 64K-entry selector; 4K-entry, 4-way BTB;
Predictor L . e -
minimum branch misprediction penalty is 15 cycles.
Decode/ 8-wide; reservation station contains 128 entries

Issue and implements oldest-ready scheduling
8 general purpose functional units;
AIl INT instructions, except multiply, take 1 cycle;

LEJ);?;:Sutlon INT multiply takes 8 cycles.
All FP operations, except FP divide, take 4 cycles;
FP divide takes 16 cycles.
16KB, 64B line-size, 4-way with LRU replacement,
Data Cache 2-cycle hit latency, 32-entry MSHR.
1MB, 64B line-size, 16-way with LRU replacement,
Unified 15-cycle hit latency, 32-entry MSHR,
L2 Cache 128-entry store buffer. Store misses do not block
window unless the store buffer is full.
32 DRAM banks; bank conflicts modeled;
Memory 400-cycle bank access latency;

maximum 32 outstanding requests.
16B-wide split-transaction bus;

Bus processor to bus frequency ratio of 4:1;
queueing delays modeled.

Table 2. Baseline processor configuration.

4.2. Benchmarks

We use SPEC CPU2000 benchmarks compiled for the Alpha
ISA with the - f ast optimizations and profiling feedback en-
abled. For each benchmark, a representative slice of 250M in-
structions was obtained with a tool we developed using the Sim-
point [19] methodology. For all benchmarks, except apsi, the
ref er ence input set is used. For apsi, the t r ai n input set is
used.

Because cache replacement cannot reduce compulsory misses,
benchmarks that have a high percentage of compulsory misses
are unlikely to benefit from improvements in cache replacement
algorithms. Therefore, we show detailed results only for bench-
marks where less than 50% of the misses are compulsory.®> Table
3 shows the type, the fast-forward interval (FFWD), the number
of L2 misses, and the percentage of compulsory misses for each
benchmark.

SFor the remaining SPEC CPU2000 benchmarks, the majority of the
misses are compulsory misses. Therefore, our proposed scheme does
not significantly affect the performance of these benchmarks. With the

proposed MLP-aware replacement scheme, the performance improvement
ranges from +2.5% to -0.5% for those benchmarks.

Num L2 | Compulsory
Name Type | FFWD Misses Misses
art FP 18.25B 9680K 0.5%
mcf INT 14.75B | 23123K 2.2%
twolf INT 30.75B 859K 2.9%
vpr INT 60B 541K 4.3%
ammp FP 4.75B 704K 5.1%
galgel FP 14B 1333K 5.9%
equake FP 26.25B | 4604K 14.2%
bzip2 INT 2.25B 572K 15.5%
facerec FP 8.75B 1190K 18.0%
parser INT 66.25B 382K 20.3%
sixtrack | FP 8.5B 105K 20.6%
apsi FP 3.25B 74K 22.8%
lucas FP 2.5B 4041K 41.6%
mgrid FP 3.5B 1932K 46.6%

Table 3. Benchmark summary. (B = Billion)

5. The Design of an MLP-Aware Cache Re-
placement Scheme

Figure 3(a) shows the microarchitecture design for MLP-aware
cache replacement. The added structures are shaded. The cost cal-
culation logic (CCL) contains the hardware implementation of Al-
gorithm 1. It computes mip-cost for all demand misses. When a
miss gets serviced, the mip-cost of the miss is stored in the tag-
store entry of the corresponding cache block. For replacement,
the cache invokes the Cost Aware Replacement Engine (CARE)
to find the replacement victim. CARE can consist of any generic
cost-sensitive scheme [9][16]. We evaluate MLP-aware cache re-
placement using both an existing as well as a novel cost-sensitive
replacement scheme.

cosT (a) (b)
CALCULATION
LocIC BUS IComputed value of| Quantized
MLP-Based Cost| value
0 to 59 cycles 0
c 60 to 119 cycles 1
A
COST-AWARE | R L2 CACHE MEMORY 120 to 179 cycles 2
REPLACEMENT LE 180 to 239 cycles 3
ENGINE 240 to 299 cycles 4
300 to 359 cycles 5
icacte | [pcacHE
360 to 419 cycles 6
PROCESSOR PIPELINE 420+ cycles 7

Figure 3. (a) Microarchitecture for MLP-aware cache replace-
ment (Figure not to scale). (b) Quantization of mlp-COSt.

Before discussing the details of the MLP-aware replacement
scheme, it is useful to note that the exact value of mlp-cost is not
necessary for replacement decisions. In a real implementation, to
limit the storage overhead, the value of mlp-cost can be quantized
to a few bits and the quantized value would be stored in the tag-
store. We consider one such quantization scheme. It converts the
value of mlp-cost into a 3-bit quantized value, according to the
intervals shown in Figure 3(b). Henceforth, we use cost, to denote
the quantized value of mip-cost.

5.1. The Linear (LIN) Policy

The baseline replacement policy is LRU. The replacement
function of LRU selects the candidate cache block with the least
recency. Let Victimp gy be the victim selected by LRU and R(%)
be the recency value (highest value denotes the MRU and lowest
value denotes LRU) of block 7. Then, the victim of the LRU policy
can be written as:

Victimpry = arg min{R(4)} @)

We want a policy that takes into account both cost, and recency.
We propose a replacement policy that employs a linear function
of recency and cost,. We call this policy the Linear (LIN) policy.
The replacement function of LIN can be summarized as follows:
Let Victim v be the victim selected by the LIN policy, R(i) be
the recency value of block 4, and cost, () be the quantized cost of
block 4, then the victim of the LIN policy can be written as:

Victimprn = argmin{ R(i) + X - costq(i) } (2)

The parameter X\ determines the importance of cost, in choosing
the replacement victim. In case of a tie for the minimum value of
{R + X - costq}, the candidate with the smallest recency value is
selected. Note that LRU is a special case of the LIN policy with
A = 0. With a high X value, the LIN policy tries to retain recent
cache blocks that have high mlp-cost. For our experiments, we
used the position in the LRU stack as the recency value (e.g. for a
16-way cache, R(MRU) = 15 and R(LRU) = 0). Since cost,
is quantized into three bits, its range is from 0 to 7. Unless stated
otherwise, we use X\ = 4 in all our experiments.

5.2. Results for the LIN Policy

Figure 4 shows the performance impact of the LIN policy for
different values of X\. The effect of the LIN policy is more pro-
nounced as the value of X is increased from 1 to 4. With \=4, the
LIN policy provides a significant IPC improvement for art, mcf,
vpr, galgel, and sixtrack. In contrast, it degrades performance for
bzip2, parser, and mgrid. These benchmarks have high average
delta values (refer to Table 1), so the replacement decisions based
on mip-cost hurts performance. LIN can improve performance by
reducing the number of isolated misses, or by reducing the total
number of misses, or both. We analyze the LIN policy further by
comparing the mip-cost distribution of the LIN policy with the
mlp-cost distribution of the baseline.

25

20 | LIND H

(%) IPC improvement over baseline (LRU)
5 B &
L

& & &o\“ & . &éé’ &\éQ &&‘ &0,3\9 v;;V\Q"’ &45 ef;& & \Q(?? @%'\\

Figure 4. IPC improvement with LIN (\) as A is varied.

=LINE
159 =LING)||
104 ' k =LIN@) |
5.
okl ..

Figure 5 shows the mlip-cost distribution for both the base-
line and the LIN policy. The inset contains information about
the change in the number of misses and the change in IPC due
to LIN. For mcf, almost all the isolated misses are eliminated
by LIN. For twolf, although the total number of misses increases
by 7%, IPC increases by 1.5%. A similar trend of increase in
misses accompanied by increase in IPC is observed for ammp and
equake. For these benchmarks, the IPC improvement is coming
from reducing the number of misses with high mlp-cost even if
this translates into a slightly-increased total number of misses. For
all benchmarks, except art and galgel, the distribution of mlp-
cost is skewed towards the left (i.e. lower mlp-cost) for the
LIN policy when compared to the baseline. This indicates that
LIN -successfully- has a bias towards reducing the proportion of
high mlp-cost misses.

For art, galgel, and sixtrack, LIN reduces the total number of
misses by more than 30%. This happens for applications that have
very large data working-sets with low temporal locality, causing
LRU to perform poorly [18][24]. The LIN policy automatically
provides filtering for access streams with low temporal locality by
at least keeping some of the high mlp-cost blocks in the cache,
when LRU could have potentially caused thrashing. The large re-
duction in the number of misses for art and galgel reduces the par-
allelism with which the remaining misses get serviced. Hence, for
both art and galgel, the average mip-cost with the LIN policy is
slightly higher than for the baseline.

The LIN policy tries to retain recent cache blocks that have
high mlp-cost values. The implicit assumption is that the blocks
that had high mlp-cost at the time they were brought in the cache
will continue to have high mip-cost the next time they need to
be fetched. Therefore, the LIN policy performs poorly for bench-
marks in which current mlp-cost is not a good indicator of the
next-time mlp-cost. Examples of such benchmarks are bzip2 (av-
erage delta = 126 cycles), parser (average delta = 190 cycles), and
mgrid (average delta = 187 cycles). For these benchmarks, the
number of misses increases significantly with the LIN policy. For
the LIN policy to be useful for a wide variety of applications, we
need a feedback mechanism that can limit the performance degra-
dation caused by LIN. This can be done by dynamically choosing
between the baseline LRU policy and the LIN policy depending
on which policy is doing better. The next section presents a novel,
low-overhead adaptation scheme that provides such a capability.

6. A Practical Approach to Hybrid
Replacement

LIN performs better on some benchmarks and LRU performs
better on some benchmarks. We want a mechanism that can dy-
namically choose the replacement policy that provides higher per-
formance, or equivalently fewer memory related stall cycles. A
straightforward method of doing this is to implement both LIN
and LRU in two additional tag directories (note that data lines are
not required to estimate the performance of replacement policies)
and to keep track of which of the two policies is doing better. The
main tag directory of the cache can select the policy that is giving
the lowest number of memory related stalls. In fact, a similar tech-
nique of implementing multiple policies and dynamically choos-
ing the best performing policy is well understood for hybrid branch
predictors [13]. However, to our knowledge, no previous research

50

40

30

20

10

. mcf-base 5 twolf-base . vpr-base . facerec-base ammp-base . 7 galge-base

40 40 40 40 40

30 30 20 20 20

20 20 20 20

10 10 10 10
SEPPSFFEF SoPSPSPPS S EPPSFPEF

facerec-lin_ 2 ammp-lin galgel-lin

50

CHANGE

MISS: +4%]
40 IPC: +4.2%]

30
20
10

0 0 0
o & PHEPP P PPPSP DS © oD POF SOPIPIPOF 0o PPPSPOF
. bzip2-base . parser-base 5 = sixtrk-base . apsi-base . L lucas-base 5 mgrid-base
40 40 40 40 40 40 40
320 320 30 30 30 30 20
20 20 20 20 20 20 20
10 10 10 10 10 10
0 0 0 0
© & PLPHS P O & PPPSH S P PP P S & PPP L PF P 0 & PPPL L PF
. equake-lin 5 bzip2-lin L sixtrk-lin . apsi-lin L lucaslin - mgrid-lin
CHANGE CHANGE CHANGE

IMISS: +1%| MISS: +6%)|
40 IPC: +0.2% 40 IPC: -3.3%

1ss:-324
40 IPC: +4.7%

30

30

20 20

10 10

SOPFESPOE SO PIPSPDF © o PEFS PO

has looked at dynamic selection of replacement policy by imple-
menting multiple replacement schemes concurrently. Part of the
reason is that the hardware overhead of implementing two or more
additional tag directories, each the same size as the tag directory
of the main cache, is expensive. To reduce this hardware overhead,
we provide a novel, cost-effective solution that makes hybrid re-
placement practical. We explain our selection mechanism before
describing the final cost-effective solution.

6.1. Tournament Selection of Replacement Policy

Let MTD be the main tag directory of the cache. For facili-
tating hybrid replacement, MTD is capable of implementing both
LIN and LRU. MTD is appended with two Auxiliary Tag Directo-
ries (ATDs): ATD-LIN and ATD-LRU. Both ATD-LIN and ATD-
LRU have the same associativity as MTD. ATD-LIN implements
only the LIN policy, and ATD-LRU implements only the LRU pol-
icy. A saturating counter (SCTR) keeps track of which of the two
ATDs is doing better. The access stream visible to MTD is also
fed to both ATD-LIN and ATD-LRU. Both ATD-LIN and ATD-
LRU compete and the output of SCTR is an indicator of which
policy is doing better. The replacement policy to be used in MTD
is chosen based on the output of SCTR. We call this mechanism
Tournament Selection (TSEL). Figure 6 shows the operation of the
TSEL mechanism for one set in the cache.

30
20
10
0
o & PLPSSOF

PHLPPOS © oD
Figure 5. Distribution of mlp-COSt for baseline and LIN (A = 4). The horizontal axis represents the value of mlp-COSt in cycles and
the vertical axis represents the percentage of all misses. The dot on the horizontal axis represents the average value of mlp-COSt.

The insets in the graphs contain information about the change in the number of misses and IPC with the use of the LIN policy.

If a given access hits or misses in both ATD-LIN and ATD-
LRU, neither policy is doing better than the other. Thus, SCTR
remains unchanged. If an access misses in ATD-LIN but hits in
ATD-LRU, LRU is doing better than LIN for that access. In this
case, SCTR is decremented by a value equal to the cost, of the
miss (a 3-bit value) incurred by ATD-LIN. Conversely, if an ac-
cess misses in ATD-LRU but hits in ATD-LIN, LIN is doing better
than LRU. Therefore, SCTR is incremented by a value equal to
the cost, of the miss incurred by ATD-LRU.5 Unless stated other-
wise, we use a 6-bit SCTR counter in our experiments. All SCTR
updates are done using saturating arithmetic.

Saturating Counter ATD-LIN | ATD-LRU Action
ATD-LIN ATD-LRU
HIT HIT SCTR unchanged
MISS MISS SCTR unchanged
If MSB of SCTRis 1, MISS HIT Decre_mepl SCTR by cosl‘1
MTD uses LIN of Miss in ATD-LIN
else MTD uses LRU Increment SCTR by cost g
HIT MISS of Miss in ATD-LRU

Figure 6. Tournament Selection for a single set.

60nly accesses that result in a miss for MTD are serviced by the mem-
ory system. If an access results in a hit for MTD but a miss for either
ATD-LIN or ATD-LRU, then it is not serviced by the memory system. In-
stead, the ATD that incurred the miss finds a replacement victim using its
replacement policy. The tag field associated with the replacement victim
of the ATD is updated. The value of cost, associated with the block is
obtained from the corresponding tag-directory entry in MTD.

ATD-LIN ATD-LRU

Set A Set A

ATD-LIN ATD-LRU

Set B Set B

Set C Set C

Set D Set D

Set E Set E

‘SetB \ / Set B ‘
=

[setE Set E_|

Set F Set F

Set G Set G

S

Set G|

Set H Set H

Decides Policy for

All Sets in MTD

(a) The TSEL-global mechanism

Decides Policy for
All Sets in MTD

(b) A TSEL-global like mechanism
using Dynamic Set Sampling

3 1.00 s P e
Legend for MTD S ydl |4
a 095
|:| Leader Sets. Implement LIN / /
WD Policy. Have ATD entries. 3? 0.90 -~
[] Follower Sets. Policy decided o 085 / /‘/ -‘/r"'
Sl By SCTR. No ATD entries. £~ / / o
Set B > 0.80
=1 ATD-LRU s /(-/./r
Set B ‘g 0.75 e
D Set E 1 ——p=0.9
et E - & o0 vl oo
Set F el »g 0.65 / - p=0:7 L]
Setle Decides Policy for only E 0.60 —=—p=06 | |
SE L Follower Sets in MTD) |+—p=05
5 0.55 ‘
(c) Sampling Based Adaptive Replacement a 050 5 5 ™ o 3‘2 y

Number of Leader Sets

Figure 7. (a) The TSEL-global mechanism (b) An approximation to TSEL-global mechanism using

sampling (c) Sampling Based Adaptive Replacement (SBAR) for a cache that has eight sets.

If LIN reduces memory related stall cycles more than LRU,
then SCTR will be saturated towards its maximum value. Simi-
larly, SCTR will be saturated towards zero if the opposite is true.
If the most significant bit (MSB) of SCTR is 1, the output of SCTR
indicates that LIN is doing better. Otherwise, the output of SCTR
indicates that LRU is doing better. Note that SCTR is incremented
or decremented by cost, instead of by 1, which results in selec-
tion based on the cumulative value of MLP-based cost of misses
(i.e., > cost,), rather than the raw number of misses. This is an
important factor in the TSEL mechanism that allows TSEL to se-
lect the policy that results in the smallest number of stall cycles,
rather than the smallest number of misses. If the value of cost,
is constant or random, then the adaptation mechanism automati-
cally degenerates to selecting the policy that results in the smallest
number of misses.

6.2. Dynamic Set Sampling

A simple, but expensive, way to implement hybrid replacement
is to implement the TSEL mechanism for every set in the cache.
In such an implementation, for each set in MTD, there would be
a corresponding set in ATD-LIN and ATD-LRU, and an SCTR
counter. MTD can consult the SCTR counter corresponding to its
set for choosing between LIN and LRU. We call this implemen-
tation TSEL-local as it implements TSEL locally on a per-set ba-
sis. TSEL-local requires two ATDs, each sized the same as MTD,
which makes it a high-overhead option.

Another method of extending the TSEL mechanism for the en-
tire cache is to have both ATD-LIN and ATD-LRU feed a single
global SCTR counter. The output of the single SCTR decides the
policy for all the sets in MTD. We call this mechanism TSEL-
global. An example of the TSEL-global scheme is shown in Fig-
ure 7(a) for a cache that has eight sets. Note that TSEL-global
reduces the number of SCTR counters to one, but it does not re-
duce the number of costly ATD entries associated with each set.

The key insight that allows us to reduce the number of ATD en-
tries for TSEL-global is that it is not necessary to have all the sets
participate in deciding the output of SCTR. If only a few sampled
sets are allowed to decide the output of SCTR, then the TSEL-
global mechanism will still choose the best performing policy with
a high probability. The sets that participate in updating SCTR
are called Leader Sets. Figure 7(b) shows a TSEL-global mecha-
nism with sampling. Sets B, E, and G are the leader sets. These
sets have ATD entries and are the only sets that update the SCTR
counter. There are no ATD entries for the remaining sets. For the

Figure 8. Bounds on Leader Sets.

example in Figure 7(b), sampling reduces the number of ATD en-
tries required for the TSEL-global mechanism to 3/8 of its original
value. A natural question is: how many leader sets are sufficient
to select the best performing replacement policy? We provide both
analytical as well as empirical answers to this question.

6.3. Analytical Model for Dynamic Set Sampling

To keep the analysis tractable, we make the simplifying as-
sumption that all sets affect performance equally. Let P(Best)
be the probability that the best performing policy is selected by
the sampling-based TSEL-global mechanism. Let there be IV sets
in the cache. Let p be the fraction of the sets that favor the best per-
forming policy. Given that we have two policies, LRU and LIN,
by definition p > 0.5.

If only one set is selected at random from the cache as the
leader set, then P(Best) = p. If three sets (N > 3) are chosen
at random from the cache as leader sets, then for the mechanism
to correctly select the globally best performing policy, at least two
of the three leader sets should favor the globally best performing
policy. Thus, for three leader sets, P(Best) is given by:

P(Best) =p* +3-p°- (1—p) 3)

In general, if k sets (k < N) are randomly selected from the
cache as leader sets, then P(Best) is given by:

(k—1)/2
For odd k, P(Best)= Z (f) ~p(k7i) -(1- p)i 4)
i=0

For even k,
(=14+k/2)

-2 Y)" (1-p)
= (5)

Where (¥) refers to the number of combinations of i elements
from a group of k elements (k!/(i! - (k — 4)!). Figure 8 plots
P(Best) for different numbers of leader sets as p is varied. Ex-
perimentally, we found that the average value of p for all bench-
marks is between 0.74 and 0.99. From Figure 8 we can conclude
that a small number of leader sets (16-32) is sufficient to select the
globally best-performing policy with a high (> 95%) probability.
This is an important result because it means that the baseline cache
can have expensive ATD entries for only 16-32 sets (i.e., about 2%
to 3% of all sets) instead of all the 1024 sets in the cache.

P(Best) = 0.5-(5)p"-(1

6.4. Sampling Based Adaptive Replacement

Sampling makes it possible to choose the best performing pol-
icy with high probability even with very few sets in the ATD.
Because the number of leader sets is small, the hardware over-
head can be further reduced by embedding the functionality of
one of the ATDs in MTD. Figure 7(c) shows such a sampling-
based hybrid scheme, called Sampling Based Adaptive Replace-
ment (SBAR). The sets in MTD are logically divided into two cat-
egories: Leader Sets and Follower Sets. The leader sets in MTD
use only the LIN policy for replacement and participate in updat-
ing the SCTR counter. The follower sets implement both the LIN
and the LRU policies for replacement and use the SCTR output
to choose their replacement policy. The follower sets do not up-
date the SCTR counter. There is only a single ATD, ATD-LRU.
ATD-LRU implements only the LRU policy and has only sets cor-
responding to the leader sets. Thus, the SBAR mechanism requires
a single ATD with entries only corresponding to the leader sets.

We now discuss a method to select leader sets. Let N be the
number of sets in the cache and K be the number of leader sets
(in our studies we restrict the number of leader sets to be a power
of 2). We logically divide the cache into K equally-sized regions
each containing N/K sets. We call each such region a constituency.
One leader set is chosen from each constituency, either statically
at design time or dynamically at runtime. A bit associated with
each set then identifies whether the set is a leader set. We propose
a leader set selection policy that obviates the need for marking
the leader set in each constituency on a per-set basis. We call this
policy the simple-static policy. It selects set 0 from constituency 0,
set 1 from constituency 1, set 2 from constituency 2, and so on. For
example, if K=32 and N=1024, the simple-static policy selects sets
0, 33, 66, 99,..., and 1023 as leader sets. For the leader sets, bits
[9:5] of the cache index are identical to the bits [4:0] of the cache
index, which means that the leader sets can easily be identified
using a single five-bit comparator without any additional storage.
Unless stated otherwise, we use the simple-static policy with 32
leader sets in all our SBAR experiments. We analyze the effect
of different leader set selection policies and different number of
leader sets in Section 6.6.

6.5. Results for the SBAR Mechanism

Figure 9 shows the IPC improvement over the baseline
configuration when the SBAR mechanism is used to dynamically
choose between LRU and LIN. For comparison, the IPC improve-
ment provided by the LIN policy is also shown. For art, mcf, vpr,
facerec, sixtrack, and apsi, SBAR maintains the IPC improvement
provided by LIN. The most important contribution of SBAR is that
it eliminates the performance degradation caused by LIN on bzip2,
parser, and mgrid. For these benchmarks, the SCTR in the SBAR
mechanism is almost always biased towards LRU. The marginal
performance loss in these three benchmarks is because the leader
sets in MTD still use only LIN as their replacement policy. For
ammp and galgel, the SBAR policy does better than either LIN or
LRU alone. This happens because in some phases of the program
LIN does better, while in others LRU does better. With SBAR,
the cache is able to select the policy better suited for each phase,
thereby allowing it to outperform either policy implemented alone.
In Section 7.1, we analyze the ability of SBAR to adapt to varying
program phases using ammp as a case study.

(%) IPC improvement over baseline (LRU)

NS
IR R &S
Figure 9. IPC improvement with the SBAR mechanism.

6.6. Effect of Leader Set Selection Policies and Dif-
ferent Number of Leader Sets

To analyze the effect of leader set selection policies, we intro-
duce a runtime policy, rand-runtime. Rand-runtime randomly se-
lects one set from each constituency as the leader set. In our exper-
iments, we invoke rand-runtime once every 25M instructions and
mark the sets chosen by rand-runtime as leader sets for the next
25M instructions. Figure 10 shows the performance improvement
for the SBAR policy with the simple-static policy and the rand-
runtime policy for 8, 16, and 32 leader sets.

9
n

= (a) simple-static; 8 leader sets
= (b) rand-runtime; 8 leader sets
= (c) simple-static; 16 leader sets
= (d) rand-runtime; 16 leader sets
= (€) simple-static; 32 leader sets
= (f) rand-runtime; 32 leader sets

]

5

10

(%) IPC improvement over basdline (LRU)

& & & ¢ < 6356' 6&& Q,}qé §$ & &4‘ 9*5\'&. & &e';\b
Figure 10. Performance impact of SBAR for different leader set
selection policies and different number of leader sets.

For all benchmarks, except ammp, the IPC improvement of
SBAR is relatively insensitive to both the leader set selection pol-
icy and the number of leader sets. In most benchmarks, one re-
placement policy does overwhelmingly better than the other. This
causes almost all the sets in the cache to favor one policy. Hence,
even as few as eight leader sets are sufficient, and the simple-static
policy works well. For ammp, the rand-runtime policy performs
better than the simple-static policy when the number of leader sets
is 16 or smaller. This is because ammp has widely-varying de-
mand across different cache sets, which is better handled by the
random selection of the rand-runtime policy than the rigid static
selection of the simple-static policy. However, when the number
of leader sets increases to 32, the effect of the set selection policy
is less pronounced, and there is hardly any performance difference
between the two set selection policies. Due to its simplicity, we
use the simple-static policy with 32 leader sets as default in all our
SBAR experiments.

We also compared SBAR to TSEL-global and TSEL-local and
found that, except for art and ammp, the IPC increase provided
by SBAR is within 1% of the best performing TSEL-global” or
TSEL-local policies. For ammp, TSEL-global improves IPC by

"We use a seven-bit SCTR for the TSEL-global policy.

20.3% while SBAR improves IPC by 18.3%. For art, TSEL-
local improves IPC by 18% whereas SBAR improves IPC by 16%.
However, SBAR requires 64 times fewer ATD entries than TSEL-
local or TSEL-global, making it a much more practical solution.

7. Analyss

7.1. Ammp: A Case Study

For ammp, SBAR improves IPC by 18.3% over the baseline
LRU policy while the LIN policy improves IPC by only 4.2%.
This difference in IPC improvement between SBAR and LIN is
because ammp has two distinct phases: in one phase LIN performs
better than LRU and in the other LRU performs better than LIN.
To view this time-varying phase behavior, we collected statistics
from the cache every 10M retired instructions during simulation.
Figure 11(a) shows the average cost, per miss, Figure 11(b) shows
the misses per 1000 retired instructions, and Figure 11(c) shows
the IPC for three different policies: LRU, LIN, and SBAR over
time during the simulation runs.

] i 2
: Wl 7 A
R] 85 N/*" o
7, t /\}N [2 3, m‘
S TR BT - O1 ! |
¥ A MV&Y ¢ AN
o = KON/ 5 |
d NILY X/)\/‘/ g Mm
3t (RU || g uww\:/ RU | 3" TRU e,
= ES == i —
2 = LIN] .gl =—LIN R I S
; =—SBAR = —SBAR ——SBAR
2
AT LN L % % 7 1o s o s Ao A5 B0 0§ % 8 7o 10 155 150 15 20 25
Instructions (Million) Instructions (Million) Instructions (Million)
@ (b) ©

Figure 11. Comparison of LRU, LIN, and SBAR for the ammp
benchmark in terms of: (a) the average cost of misses, (b) the
number of misses per 1000 instructions, and (c) IPC.

As expected, LIN results in lower cost, per miss than LRU
throughout the whole simulation, indicating that the LIN policy is
successful at reducing the cost, of misses. However, this reduc-
tion can come at the expense of significantly increasing the raw
number of misses, which may negatively impact the IPC. Until
150M instructions, this is not a problem: LIN has both lower cost,,
per miss and fewer misses than LRU. Therefore, the IPC with LIN
is much better than the IPC with LRU for the first 150M instruc-
tions. However, after 150M instructions, LIN has significantly
more misses than LRU, which reduces the IPC for the LIN policy
compared to LRU. With SBAR, the cache dynamically adapts and
uses the policy that is best suited for each phase: LIN until 150M
instructions and LRU after 150M instructions. Therefore, SBAR
provides higher performance than both LIN and LRU.

7.2. Hardware Cost of MLP-Aware Replacement

The performance improvement of MLP-aware replacement
comes at a small hardware overhead. For each entry in the MSHR,
an additional 14 bits (assuming a 9.5 fixed point format) are re-
quired to compute the milp-cost. Also, cost, is stored in each
tag-store entry in the cache, increasing the size of each tag-store
entry by three bits. If SBAR is used to adaptively choose between
LRU and LIN, then additional storage is required for the ATD en-
tries. Table 4 details the storage overhead of SBAR assuming a
40-bit physical address space and 32 leader sets. SBAR requires
a storage overhead of 1856 bytes, which is less than 0.2% of the
total area of the baseline L2 cache.

(%) IPC improvement over baseline (LRU)

10

Size of each ATD entry (1 valid bit + 24-bit tag + 4-bit LRU) 29 bits
Total number of ATD entries per leader set 16
ATD overhead per leader set (29 bits/way * 16 ways) 58B
Total SBAR overhead (32 leader sets * 58 B/set) 1856 B
Avrea of baseline L2 cache (64kB tags + 1MB data) 1088 kB
Percentage increase in L2 area due to SBAR (1856B/1088kB) | 0.166%

Table 4. Storage overhead of SBAR.

7.3. MLP-Aware Replacement using an Existing
Cost-Sensitive Replacement Policy

We proposed the SBAR mechanism to implement a MLP-
aware cache replacement policy. However, the central idea of
this paper, MLP-aware cache replacement, is not limited in imple-
mentation to the proposed SBAR mechanism. Our framework for
MLP-aware cache replacement makes even existing cost-sensitive
replacement policies applicable to the MLP domain. As an exam-
ple, we use Adaptive Cost-Sensitive LRU (ACL) [9] to implement
an MLP-aware replacement policy. ACL was proposed for cost-
sensitive replacement in Non-Uniform Memory Access (NUMA)
systems and used the memory access latency as the cost parameter.
Similarly, MLP information about a cache block can also be used
as the cost parameter in ACL. Figure 12 shows the performance
improvement of an MLP-aware replacement scheme implemented
using ACL. For comparison, the results for SBAR are also shown.

5

= MLP-aware replacement using SBAR
= MLP-aware replacement using ACL

K] ¢ & ¢ &
& & & ¢ & & g,& L @4" g“# # & &
Figure 12. MLP-aware replacement using different cost-
sensitive policies.

MLP-aware replacement improves performance for both im-
plementations: ACL and SBAR, indicating that MLP-aware re-
placement works with both existing (ACL) and proposed (SBAR)
cost-sensitive polices. However, SBAR has higher performance
and substantially lower hardware overhead than ACLS, which
makes SBAR a much more favorable candidate for implementing
MLP-aware cache replacement.

8The cost-sensitive policy employed by ACL requires a shadow direc-
tory on a per-set basis. For the baseline 16-way cache, ACL needs a 15-
way shadow directory [9]. Assuming a 40-bit physical address space, each
entry in the shadow directory needs four bytes of storage (24-bit tag + 1
valid bit + 4 LRU bits + 3 cost bits = 4B). Thus, the total overhead of
the shadow directory is 60kB (4B/entry * 15 entries/set * 1024 sets = 60
kB). Comparatively, the overhead of SBAR is only 1856B (see Table 4),
which is 33 times smaller than the overhead of ACL. Because ACL requires
shadow directory information on a per-set basis, it is not straightforward to
use dynamic set sampling to reduce the storage overhead of ACL.

8. Conclusion

Memory Level Parallelism (MLP) varies across different
misses of an application, causing some misses to be more costly
on performance than others. The non-uniformity in the perfor-
mance impact of cache misses can be exposed to the cache replace-
ment policy so that it can improve performance by reducing the
number of costly misses. Based on this observation, we propose
MLP-aware cache replacement. We present a run-time technique
to compute the MLP-based cost for each cache block. This cost
metric is used to drive cost-sensitive cache replacement policies.
We also propose Sampling Based Adaptive Replacement (SBAR)
to dynamically choose between an MLP-aware replacement pol-
icy (LIN) and a traditional (LRU) replacement policy, depending
on which one is providing better performance. Our results show
that MLP-aware cache replacement can improve performance by
up to 23%.

9. FutureWork

MLP-aware cache replacement can also be implemented by dy-
namically partitioning the cache into two regions, one for low-
MLP misses and the other for high-MLP misses, and using a tra-
ditional replacement scheme for each of the two regions. Such
a scheme would be particularly attractive for highly associative
caches [7][20], where the complexity of the replacement scheme
is severely constrained by the replacement latency.

The two key ideas proposed in this paper, MLP-aware cache re-
placement and SBAR can both be extended in several directions.
The MLP-aware replacement concept can be extended to take into
account prefetching, runahead execution, and other MLP improv-
ing techniques. This paper used SBAR for choosing between LIN
and LRU. However, SBAR is a general framework that allows dy-
namic selection between multiple competing replacement policies
depending on which one is providing higher performance. The
idea of dynamic set sampling can also be used for other cache re-
lated optimizations, such as dynamically tuning the parameters of
a given replacement policy, reducing the hardware overhead of an
expensive replacement policy (e.g., [14]), or reducing the pollution
caused by prefetching mechanisms. Exploring these optimizations
is part of our future work.

Acknowledgments

We thank Derek Chiou, Aamer Jaleel, Paul Racunas, and Jared
Stark for comments on earlier drafts of this paper. The discussions
with Santhosh Srinath and Chang Joo Lee helped in improving the
clarity of Figure 1 and Section 6.3, respectively. We thank all the
members of the HPS research group for the fertile and enjoyable
environment they help create. This work was supported by gifts
from IBM, Intel, and the Cockrell Foundation. Moinuddin Qureshi
is supported by a PhD fellowship from IBM.

References

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing
and recovery: Towards scalable large instruction window processors.
In Proceedings of the 36th Annual ACM/IEEE International Sympo-
sium on Microarchitecture, 2003.

[2] L.A.Belady. A study of replacement algorithms for a virtual-storage
computer. In IBM Systems Journal, pages 78-101, 1966.

11

[3] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations
for exploiting memory-level parallelism. In Proceedings of the 31st
Annual International Symposium on Computer Architecture, 2004.
A. Cristal et al. Kilo-instruction processors: Overcoming the mem-
ory wall. IEEE Micro, 25(3), May 2005.

J. Dundas and T. Mudge. Improving data cache performance by pre-
executing instructions under a cache miss. In Proceedings of the 1997
International Conference on Supercomputing, 1997.

A. Glew. MLP yes! ILP no! In WId and Crazy Ideas Session, 8th
International Conference on Architectural Support for Programming
Languages and Operating Systems, October 1998.

E. G. Hallnor and S. K. Reinhardt. A fully associative software-
managed cache design. In Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture, pages 107-116, 2000.
J. Jeong and M. Dubois. Optimal replacements in caches with two
miss costs. In SPAA’99: Proceedings of the 11th Annual ACM Sym-
posiumon Parallel Algorithms and Architectures, 1999.

J. Jeong and M. Dubois. Cost-sensitive cache replacement algo-
rithms. In Proceedings of the 9th International Symposium on High
Performance Computer Architecture, 2003.

T. Karkhanis and J. E. Smith. A day in the life of a data cache miss.
In Second Annual Workshop on Memory Performance I ssues, 2002.
T. S. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In Proceedings of the 31st Annual International Symposium
on Computer Architecture, 2004.

D. Kroft. Lockup-free instruction fetch/prefetch cache organization.
In Proceedings of the 8th Annual International Symposium on Com-
puter Architecture, 1981.

S. McFarling. Combining branch predictors. Technical Report TN-
36, Digital Western Research Laboratory, June 1993.

N. Megiddo and D. Modha. ARC: A low overhead self tuning re-
placement cache. In USENIX File and Storage Technologies, 2003.
O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution:
An alternative to very large instruction windows for out-of-order pro-
cessors. In Proceedings of the 9th International Symposium on High
Performance Computer Architecture, 2003.

N. Young. The K-server dual and loose competetiveness for paging.
Algorithmica, 11(2):525-541, 1994.

V. S. Pai and S. Adve. Code transformations to improve memory
parallelism. In Proceedings of the 32nd Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, 1999.

S. Palacharla and R. E. Kessler. Evaluating stream buffers as a sec-
ondary cache replacement. In Proceedings of the 21st Annual Inter-
national Symposium on Computer Architecture, 1994.

E. Perelman et al. Using SimPoint for accurate and efficient simula-
tion. ACM SIGMETRICS Performance Evaluation Review, 2003.

M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-Way cache:
Demand based associativity via global replacement. In Proceedings
of the 32nd Annual International Symposium on Computer Architec-
ture, 2005.

S. T. Srinivasan, R. D.-C. Ju, A. R. Lebeck, and C. Wilkerson. Lo-
cality vs. criticality. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, 2001.

S. T. Srinivasan and A. R. Lebeck. Load latency tolerance in dy-
namically scheduled processors. In Proceedings of the 31st Annual
ACM/IEEE International Symposium on Microarchitecture, 1998.
M. V. Wilkes. The memory gap and the future of high performance
memories. ACM Computer Architecture News, 29(1):2—7, Mar. 2001.
W. A. Wong and J.-L. Baer. Modified LRU policies for improving
second-level cache behavior. In Proceedings of the 6th International
Symposium on High Performance Computer Architecture, 2000.

H. Zhou. Dual-core execution: Building a highly scalable single-
thread instruction window. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques,
2005.

[4]
[5]

6]

[71

8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

