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Abstract

Existing DRAM controllers employ rigid, non-adaptive sthkng and buffer management policies when servicing refeequests. Some
controllers treat prefetch requests the same as demancestgiuothers always prioritize demand requests over plefeiquests. However, none
of these rigid policies result in the best performance beeahey do not take into account the usefulness of prefeqclests. If prefetch requests
are useless, treating prefetches and demands equally eantdesignificant performance loss and extra bandwidth congtion. In contrast, if
prefetch requests are useful, prioritizing demands ovefgiches can hurt performance by reducing DRAM throughpdtdelaying the service
of useful requests.

This paper proposes a new low-cost memory controller, défieefetch-Aware DRAM Controller (PADC), that aims to maxarthe benefit
of useful prefetches and minimize the harm caused by ugmiefesches. To accomplish this, PADC estimates the ussfsilof prefetch requests
and dynamically adapts its scheduling and buffer managépwities based on the estimates. The key idea is to 1) addypfprioritize between
demand and prefetch requests, and 2) drop useless prefetiztieee up memory system resources, based on the accurttey pfefetcher. Our
evaluation shows that PADC significantly outperforms gragimemory controllers with rigid prefetch handling padiei Across a wide range
of multiprogrammed SPEC CPU 2000/2006 workloads, it imgsosystem performance by 8.2% on a 4-core system and by 9.8 &core
system while reducing DRAM bandwidth consumption by 10.78®a4% respectively.

1. Introduction

High performance memory controllers seek to maximize tghmut by exploitingow buffer locality A modern SDRAM bank
contains arow bufferthat buffers the data of the last accessed memory row. Tdreredn access to the same row (callea-
hit) can be serviced significantly faster than an access to erelift row (calledow-conflic) [15]. Due to this non-uniform access
latency, state-of-the-art memory access schedulingipslgtch as [42, 27, 14] prefer row-hits over row-conflictenprove DRAM
throughput, thereby improving system performance. Howeke problem of DRAM access scheduling becomes more citig
when we take prefetch requests into consideration.

Today’s microprocessors employ hardware prefetchersde ling DRAM access latencies. If prefetch requests areratecu
and fetch data early enough, prefetching can improve padiace. However, even if prefetch accuracy is high, the fesfiddit of
prefetching may not be achieved based on how the DRAM cdetrsthedules the requests. For example, a demand request ca
delay a prefetch request that could have otherwise beeicedrvery fast in DRAM, e.qg., if the prefetch request is a foitvwhile
the demand request is a row-conflict. If the prefetch is Usd&laying it by servicing the row-conflict demand requestfnay not
result in the best performance.

In addition, prefetching does not always improve and canesones degrade performance due to two reasons. First,sssele
prefetch requests unnecessarily consume valuable gifldmdwidth and fetch useless data that might displace ludgta blocks
in processor caches. Second, prefetch requests contetimkfeame resources (e.g., memory request buffer entriesmantbry bus
bandwidth) as demand (load/store) requests issued by agsiog core. As a result, a prefetch request can delay a dbraquest,
which could lead to performance degradation especiallydfrefetch is useless. If the interference between plefetguests and
demand requests is not controlled, system performanceegrade because either demand requests or useful prefetodsts can
be significantly delayed.

*This work is an extended version of the work presented in fta thternational Symposium on Microarchitecture (MICRD-[10], "Prefetch-Aware DRAM
Controllers”. Sections 1, 2, 4, and 6 are siginificantly extended beyofl [Almost all sections are revised to clarify the explaoa$. This submission contains
approximately 50% additional new material. Details of th&easions are described in the accompanying cover letter.



Existing DRAM scheduling policies take two different apacbes as to how to treat prefetch requests with respect tamdm
requests. Some policies [37] regard a prefetch requestue the same priority as a demand request. As noted aboveydhity
can significantly delay demand requests and cause perfesrdaygradation, especially if prefetch requests are natrate Other
policies [7, 11, 5, 31, 32] always prioritize demand regsestr prefetch requests so that data known-to-be-needtu lprogram
instructions can be serviced earlier. One might think thaags prioritizing demand requests over prefetch requestse memory
controller provides the best performance by eliminatirgititerference of prefetch requests with demand requestselkr, such
a rigid demand-over-prefetch prioritization policy does nonsider the non-uniform access latency of the DRAM sygtew-hits
vs. row-conflicts). A row-hit prefetch request can be sexdicnuch more quickly than a row-conflict demand request. dthes,
servicing the row-hit prefetch request first provides reR®AM throughput and can improve system performance coerth&w
servicing the row-conflict demand request first

Figure 1 provides supporting data to demonstrate this. Tibigze shows the performance impact of an aggressive stream
prefetcher [34, 32] when used with two different memory stthimg policies for 10 SPEC 2000/2006 benchmarks. The cagrti
axis is retired instructions per cycle (IPC) normalizedhe tPC on a processor with no prefetching. One poligmand-prefetch-
equaldoes not differentiate between demand and prefetch reqjué@siis policy is the same as the FR-FCFS (First Ready-First
Come First Serve) policy that prioritizes requests as fodlo 1) row-hit requests over all others, 2) older requestr gounger
requests [27]. As a result, DRAM throughput is maximized.e™ther policy,demand-first prioritizes demand requests over
prefetch requests. Prefetch requests to a bank are notideldadtil all the demand requests to the same bank are sdrwiithin
a set of outstanding demand or prefetch requests, the padiey the same prioritization rules as the FR-FCFS policya Assult,
this policy does not maximize overall DRAM throughput bessuit prefers row-conflict demand requests over row-hit girf
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Figure 1. Normalized performance of a stream prefetcher wit h two different DRAM scheduling policies

The results show thateither of the two policies provides the best performancal@applications For the leftmost five appli-
cations, prioritizing demands over prefetches resultseittds performance than treating prefetches and demandslgqun these
applications, a large fraction (70% for demand-prefetghat, and 59% for demand-first) of the generated streamtgtefequests
are useless. Therefore, it is important to prioritize dedheaguests over prefetches. In fact, &t andmilc, servicing the demand
requests with higher priority is critical to make prefetohieffective. Prefetching improves the performance oféhes applica-
tions by 2% and 10% respectively with tdemand-firsscheduling policy, whereas it reduces performance by 148@3&/6 with

thedemand-prefetch-equpblicy.

INote that maximizing the number of row-hits provides thehiist throughput the DRAM bank can deliver.
2For completeness, we also implemented another pgiefetch-first that always prioritizes prefetch requests over demandesis. This policy provides the
worst performance (5.8% IPC degradation compared to deffiemigholicy) on all the benchmarks.



On the other hand, for the rightmost five applications, weeolxs the exact opposite behavior. Equally treating demauad a
prefetch requests provides significantly higher perforogatinan prioritizing demands over prefetches. In partigita libquan-
tum, the demand-prefetch-equablicy allows the prefetcher to provide 169% performanceriovement, in contrast to the 60%
performance improvement it provides with tdemand-firsscheduling policy. This is because prefetch requestdbguantum
are very accurate (almost 100% of them are useful). MaxmgifdRAM throughput by preferring row buffer hits in the DRAM
system regardless of whether a memory request is a demamteiedch request allows for more efficient bandwidth uditian and
improves the timeliness (and the coverage) of prefetcheseby improving system performaricd hese results show that DRAM
scheduling policies with rigid prioritization rules amopgefetch and demand requests cannot provide the best parfice and
may even cause prefetching to degrade performance.

Note that even though the DRAM scheduling policy has a sicgmifi impact on the performance provided by prefetching,
prefetching sometimes degrades performance regardletiseoDRAM scheduling policy. For examplgalgel ammp and
xalancbmksuffer significant performance loss with prefetching besgaa large fraction (69%, 94%, and 91%) of the prefetches
are not needed by the program. The negative performancectropthese useless prefetch requests cannot be mitigalielgl by a
demand-firsscheduling policy because useless prefetches 1) occupymesquest buffer entries in the memory controller until
they are serviced, 2) occupy DRAM bandwidth while they armdpeserviced, and 3) cause cache pollution by evicting jpbgsi
useful data from the processor caches after they are sdrvikg a result, useless prefetches could delay the servifidgmand
requests and could result in additional demand requesesdanceyseless prefetch requests can deny service to demand teques
because the DRAM controller is not aware of the usefulnegsadétch requests in its memory request buffier prevent this, the
memory controller should intelligently manage the memaguest buffer between prefetch and demand requests.

Our goal in this paper is to design an adaptive DRAM controller thavigre of prefetching. We propose a memory controller
that adaptively controls the interference between prafated demand requests to improve system performance. Otoltenaims
to maximize the benefits of useful prefetches and minimieehérm of useless prefetches. To do so, it employs two teobnriq
to manage both memory bandwidth and memory request butiesed on the runtime behavior (accuracy and timelinesd)eof t
prefetcher, it 1) adaptively decides whether or not to fitiiser demand requests over prefetch requests, and 2) deeidether or
not to drop likely-useless prefetches from the memory retjoeffer.

We evaluate ouPrefetch-Aware DRAM Controllesn a wide variety of benchmarks and systems and find that gistamtly
outperforms previous DRAM controllers that rigidly hangiefetches on both single-core and multi-core (2, 4, andr@jsystems.
Our controller improves the performance of the 55 SPEC 2008 benchmarks by up to 68% (on average 4.3%) compared to the
best previous controller on a single core processor. Ouhargsm also improves system performance (i.e., weighteddyp) for
54 SPEC workloads by 8.4% on a 2-core system, for 32 worklbgd®.2% on a 4-core system, and for 21 SPEC workloads by
9.9% on an 8-core system while also reducing memory bantvagdbhsumption by 10.0%, 10.7% and 9.4% for 2, 4, and 8 core
systems respectively. We show that our controller is sinplmplement and low-cost, requiring only 4.25KB of storaga 4-core
system.

Contributions: To our knowledge, this is the first paper that comprehengiaat adaptively incorporates prefetch-awareness
into the memory controller's scheduling and request bufianagement policies. We make the following contributions:

1. We show that the performance of a prefetcher significashtigends on how prefetch requests are handled by the memory

controller with respect to demand requests. Rigid memohgedualing policies that treat prefetches and demands gqgoathat

SImproving DRAM throughput improves prefetch coverage byueing the probability that a useful prefetch is not issued the memory system because the
memory request buffer is full. We will explain this in moretdi¢in Section 6.1.



always prioritize demands can either cause significanebssperformance or not achieve the best performance fapalications.

2. We propose a low-cost memory controller design that dyoaltg adapts its prioritization policy between demand prefetch
requests based on how accurate and timely the prefetchreaigiven program phase. This mechanism achieves high peafare
by improving both DRAM throughput and prefetch timelinessierage.

3. We propose a simple mechanism that reduces the intecierauseless prefetches with demand requests by proactivel
removing the likely-useless prefetches from the memoryestgbuffer. This mechanism efficiently reduces the bulfendwidth,
and cache space resources consumed by useless prefétenelsy improving both performance and bandwidth-efficjenc

4. We show that the proposed adaptive scheduling and buff@ragement mechanisms interact positively. Prafetch-Aware
DRAM Controller(PADC) that comprises both mechanisms significantly impsoperformance and bandwidth-efficiency on both
single-core and multi-core systems. In addition, our peapds very effective for a variety of prefetching algorithrincluding
stream, PC-based stride, CZone/ Delta Correlation (C/2aj,Markov prefetching.

5. We comprehensively evaluate the performance and DRAMtfadiic of PADC on various DRAM and last-level cache
configurations. We also compare and incorporate PADC willerotechanisms such as hardware prefetch filtering, fe&dbac
directed prefetching, memory address remapping, and aathbxecution. Our results show that PADC not only outpar§obut

also complements all of these previous performance enhzrtemechanisms.

2. Background
2.1. DRAM Systems and Scheduling

An SDRAM system consists of multiple banks that can be aeckswlependently. Each DRAM bank comprises rows and
columns of DRAM cells. A row contains a fixed-size block ofalétisually several Kbytes). Each bank haswa buffer(or sense
amplifier), which caches the most recently accessed row in the DRAM.bErery DRAM access can only be done by reading
(writing) data from (to) the row buffer using a column addres

There are three possible sequential commands that needissuex to a DRAM bank in order to access data. A memory
controller may issue 1) prechargecommand to precharge the row bitlines, 2)autivatecommand toopena row into the row
buffer with the row address, and then 3yead/write command to access the row buffer with the column addresser Alfte
completion of an access, the DRAM controller can either kibeprow open in the row bufferopen-rowpolicy) or close the row
buffer with a precharge commandi@sed-rowpolicy). The latency of a memory access to a bank varies dbpgron the state of
the row buffer and the address of the request as follows:

1. Row-hit The row address of the memory access is the same as the adfithe opened row. Data can be read from/written
to the row buffer by a read/write command, therefore thel tatancy is only the read/write command latency.

2. Row-conflict The row address of the memory access is different from titeesd of the opened row. The memory access
needs a precharge, an activate and a read/write commanergizdly. The total latency is the sum of all three commaneraies.

3. Row-closedThere is no valid data in the row buffer (i.e. closed). Theess needs an activate command and then a read/write
command. The total latency is the sum of these two commaaddas.

DRAM access time is shortest in the case of a row-hit{1Fherefore, a memory controller can try to maximize DRAMalat
throughput by maximizing the hit rate in the row buffer, il.first scheduling row-hit requests among all the requedtss memory
request buffer. Previous work [27] introduced the commesttyployed FR-FCFS (First Ready-First Come First Serverpathich

“Row-hit latency is about one third of the latency of a row-tiohfor contemporary SDRAM systems. For example, the ratahd row-conflict latencies are
12.5ns and 37.5ns respectively for a 2Gbit DDR3 SDRAM chi [Ihe row-closed latency is 25ns. We use the open-row palioyughout the paper since it
increases the possibility to improve DRAM throughput. Weoadvaluate the closed-row policy in Section 6.8 to show fleeveness of our mechanism.



prioritizes requests such that it services 1) row-hit resgidirst and 2) all else being equal, older requests firsts Phlicy was
shown to provide the best average performance in systerhsgléhaot employ hardware prefetching [27, 14]. Unfortungtétis
policy is not aware of the interaction and interference leetwdemand and prefetch requests in the DRAM system, arefdher

treats demand and prefetch requests equally.
2.2. Hardware Prefetchers

In most of our experiments we use a stream prefetcher sitoildre one used in IBM’'s POWER 4/5 [34]. Stream prefetchess ar
commonly used in many processors [34, 9] since they do neiiregignificant hardware cost and work well for a large nurrdde
applications. They try to identify sequential streams ddhat the application needs by closely monitoring andnding previous
sequential accesses. Once a stream is identified, prefeqciests are sent out for data further down the stream so tien the
processor actually demands the data, it will already beérctithe. As such, stream prefetchers are likely to generaty oseful
row-hit prefetch requests which our PADC can take advantdgd herefore, we achieve significant performance improzets
with our PADC combined with a stream prefetcher. Our implatagon of a stream prefetcher is explained in the next secti

We also evaluated our mechanism with other prefetchers sfriue prefetcher [1] is similar to the stream prefetcheribstead
of identifying only sequential streams, it detects seqasmnd addresses that differ by a constant value (stride) andrgtes prefetch
requests that continue in the stride pattern. The MarkofeRieer [7], a correlation-based prefetcher, records iargd table the
cache miss addresses that follow a cache miss. If the sanseoetsirs again, the table is accessed, and prefetch reqaehts
recorded next address(es) are generated. We also evaluatéPDC with the previously proposed, CZone/ Delta Cotieta
(C/DC) prefetcher [24]. This prefetcher divides the addrsgace statically into fixed size regions (CZones) and firadtems
among miss addresses within a region. It uses delta caoesatio detect patterns more complex than simple stridesganerates
prefetch requests that follow the detected pattern. Nateath of these prefetchers can also generate a significantiainof row-hit
prefetch requests, especially for streaming/stridingresklcorrelation patterns. In the results section we shatvdur PADC can

improve performance when combined with any of these priaéstcand is not restricted to working with only a stream pdfer.
2.3. Stream Prefetcher

We discuss an implementation of an aggressive stream phefiefsimilar to the one used in the IBM POWERA4/5 [34]) used to
collect most of our experimental res®td he stream prefetcher prefetches cache lines into the ti2€a

Eachstream entryin the stream prefetcher monitors a range of consecutiveechice addresses beginning at a starting pointer
(S) and ending at S plusgefetch distanc€D). We call this range of consecutive cache line addressesratoring region. We
also associate with the stream prefetcherefetch degreéN). When a new (not part of an existing stream) cache misarsca
stream entry is allocated and the cache line address isded@s S. When subsequent cache accesses (both cache hitissew)
within a small distance from S occur, the direction of prelfiég is determined and the monitoring region is setupis@with S
and ending with S+D. If an L2 cache access happens within tirétoring region, N consecutive prefetch requests fronhedime
address S+D+1 to S+D+N are sent to the memory system. Afedetohes are sent, the monitoring region is shifted in thectiobn
of prefetching by the number of the requests sent. The timasti and aggressiveness of the stream prefetcher arecfusofi both
D and N.

Since the stream prefetcher tries to fetch consecutiveechols from a region, it is likely that it will generate manyw-hit

5The stream prefetcher we use for the evaluations is the leefstrming among the large set of prefetchers we examinethdtoves IPC performance by 20%
on average for all the 55 SPEC 2000/2006 benchmarks usingmifirst policy. For the detail implementation of the streprefetcher, refer to [32, 34].

6We implement a prefetcher that prefetches data into the kBedthe last-level cache in our processor model) only,esintarge instruction window in an
out-of-order processor can tolerate the latency of L1 nsissest of time.



prefetch requests. If the row buffer locality of these pretierequests is not exploited intelligently by the DRAM sdhking policy,
DRAM throughput and system performance can degrade.

3. Motivation: Rigid Prefetch Scheduling in DRAM Systems

None of the existing DRAM scheduling policies [7, 27, 37, 31, 32] take into account both the non-uniform nature of DRAM
access latencies and the behavior of prefetch requestsyhether they are useful or useless. We illustrate whyid,rigon-adaptive
prefetch scheduling policy degrades performance in Figui@onsider the example in Figure 2(a), which shows threstandling
memory requests (to the same bank) in the memory requesrbi®bw A is currently open in the row buffer of the bank. Two

requests are prefetches (to addresses X and Z) that aceefswahile one request is a demand request (to address Y) ticataes

row B.
o P . Z i _ .
DRAM Processor stall Processor execution (25 cycles) @ Row-hit (100 cycles) @ Row-conflict (300 cycles)
Bank Row buffer
DRAM AR % DRAM NS % DEMAND
Row A opened Y X z Y X z S
Processor g & Processor - > FIRST
A \
777777777777777 ? \ Cycles saved
DRAM | Controller Miss Y Miss X Miss Z 3 Miss Y
X: Pref row A f————=Time i f————=Time |
Y: Dem row B
| oren [ZZ0777STENEEY) | DEMAND
X 7 v ‘ X 7 Y ‘ PREFETCH
Processor c ' Processor g EQUAL
Cycles saved
Memory request buffer Miss Y Hit X' Hit Z Miss Y
(a) DRAM and controller state (b) Timeline when prefetches are useful (c) Timeline when prefetches are useless

Figure 2. Performance impact of demand-first vs. demand-pre fetch-equal policy

For Figure 2(b), assume that the processor needs to loadssdrY, X, and Z in a serial fashion (i.e. the prefetches seful)
and the computation between each load instruction takes@, fsmall number of cycles (25 in the figure) that is signifitesmaller
than the DRAM access latencyWe assume processor execution takes a small number oidyetause previous studies [21, 8]
have shown that most of the execution time is dominated by BMR&cess latency. Figure 2(b) shows the service timelinbef t
requests in DRAM and the resulting execution timeline ofgiheressor for two different memory scheduling policigsmand-first
anddemand-prefetch-equalVith the demand-first policy (top), the row-conflict demaeduest is satisfied first, which causes the
prefetch of address X to incur a row-conflict as well. The sgjuent prefetch request to Z is a row-hit because the prefdtc
X opens row A. As a result, the processor first stalls for agpnately two row-conflict latencies (except for a small pefriof
execution), to access address Y and then to access addrése Brocessor then stalls for an additional row-hit latefagain with
the exception of another small period of execution) sinceduires the data prefetched from address Z. The total dr@ctiime
is the sum of two row-conflict latencies and one row-hit lateplus a small period of processor execution (the other cdatipn
periods are hidden), which is 725 cycles in the example.

With the demand-prefetch-equal policy (bottom), the ratvpinefetch requests to X and Z are satisfied first. Then, the ro
conflict demand request to Y is serviced. The processossialil the demand request to Y is serviced. However, oncdé¢neand
request is serviced, the processor does not stall any magube the memory requests to the other addresses it needsl X) a
have already been serviced and placed into the cache. Thegsar only needs to perform the computations between itk lo

instructions, and finds that loads to X and Z hit in the cachee fesulting total execution time is the sum of two row-hiefecies,

"For simplicity of illustration, this example abstracts gwaany details of the DRAM system as well as processor queuess as DRAM bus/bank timing
constraints and processor queuing delays. These effecfaiirfully modeled in our simulation framework. We omitth from the figure to illustrate the concept
of rigid prefetch scheduling in the DRAM controller.



one row-conflict latency, and the latency to execute the eaaipn between each load instruction for a total of only By&8les in
the example. Hencé#reating prefetches and demands equally can significantlymprove performance when prefetch requests
are useful We observe that the stream prefetcher generates veryaeqmefetch requests for many memory intensive applicatio
such adibquantum, swimandleslie3d For these applications, the demand-prefetch-equal mesadreduling policy increases
prefetch timeliness by increasing DRAM throughput andéfeme improves performance significantly as shown in Figure

However, prefetch requests might not always be useful. érestample of Figure 2(a), assume that the processor needado |
only address Y but still generates useless prefetches tessls X and Z. Figure 2(c) shows the service timeline of ¢heests
and the resulting execution timeline of the processor fertéo different memory scheduling policies. With the deméirst policy
(top), the processor needs to stall only for a single rowfladiriatency that is required to service the demand requet tand
therefore the total execution time is 325 cycles. On therdthhed, with the demand-prefetch-equal policy, the pramesseds to
stall additional cycles since X and Z are serviced (evenghdhey are not needed) before Y. It takes two row-hit recpigsservice
the useless prefetches to X and Z and one row-conflict reqoasrvice the demand request to Y. The resulting execuitios is
525 cycles. Hencdreating prefetches and demands equally can significantly egrade performance when prefetch requests
are uselessIn fact, our experimental data in Figure 1 showed that iingademands and prefetches equally in applications where
most of the prefetches are useless causes prefetching radgggerformance by up to 36% (fonilc).

These observations illustrate that 1) DRAM schedulinggiedi that rigidly prioritize between demand and prefetadjuessts
without taking into account the usefulness of prefetch estgican either degrade performance or fail to provide tlse fessible
performance, and 2) the effectiveness of a particular prkfprioritization mechanism significantly depends on teefulness of
prefetch requests. Based on these observations, to imgireveffectiveness of prefetching we aim to develop an adaf@RAM
scheduling policy that dynamically changes the priortimaorder of demands and prefetches by taking into accdentsefulness

of prefetch requests.

4. Mechanism: Prefetch-Aware DRAM Controller

To DRAM
DRAM command & addressT

Update
Request Adaptive Prefetch :
Priority & Scheduling (APS) :
Memory request buffer :
Drop
Request Adaptive Prefetch :
information & Dropping (APD) H
Prefetch—Aware :
: DRAM Controller :

Prefetch accuracy from each co

Figure 3. Prefetch-Aware DRAM Controller

Our Prefetch-Aware DRAM Controller (PADC) consists of twangponents as shown in Figure 3: An Adaptive Prefetch Schedul
ing (APS) unit and an Adaptive Prefetch Dropping (APD) udiPS tries to 1) maximize the benefits of useful prefetchesmby i
creasing DRAM throughput and 2) minimize the harm of usefgstetches by delaying their DRAM service and hence redpucin
their interference with demand and useful prefetch requesd®D cancels useless prefetch requests effectively yphélserving the
benefits of useful prefetches. Both APS and APD are drivembyrteasurement of the prefetch accuracy of each processiagc

a multi-core system. Before explaining how each componemnksy we explain how prefetch accuracy is measured for eah ¢



4.1. Prefetch Accuracy Measurement

We measure the prefetch accuracy for an application runoimg particular core over a certain time interval. The acoyra
reset once the interval has elapsed so that the mechanisadeahto the phase behavior of prefetching. To measure #fetph
accuracy of each core, the following hardware support isireq:

1. Prefetch (P) bit per L2 cache line and memory request befiéry’: For memory request buffer entries, this bit indicates
whether or not the request was generated by the prefetdligsdt when a new memory request is generated by the prefetaid
reset when the processor issues a demand request to the aelneelioe while the prefetch request is still in the memoyuesst
buffer. For cache lines, this bit indicates whether or noaehe line was brought into the cache by a prefetch requastsdt when
the line is filled (only if the prefetch bit of the request ig)send is reset when a cache hit to the same line occurs.

2. Prefetch Sent Counter (PSC) per core: This counter keapk tf the total number of prefetch requests sent by cores It
incremented whenever a prefetch request is sent to the nyaequest buffer by the core.

3. Prefetch Used Counter (PUC) per core: This counter keapk bf the number of prefetches that are useful. It is inenetad
when a prefetched cache line is used (cache hit) by a demgndstand also when a demand request matches a prefetclstreque
already in the memory request buffer.

4. Prefetch Accuracy Register (PAR) per core: This registeres the prefetch accuracy measured every time intelPfeR is
computed by dividing PUC by PSC.

At the end of every time interval, PAR is updated with the ptelfi accuracy calculated during that interval and PSC and PU
are reset to 0 to calculate the accuracy for the next inteiMa¢ PAR values for each core are fed into the Prefetch-AR&AM

Controller which then uses the values to guide its schedwaitd memory request buffer management policies.

4.2. Adaptive Prefetch Scheduling

Adaptive Prefetch Scheduling (APS) changes the prioritgl@hand/prefetch requests from a processing core basedeon th
prefetch accuracy estimated for that core. The basic idéa 13 treat useful prefetch requests the same as demandstecgee
that useful prefetches can be serviced faster by maxim2RéM throughput, and 2) give demand and useful prefetchestgu
a higher priority than useless prefetch requests so thdesserefetch requests do not interfere with demand andiugedfetch
requests.

If the prefetch accuracy is greater than or equal to a cettaigshold promotion_threshold, all of the prefetch requests from
that core increase in priority and are treated the same aamnequests. Such prefetch requests and all demand requesialled
critical requests. If the estimated prefetch accuracy of a coresshesyromotion_threshold, than demand requests of that core
are prioritized over prefetch requests. Such prefetchestpiare calledon-critical requests.

The essence of our proposal is to prioritize critical reqgi@ver non-critical ones in the memory controller, whileggrving
DRAM throughput. To accomplish this, our mechanism pripeis memory requests in the order shown in Rule 1. Each tizayi

tion decision in this set of rules is described in furtheradldielow.

Rule 1 Adaptive Prefetch Scheduling
1. Critical request (C): Critical requests are prioritized over all other requests
2. Row-hit request (RH): Row-hit requests are prioritized over row-conflict reqses
3. Urgent request (U} Demand requests generated by cores with low prefetch acgare prioritized over other requests.
4. Oldest request (FCFS) Older requests are prioritized over younger requests.

8Many previous proposals [4, 28, 40, 41, 32] already use afmbit for each cache line and memory request buffer entry.
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First, critical requests (useful prefetches and demandesty) are prioritized over others. This delays the sclireglaf non-
critical requests, most of which are likely to be uselesdgtches. As a result, useless prefetches are preventedifitenfiering
with demands and useful prefetches.

Second, row-hit requests are prioritized over others. Tiiseases the row-buffer locality for demand and usefufgioh
requests and maximizes DRAM throughput as much as possible.

Third, demand requests from cores whose prefetch accusdegs thamromotion_threshold are prioritized. These requests
are calledurgentrequests. Intuitively, this rule tries to give a boost to deenand requests of a core with low prefetch accuracy over
the demand requests of cores with high prefetch accuradg i3 ldue to two reasons. First, if a core has high prefetchraoy,
its prefetch requests will be treated the same as the deregp@sts of another core with low prefetch accuracy (duedatitical
request first prioritization rule). Doing so risks starvitigg demand requests of the core with low prefetch accurasylting in a
performance degradation since many critical requests fratore with high prefetch accuracy (demand + prefetchestsy will
contend with the critical requests from the core with lowfpteh accuracy (demand requests only). To avoid such stanvand
performance degradation, we boost the demand requests obth with low prefetch accuracy. Second, the performahescore
with low prefetch accuracy is already affected negativehtie useless prefetches. By prioritizing the demand raquassuch
cores over the requests of other cores, we aim to help themeahce of cores that are already losing performance duedo p
prefetcher behavior. We further discuss the effect of tiiing urgent requests in Section 6.3.4.

Finally, if all else is equal, older requests have prioritaeoyounger requests.

4.3. Adaptive Prefetch Dropping

APS naturally delays (just like the demand-first policy) DBRAM service of prefetch requests from applications wittv lo
prefetch accuracy by making the prefetch requests noitalréis described in Section 4.2. Even though this redueeinterference
of useless requests with useful requests, it cannot getfrall @f the negative effects of useless prefetch requestadtvidth
consumption, cache pollution) because such requestsweititaally be serviced. As such, APS by itself cannot elingral of the
negative aspects of useless prefetches. Our second schdaive Prefetch Dropping (APD), aims to overcome thisitition
by proactively removing old prefetch requests from the esqlouffer if they have been outstanding for a long periodroét The
key insight is that if a prefetch request is old (i.e., hasrnbegtstanding for a long time), it is likely to be useless anapging it
from the memory request buffer eliminates the negativecedfthe useless request might cause in the future. We firstidesvhy

old prefetch requests are likely to be useless based on iealpiteasurements.
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Figure 4. Example of behavior of prefetches for ~ milc

Why are old prefetch requests likely to be useless®igure 4(a) shows the memory service time (from entry inortiemory
request buffer to entry into the L2 fill buffer) of both use&uid useless prefetches foilc using the demand-first scheduling policy

(other benchmarks show very similar behavior). The graph lidstogram with 9 latency intervals measured in procesgtes.
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Each bar indicates the number of useful/useless prefetplests whose memory service time was within that intervéd of all
prefetches have a service time greater than 1600 procegdescand 86% of these prefetches are useless. Usefutgretetend

to have a shorter service time than useless prefetches (88 compared to 2238 cycles fmilc). This is because a prefetch
request that is waiting in the request buffer can become addmequestif the processor sends a demand request for that same
address while the prefetch request is still in the bufferctBuseful prefetches that are hit by demand requests wilkebéced
earlier by the demand-first prioritization policy. Theredp useful prefetches on average experience a shorteicseiwmie than
useless prefetches. This is also true when we apply APS gipderitizes critical requests over non-critical reqtes

Mechanism: The observation that old prefetch requests are likely todmass motivates us to remove a prefetch request from
the request buffer if the prefetch is old enough. Our proho&BD, monitors prefetch requests for each core and ineddis
any prefetch request that has been outstanding in the meraquest buffer for longer thairop_threshold cycles. We adjust
drop_threshold based on the prefetch accuracy for each core measured ineieys time interval. If the prefetch accuracy in the
interval is low, our mechanism uses a relatively low valuediamp_threshold so that it can quickly remove useless prefetches from
the request buffer. If the prefetch accuracy is high in therival, our mechanism uses a relatively high valuelffarp_threshold so
that it does not prematurely remove useful prefetches flerequest buffer. By removing useless prefetches, APDssageurces
such as request buffer entries, DRAM bandwidth, and cacheespwhich can instead be used for critical requests (i.enade
and useful prefetch requests) rather than being wastedelasssprefetch requests. Note that APD interacts positiveéh APS
since APS naturally delays the service of useless (noitalirequests so that the APD unit can completely removentiiem the
memory system thereby freeing up request buffer entriesasailing unnecessary bandwidth consumption.

Determining drop_threshold: Figure 4(b) shows the runtime behavior of the stream prhétaccuracy fomilc, an application
that suffers from many useless prefetches. Prefetch aogwas measured as described in Section 4.1 using an inten&I0K
cycles. The figure clearly shows that prefetch accuracy eae tiery strong phase behavior. From 150 million to 275 oiiltiycles,
the prefetch accuracy is very low (close to 0%), implying snaseless prefetch requests were generated during this timee
almost all prefetches are useless during this period, wddnMdee to be able to quickly drop them. Our mechanism accashels
this using a lowdrop_threshold. On the other hand, we would waiitop_threshold to be much higher during periods of high
prefetch accuracy. Our evaluation shows that a simple dHiéxop_threshold adjusted dynamically can effectively eliminate

useless prefetch requests from the memory system whildngepeful prefetch requests in the memory request buffer.

4.4. Implementation and Hardware Cost of a Prefetch-Aware [IRAM Controller

An implementation of our PADC requires storing additionaflormation in each memory request buffer entry to suppaet th
priority and aging information needed by APS and APD. Theaimexgl additional information (in terms of the fields addec&zh
request buffer entry) is shown in Figure 5.

The C, RH and FCFS fields are already used in the baseline FSF{&mand-first policy to indicate criticality (de-
mand/prefetch), row-hit status, and arrival time of theuest. Therefore the only additional fields are U, P, ID, andEA@&hich
indicate the urgency, prefetch status, core ID, and agesofetuest. Each DRAM cycle, priority encoder logic chookeshighest
priority request using the priority fields (C, RH, U, and FGHk$the order shown in Figure 5.

The APD unit removes a prefetch request from the memory tduéfer if the request is older than tHeop_threshold of the
core that generated the request. It does not remove a gretxjoest (that is not scheduled for the DRAM service) uhghisures
that the prefetch cannot be matched by a demand request.isTéisomplished by invalidating the MSHR entry of the preffiet

9A prefetch request that is hit by a demand request in the mgmeguest buffer becomes a real demand request. Howeverowe it as a useful prefetch
throughout the paper since it was first requested by the tofederather than the processing core.
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*Row-hit (1 bit) *FCFS Core ID (log, (N) bits)
*Critical (1 bit) l Urgent (L bit) l Prefetch (1 bit) AGE (8 bits)

C|RH U FCFS P ID AGE

Priority for APS Information for APD

N: Number of cores
*Already used in demand-fir.

Figure 5. Memory request field for PADC
request before actually dropping it. The APD unit knows ieguest is a prefetch and also which core it belongs to fronPtaed

ID fields. The AGE field of each request entry keeps track ofaipe of the request. APD compares the AGE of the request to the
corresponding core'drop_threshold and removes the request accordingly. Note that the estmatfithe age of a request does
not need to be highly accurate. For example, the AGE fieldaemented every 100 processor cycles for our evaluation.

The hardware storage cost required for our implementatfdhePADC is shown in Table 1. The storage cost for our 4-core
CMP system described in Section 5 is shown in Table 2. Thédtieage cost is only 34,720 bits-4.25KB) which is equivalent
to only 0.2% of the L2 cache data storage in our baseline gemre Note that the Prefetch bit (P) per cache line accoontsver
4KB of storage by itself{95% of the total required storage). If a processor alreadyleys prefetch bits in its cache, the total
storage cost of our prefetch-aware DRAM controller is on§24 bits ~228B).

| [ Bit field | Count | Cost (bits) |
P (1 bit) Neache X Neore + Nreg Neache X Neore + Nregq
PSC (16 bits) Ncore Neore X 16
Prefetch T -
eteteh aceuraty —rp4c (16 bits) Neore Neore X 16
PAR (8 bits) Ncore Neore X 8
APS U (Lbi) Nreg Nyeq

APD 1D (logQNc()'r‘e bitS) Nreq Nreq X lOgQNco'r‘e

AGE (10 bltS) Nreq Nreq X 10

Table 1. Hardware Cost of Prefetch-Aware DRAM Controller ( Negche: Number of cache lines per core  Neore: Number of cores, Nreq:
Number of memory request buffer entries)

| I Bit field | Cost (bits) |
P 32,896
PSC 64
Prefetch accuracy BUC o7
PAR 32
APS U 128
ID 256
APD AGE 1,280
Total storage cost for the 4-core system in Section5 34,720
Total storage cost as a fraction of the L2 cache capagity 0.2%

Table 2. Hardware cost of PADC on 4-core system

5. Methodology
5.1. Processor Model and Workloads

We use a cycle accurate x86 CMP simulator for our evaluatiar.processor faithfully models port contention, queuifigas,
bank conflicts, and other DDR3 DRAM system constraints. Tdeebne configuration of each processing core is shown iteTab
and the shared resource configuration for single, 2, 4, acat&CMPs is shown in Table 4.

13



Out of order, 15 (fetch, decode, rename stages) stagesjeleetre up to 4 instructions, issue/execute up to 8 mistouctions;
256-entry reorder buffer; 32-entry load-store queue; 25gsizal registers

Fetch up to 2 branches; 4K-entry BTB; 64-entry return adsistack;

Hybrid branch predictor: 64K-entry gshare [13] and 64KrgiffAs predictor [36] with 64K-entry selector

L1 I-cache: 32KB, 4-way, 2-cycle, 1 read port, 1 write podBdine size;

On-chip Caches| L1 D-cache: 32KB, 4-way, 4-bank, 2-cycle, 1 read port, 1&vpiort, 64B line size;

Unified L2: 512KB (1MB for single core processor), 8-way, &k, 15-cycle, 1 port, 64B line size;

Prefetcher Stream prefetcher with 32 streams, prefetch degree of 4cacite line prefetch distance of 64 (lookahead) [34, 32]

Table 3. Baseline configuration per core

Execution Core

Front End

On-chip, demand-first FR-FCFS scheduling policy; 1 memontioller for 1, 2, 4, 8-core CMP

64, 64, 128, 256-entry L2 MSHR and memory request buffer f&, 4, 8-core CMP.

667MHz DRAM bus cycle, Double Data Rate (DDR3 1333MHz) [1HB-wide data bus per memory controlle

DRAM and bus | 8 DRAM banks, 4KB row buffer per bank

Latency: 15ns per command (prechafgep), activate{ RC D), read/writeC'L)), BL = 4; AL = 3
Table 4. Baseline shared resource configuration

DRAM controller

=

We use the SPEC 2000/2006 benchmarks for experimentalati@iu Each benchmark was compiled using ICC (Intel C
Compiler) or IFORT (Intel Fortran Compiler) with the -O3 apt. We ran each benchmark with the reference input set fér 20

million x86 instructions selected by Pinpoints [25] as aresentative portion of each benchmark.

We classify the benchmarks into three categories: prefiei@nsitive, prefetch-friendly, and prefetch-unfrigngtliass 0, 1, and
2 respectively) based on the performance impact a prefebetsson the applicatidf. The characteristics for a subset of benchmarks
with and without a stream prefetcher are shown in Table 5y @slubset of benchmarks were chosen due to limited spaceyvieow
we do evaluate the entire set of 55 benchmarks for single @goeriments for our results. To evaluate our mechanism o CM
systems, we formed combinations of multiprogrammed waitofrom the 55 SPEC 2000/2006 benchmarks. We ran 54, 321and 2

randomly chosen workload combinations (from the 55 SPECH®iarks) for our 2, 4, and 8-core CMP configurations respelgti

[ [[No prefetchef] Prefetcher with demand-first policy 1] [[No prefetchef] Prefetcher with demand-first policy I
Benchmark ][ IPC] MPKI [ IPC[MPKI]RBH(%)[ACC(%)] COV(%)[ Clasg[ Benchmark [[ IPC[ MPKI[[ IPC[MPKI]RBH(%)[ACC(%)] COV(%)] Class
eon00 2.08 0.01}|2.08| 0.00 84.93 37.37] 52.64 0 swim_.00 0.35] 27.57||0.62| 8.66 42.83  99.95] 68.58] 1
mgrid-00 0.65] 6.50//0.85] 0.30 59.56 97.46 95.37 galgel00 1.42 4.26|(1.10] 7.56 65.50, 30.96 23.94]
art 00 0.18| 89.39||0.18| 65.52] 91.46 35.88] 34.00 equake00 0.42| 19.87||1.00 0.76 85.02 95.63 96.19
facerec00 1.40 3.45||1.64| 1.18 92.42] 55.15] 67.04 ammpO00 1.70 0.80(|1.47[ 1.70 56.20 5.96 8.03
lucas00 0.48) 10.61{|0.79] 1.42[ 44.06| 86.78 86.63 gcc 06 0.55 6.28((0.81] 2.23 81.57| 32.62] 65.37
mcf.06 0.13] 33.73[|0.15] 29.70] 25.63] 31.43 14.75 hmmer06 1.34 1.76]|1.35] 0.03 27.44] 95.42| 98.21
sjeng06 1.57 0.38|[1.57| 0.38 25.13 1.67 1.11 omnetpp06 [|0.41| 10.16|/0.44| 9.57 61.86) 10.50] 18.33
libqguantumO06 || 0.41| 13.51||0.65| 2.75 81.39] 99.98 79.63 astar06 0.43| 10.19)|0.48| 9.23 43.86| 18.38] 12.64
xalancbmkO06 [[0.80 1.70({0.71] 2.12 49.35 8.96 13.26| bwaves06 0.59| 18.71{|1.23] 0.37 83.99 99.97 98.00]
games06 2.11 0.04]|2.13] 0.01 83.97] 57.80 74.73 milc_06 0.41] 29.33[|0.46| 20.88| 81.13 19.45] 28.81]
zeusmp06 0.75] 4.55]/10.86] 2.32 46.91 55.93 50.45 cactusADMO6(|0.71 4.54/(0.84] 2.21 33.56] 45.12 51.47|
leslie3d06 0.53| 20.89||0.86] 2.41 77.32] 89.72] 88.66) soplex06 0.35] 21.25[|0.72| 3.61 78.81] 80.12 83.08]
GemsFDTDO6/{0.44| 15.61{[0.80[ 2.02 55.82 90.71 87.12 Ibm_06 0.46] 20.16[/0.70[ 2.93 58.24] 94.27| 85.45
wrf_06 0.62 8.10{[ 1.03| 0.60| 67.14] 95.23( 92.63 sphinx306 [[0.36] 12.94[|0.64] 2.24] 83.94] 54.91] 82.96

il N E R RN
NN RN RN

Table 5. Characteristics for 28 SPEC 2000/2006 benchmarks w ith/without stream prefetcher: IPC, MPKI (L2 misses Per 1K | nstructions),
RBH (Row Buffer Hit rate), ACC (prefetch accuracy), COV (pre fetch coverage), and class

For the evaluation of our PADC, we use a prefetch accuraayevaf 85% forpromotion_threshold (for APS) and a dynamic

threshold shown in Table 6 felrop_threshold (for APD). The accuracy is calculated every 100K cycles.

10f MPKI (L2 Misses Per 1K Instructions) increases when thefgicher is enabled, the benchmark is classified as 2. If Mittbut prefetching is greater than
10 and bus traffic increases by more than 75% when prefetéhimgabled the benchmark is also classified as 2. OtherfigC iincreases by 5%, the benchmark
is classified as 1. Otherwise, it is classified as 0. Note thahary intensive applications that experience increas€ddfd reduced MPKI (such asilc) may
still be classified as prefetch-unfriendly if bus traffic ieases significantly. The reason for this is that althougmerease in bus traffic may not have much of a
performance impact on single core systems, in CMP systetiissivared resources, the additional bus traffic can degadermance substantially.
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Prefetch accuracy (%) 0-10/10-3030-7070- 100
drop_threshold (processor cycleg) 100 | 1,500 (50,000 100,000
Table 6. Dynamic drop_threshold values for Adaptive Prefetch Dropping based on prefetch acc uracy

5.2. Metrics

We define the metrics used for experimental evaluation giglction Bus trafficis the number of cache lines transferred over the
bus during the execution of a workload. It comprises the edictes brought in from demand, useful prefetch, and usg@edetch

requests. We defin@refetch accuracy (ACGIndcoverage (COVas follows:

Number of useful prefetches

_ Number of useful prefetches _
" Number of demand requests + Number of useful prefetches

A =
ce Number of prefetches sent

, Cov

To evaluate the effect of DRAM throughput improvement onphecessing core, we defimastruction window Stall cycles Per
Load instruction (SPLyvhich indicates on average how much time the processor sgdlydwaiting for DRAM service.

Total number of window stall cycles

SPL =
Total number of load instructions

To measure CMP system performance, we lnskvidual Speedup (ISWeighted Speedup (W], andHarmonic mean of
Speedups (HYL2]. As shown by Eyerman and Eeckhout [3], WS corresponds/stem throughput and HS corresponds to the
inverse of job turnaround time. In the equations that fo)ldwis the number of cores in the CMP systedPC%°"¢ is the IPC
measured when an application runs alone on one core in thesystem (other cores are idle) ahBC?°9¢*"¢" is the IPC measured
when an application runs on one core while other applicatare running on the other cores of a CMP. Unless otherwiséiomenl,
we use the demand-first policy to measiiféC'*!°" for all of our experiments to show the effectiveness of ouchamism on CMP
systems.

[PC:Ogether N IPCngEtheT N
180 = "pcatone WSZZ; rposene » 9= [ pCatone

6. Experimental Evaluation
6.1. Single-Core Results

Figure 6 shows the performance of PADC on a single core syst# is normalized to the baseline which employs the
demand-first scheduling policy. We show the performancendf &5 individual benchmarks due to limited space. The righdt
bars show the average performance of all 55 benchmarkedn5% As discussed earlier, neither of the rigid schedulinggies
(demand-first, demand-prefetch-equal) provides the lerdpnance across all applications. Demand-first perfdretter for most
prefetch-unfriendly benchmarks (class 2) suclgalgiel, artandammpwhile demand-prefetch-equal does better for most prefetch
friendly ones (class 1) such asvim, libquanturmandIbm. Averaged over all 55 benchmarks, the demand-prefetchiguplicy
outperforms demand-first by 0.5% since there are more beadm(29 out of 55) that belong to class 1.

Adaptive Prefetch Scheduling (APS), shown in the fourthftzan the left, effectively adapts to the behavior of the pteher. In
most benchmarks, APS provides at least as good performaribe best rigid prefetch scheduling policy. As a result, ARfroves
performance by 3.6% over all 55 benchmarks compared to tbeliba. APS (and demand-prefetch-equal) improves pednos

over demand-first for many prefetch friendly applicationsts aslibquantum, bwavesandleslie3d This is due to two reasons.
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Figure 6. Performance for 55 SPEC benchmarks on single cores  ystem: Normalized IPC for 15 benchmarks and average forall5 5 (gmean55)

First, APS increases DRAM throughput in these applicatisesause it treats demands and prefetches equally most tfrtee
Doing so improves the timeliness of the prefetcher becatefetgh requests do not get delayed behind demand req&sstend,
improved DRAM throughput reduces the probability of the noeyrrequest buffer being full. As a result, more prefetchesable
to enter the request buffer. This improves the coverageaptibfetcher as more useful prefetch request get a chaneeissuied.
For example, APS improves the prefetch coverage from 80%, @8d 89% to 100%, 100%, and 92% hkaquantum, bwavesand

leslie3drespectively (shown in Figure 8(a)).

On the other hand, even though APS is able to provide the esgioce of the best rigid prefetch scheduling policy for each
application, it is unable to overcome the performance lagstd prefetching in some prefetch-unfriendly applicasiosuch agal-
gel, ammpmandxalancbmk The prefetcher generates many useless prefetches inibaskmarks that a simple DRAM scheduling
policy cannot eliminate. Incorporating adaptive prefetichpping (APD) in addition to APS significantly improves fmemance
especially in prefetch-unfriendly applications. UsingARecovers part of the performance loss due to prefetchiggigel ammp
andxalancbmlbecause it eliminates 54%, 76%, and 54% of the useless ghefxjuests respectively (shown in Figure 8(a)). As a
result, using both of our proposed mechanisms (APD in carijon with APS) provides 4.3% performance improvement dtier
baseline.

Figure 7 provides insight into the performance improvenadrthe proposed mechanisms by showing the effect of each-mech
anism on the stall time experienced per load instructiorL{S@ur PADC reduces SPL by 5.0% compared to the baseline. By
providing better DRAM scheduling and eliminating uselessfgtches, PADC reduces the amount of time the procesdts fin

each load instruction and allows the processor to makerfpstgress. As a result, PADC significantly improves perfance.
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Figure 7. Stall time per load (SPL) on the single core system

Figure 8 breaks down the bus traffic into three categoriegfuliprefetches, useless prefetches, and demand requests.

PADC reduces bus traffic by 10.4% across all benchmarks (@B%as shown. Reduction in bus traffic is mainly due to APD
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which significantly reduces the number of useless prefstcker many benchmarks, APS by itself provides the same hidtidw
consumption provided by the best rigid policy for each benatk. We conclude that our prefetch-aware DRAM controkevéry

effective at improving both performance and bandwidthegdficy in single-core systems.
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Figure 8. Bus traffic on single core system

6.1.1. Effect of PADC on Row Buffer Hit Rate Recall that the demand-prefetch-equal policy prioritizes-hit requests regard-
less of whether a request is a prefetch or demand. If we cenalddemand and prefetch requests (regardless of whethert@
prefetch is useful) for the entire run of an application, deenand-prefetch-equal policy will result in the highest tauffer hit rate
(RBH) and therefore the lowest average DRAM access latemong all considered policies. However, this does not meattitiis
policy performs best since prefetches are NOT always usefdiscussed in Section 6.1. When prefetching is enabledeaé a
better metric to show how a mechanism reduces effective melatency. Hereby, we define row buffer hit rate for usefudrfthnd

and useful prefetch) requests (RBHU) as follows:

Number of row-hit demand requests + Number of use ful row-hit prefetch requests

RBHU =
Number of demand requests + Number of useful prefetch requests

The demand-prefetch-equal policy will still show the high®BHU, since RBHU is also maximized by prioritizing rowt-hi
requests. However, a good DRAM scheduling mechanism shmdd its RBHU close to demand-prefetch-equal’'s RBHU bexaus
it should aim to maximize DRAM bandwidth for useful reque&table 7 shows RBHU values for 13 benchmarks on the singke cor
processor with no prefetching, demand-first, demand-fmefequal, APS, and PADC. The RBHU of APS is very close to tifiat
demand-prefetch-equal and significantly better than thelBBf demand-first since APS successfully exploits row ufieality
for useful requests.

Employing APD with APS (i.e. PADC) slightly reduces RBHU fsome applications such aslgel ammp mcf omnetpp
xalancbmkandsoplex This is because adaptive prefetch dropping cancels soefalysefetches as shown in Figure 8, thereby
reducing the fraction of useful row buffer hits. NonethsleAPD improves overall performance for these applicatisinse it
reduces the contention between demands and prefetchesriigating a significant number of useless prefetches ausiésd in
Section 6.1.

6.2. 2-Core Results

We briefly discuss only the average performance and bustfaffthe 54 workloads on the 2-core system due to space tigis
(our main analysis focuses on 4-core systems). Figure 9sihivat PADC improves both performance metrics (WS and HS) by

8.4%, and 6.4% respectively compared to the demand-firgtypahd also reduces the memory bus traffic by 10.0%. Thus, the

17



| [swimgalge] art ]ammpmcf_0gllibquantunjomnetpgxalancbhmkowavegmilc|leslie3dsople}lbm_06amean5b

no-pref 0.18/ 0.51/0.94 0.40| 0.12 0.86 0.47 0.23 0.76 |0.85 0.71 | 0.81| 0.53| 0.55
demand-first || 0.44| 0.58|0.94 0.48| 0.19 0.86 0.56 0.27 0.87 (0.8§ 0.81 | 0.87| 0.64| 0.63
demand-pref-equ@ab.50| 0.58|0.96 0.50| 0.23 0.98 0.59 0.28 0.89 |0.9 0.91 | 0.93| 0.92| 0.68
aps 0.50| 0.58|0.94 0.48| 0.19 0.98 0.56 0.27 0.89 (0.8§ 0.90 | 0.91| 0.90| 0.66
aps-apd (PADC)|| 0.50| 0.56|0.94 0.44| 0.18 0.98 0.54 0.25 0.89 |0.8§ 0.90 | 0.90| 0.90| 0.65

Table 7. Row buffer hit rate for useful (demand and useful pre fetch) requests

proposed mechanism is effective for dual-core systems. d\Meotl discuss these results further since dual-core processe no

longer the state-of-the-art in multi-core systems.

o

2.0

0

=

o

7
o~
L ¢

o
I

= n0-pref
=== demand-first
=== demand-pref-equal
== aps-only
=== gps-apd (PADC)

IN
1

Value of metric
S
Py

o
@

N
h

Bus traffic (M cache lines)

i
|

0.0~

04

WS S
(a) Average system performance (b) Average traffic

Figure 9. Overall performance for 54 workloads on the 2-core system

6.3. 4-Core Results

We ran 32 different workloads to evaluate the effectivereé$3ADC on the 4-core system. In the following sections, wsedss

three cases in detail to provide insights into the behaviérefetch-Aware DRAM Controller.

6.3.1. Case Study I: All Prefetch-Friendly Applications Our first case study examines the behavior of our proposetiamesms
when four prefetch-friendly applicationswim, bwaves, leslie3@éndsopley are run together on the 4-core system. Figure 10(a)

shows the speedup of each application and Figure 10(b) séystesm performance.
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Figure 10. A prefetch-friendly 4-core workload: (a) Indivi dual application speedup, (b) System performance

In addition, Figure 11 provides insight into the performacbanges by showing how each mechanism affects stall-&miead
as well as memory bus traffic. Several observations are ierord

First, since all 4 applications are prefetch-friendly (ijgrefetcher has very high coverage as shown in Figure },lgtefetch-
ing provides significant performance improvement in all laggtions regardless of the DRAM scheduling policy. In didati,

the demand-prefetch-equal policy significantly outperferdemand-first policy (by 28% in terms of weighted speed@upbse
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prefetches are very accurate in all 4 applications. The derpaefetch-equal policy reduces stall-time per load aswshin Fig-

ure 11(a) because it improves DRAM throughput.
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Figure 11. A prefetch-friendly 4-core workload: (a) SPL, (b ) Bus traffic per application, (c) Total bus traffic

bwaves leslie3d soplex

Second, our PADC outperforms both of the rigid prefetch ddlieg policies improving weighted speedup by 31.3% over th
baseline demand-first policy. This is because it 1) sucabggfrioritizes critical (useful) requests over otherstéby reducing SPL,
and 2) drops useless prefetcheddslie3dandsoplexthereby reducing their negative effects on all applicatidBonsequently, our
PADC also improves prefetch coverage from 56% to 73% (as showigure 11(c)). This is because itimproves DRAM througthp
and reduces contention for memory system resources by tgpppeless prefetches frdeslie3dandsoplexallowing more useful
prefetches to enter the memory system.

Finally, the bandwidth savings provided by PADC is reldinvamall (0.9%) because these applications do not genefatgea
number of useless prefetch requests. However, therelia sitiin-negligible reduction in bus traffic due to the effeetiiropping of
some useless prefetched@slie3dandsoplex We conclude that Prefetch-Aware DRAM Controller can pdevperformance and

bandwidth-efficiency improvements even when all applaatibenefit significantly from prefetching.

6.3.2. Case Study IlI: All Prefetch-Unfriendly Applications Our second case study examines the behavior of our proposed
mechanisms when four prefetch-unfriendly applicaticars, @algel, ammpandmilc) are run together on the 4-core system. Since
the prefetcher is very inaccurate for all applicationsfgtehing degrades performance regardless of the schedadilicy. However,

as shown in Figure 12, the demand-first policy and APS protielter performance than the demand-prefetch-equal pblicy
prioritizing demand requests over prefetch requests waielmore than likely to be useless. Employing adaptive freféropping
drastically reduces the useless prefetches in all fouliegtins (see Figure 13(b)), and therefore frees up mematgm resources

to be used by demands and useful prefetch requests. The @fftbis can be seen by the reduced SPL (shown in Figure 1f(a))

all applications. As a result, our PADC performs better ttianbest previous prefetch scheduling policy dirapplications.
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Figure 12. A prefetch-unfriendly 4-core workload: (a) Indi vidual application speedup, (b) System performance

PADC improves system performance by 17.7% (weighted spgBeshd 21.5% (harmonic mean of speedups), while reducing
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bandwidth consumption by 9.1% over the baseline demandsiitseduler as shown in Figure 13(c). By largely reducing the
negative effects of useless prefetches both in schedutidgreemory system buffers/resources, PADC almost elimitiie system
performance loss observed in this prefetch-unfriendly ofiapplications. Weighted speedup and harmonic mean ofdsipse
obtained with our PADC is within 2% and 1% of those obtainethwio prefetching. We conclude that Prefetch-Aware DRAM
Controller can effectively eliminate the negative perfamoe impact caused by inaccurate prefetching by intelfigeananaging

the scheduling and buffer management of prefetch requestsie workload mixes where prefetching performs ineffidiefor all

applications.
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Figure 13. A prefetch-unfriendly 4-core workload: (a) SPL, (b) Bus traffic per application, (c) Total bus traffic

6.3.3. Case Study III: Mix of Prefetch-Friendly and Prefetd-Unfriendly Applications Figures 14 and 15 show performance
and bus traffic when two prefetch-friendliibguantumand GemsFDTD and two prefetch-unfriendlyofnnetppand galgel) ap-
plications are run together. The prefetcheslioquantumandGemsFDTDare very beneficial. Therefore demand-prefetch-equal
significantly improves weighted speedup. However, thegtobler generates many useless prefetchesrforetppand galgel as
shown in Figure 15(a). These useless prefetches tempodanily service to critical requests from the two other co®ecause
APD eliminates a large portion (67% and 57%) of all uselesfgpches iromnetpandgalgel it frees up both request buffer entries
and bandwidth in the memory system. These freed up resoareagilized efficiently by the critical requests ldfquantumand
GemsFDTDthereby significantly improving their individual performee, while slightly reducingmnetppandgalgels individ-

ual performance. Since it eliminates a large amount of gsgheefetches, PADC reduces total bandwidth consumptidtvtspo
over the baseline demand-first policy. We conclude that PABR effectively prevent the denial of service caused by gwass

prefetches of prefetch-unfriendly applications on thefulsequests of other applications.
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Figure 14. A mixed 4-core workload: (a) Individual applicat ion speedup, (b) System performance

6.3.4. Effect of Prioritizing Urgent Requests|In this section, we discuss the effectiveness of priorigizirgent requests using

the application mix in case study Ill. We say that a multieceystem idair if each application experiences the same individual
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speedup when multiple applications run together on theegysto indicate the degree of unfairness, we ddfln@irness (UF)3]

omnetpp

as follows:

~ MAX(IS,, ISy, ..., I5,_1)

UF =
MIN(ISo, IS1, .., ISn_1)’

N : Number of Cores

Table 8 shows individual speedup, unfairness, weighteddige and harmonic mean of speedups for the workload from cas
study Il for five policies: demand-first, versions of APS &A&DC that do not use the concept of “urgent requests,” andaed\PS
and PADC (with “urgent requests”). If the concept of “urgesjuests” is not used, demand requests from the prefeticlenaly
applications ¢mnetppandgalge) unfairly starve because a large number of critical recqgigetn the prefetch-friendly applications
(libquantumandGemsFDTD are given the same priority as those demand requests. Hnigagon, combined with the negative
effects of useless prefetches, leads to unacceptably Idividual speedups for these applications, resulting igdaunfairness.
When urgency is used to prioritize requests, this unfasnesignificantly mitigated, as shown in Table 8. In additibarmonic
mean of speedups (i.e., average job turnaround time) signifiy improves at the cost of very little weighted speedig,(system
throughput) degradation. However, we found that for mostkleads (30 out of the 32), prioritizing urgent requests ioyes
weighted speedup as well. This trend holds true for most lwarkmixes that consist of prefetch-friendly and prefetictfiriendly
applications. On average (not shown in the table), prionig urgent requests improves UF, HS, and WS by 13.7%, 8.8&%38%
respectively compared to PADC with no urgency concept fer3R 4-core workloads. We conclude that the concept of uggenc

significantly improves system fairness while keeping sysperformance high.

Individual speedup
omnetpplibquantun] galge] GemsFDT}
demand-first 0.40 0.42 0.68 0.41 1.69/1.92/0.46
aps-no-urgent 0.26 0.68 0.47 0.61 2.57/2.02/0.44
aps 0.43 0.41 0.72 0.46 1.73]2.02/0.48
aps-apd-no-urgent 0.21 0.94 0.42 0.70 4.55(2.26/0.41
aps-apd (PADC)| 0.35 0.65 0.64 0.59 1.84(2.23/0.52
Table 8. Effect of prioritizing urgent requests

UF |WS| HS

6.3.5. Effect on Identical-Application Workloads It is common that commercial servers frequently run muitipistances of
identical applications. In this section, we evaluate tlieatifveness of PADC when the 4-core system runs four idehgipplications
together. Since APS prioritizes memory requests and APPgiuseless prefetches, both based on the estimated prateiatacy,
PADC should evenly improve individual speedup of each mstaof the identical applications running together. In otherds,
all the instances of the application are likely to show th@edehavior and the same adaptive decision should be maégdnr

interval.
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Table 9 shows the system performance of PADC when four issgoflibquantumare run together on the 4-core system.
Becausdibguantumis very prefetch-friendly and most prefetches are row;tte demand-prefetch-equal policy performs very
well by achieving almost the same speedup for all four instan APS and PADC perform similarly to the demand-prefeghal
(improving weighted speedup by 18.2% compared to demastj-$ince they successfully treat demands and prefetchedlgépr

all four instances.

Individual speedup

libquantunilibquantun]libquantundlibquantun WS HS | UF
no-pref 0.60 0.60 0.60 0.59 2.400.60/1.01
demand-first 0.69 0.67 0.65 0.64 2.66/0.66|1.08
demand-pref-equal  0.80 0.79 0.78 0.77 3.1410.78|1.05]
aps 0.80 0.79 0.78 0.77 3.14{0.79|1.04
aps-apd (PADC) 0.80 0.79 0.78 0.77 3.14{0.79|1.04

Table 9. Effect on four identical prefetch-friendly ( ibquantun) applications on the 4-core system

Table 10 shows the system performance of PADC when fourmoetof a prefetch-unfriendly applicatianjlc, are run together
on the 4-core system. Because prefetches generated foirestahce are useless most of the execution timaitd, demand-first
and APS outperform demand-pref-equal for each instanarporating APD into APS (i.e. PADC) further improves inidival
speedup of all instances equally by reducing useless prefetfrom each instance. As a result, PADC significantly ones all
system performance metrics. In fact, using PADC allows jistesn to gain significant performance improvement from gafing
whereas using a rigid prefetch scheduling policy resulis iarge performance loss due to prefetching. To conclud®®5 also

very effective when multiple identical applications ruigédher on a CMP system.

Individual speedup
milc]milc| milc[milc
no-pref 0.53]0.53]0.53|0.53||2.11|0.53| 1.00
demand-first ||0.52/0.51{0.50{0.46||1.99/0.50|1.13
demand-pref-equal0.36| 0.36| 0.36|0.36|| 1.45[0.36/1.01,
aps 0.52/0.51{0.50]0.46||1.99|0.50| 1.14
aps-apd (PADC)||0.59|0.58|0.58|0.58||2.33/0.58/ 1.02
Table 10. Effect on four identical prefetch-unfriendly ( milc) applications on the 4-core system

WS| HS | UF

6.3.6. Overall Performance Figure 16 shows the average system performance and bus faafthe 32 workloads run on the 4-
core system. PADC provides the best performance and loveesividth consumption compared to all previous prefetctdliag
policies. It improves weighted speedup and harmonic meap@&édups by 8.2% and 4.1%, respectively, compared to thardem
first policy and reduces bus traffic by 10.1% over the bestopaing policy (demand-first).

We found that PADC outperforms both the demand-first and delrpaeefetch-equal policies for all but one workload we exam
ined. The worst performing workload is the combinatiorvpf, gamess, deallandcalculix. PADC’s WS degradation is only 1.2%

compared to the demand-first policy. These applicationsitiner insensitive to prefetching (class 0) or not memotgrisive ¢pr).
6.4. 8-Core Results

Figure 17 shows average performance and bus traffic overltiveo’kloads we simulated on the 8-core system. Note that the
rigid prefetch scheduling policies actually cause streasfigbching to degrade performance in the 8-core systemdéhwand-first
policy reduces performance by 1.2% and the demand-preéahl policy by 3.0% compared to no prefetching. DRAM baiaithv

becomes a lot more valuable with the increased number of dxeause the cores put more pressure on the memory systamy At
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Figure 16. Overall performance for 32 workloads on the 4-cor e system

given time there is a much larger number of demand and usetlss prefetch requests in the memory request buffer.résut,
it becomes more likely that 1) a useless prefetch delays addrmr useful prefetch (if demand-prefetch-equal poliaysed), and
2) DRAM throughput degrades if a demand request causedisggmti reduction in the row-buffer locality of prefetch rezgis (if
demand-first policy is used). Hence, the degradation iropednce with a rigid scheduling policy.

For the very same reasons, PADC becomes more effective Wlearumber of cores increases. As resource contention bacome
higher, the performance benefit of intelligent prioritipatand dropping of useless prefetch requests increaseg$AMC improves
overall system performance (WS) by 9.9% on the 8-core systhite also reducing memory bandwidth consumption by 9.4%.
We conclude that the benefits of PADC will continue to incesas off-chip memory bandwidth becomes a bigger performance

bottleneck in future systems with many cores.
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Figure 17. Overall performance for 21 workloads on the 8-cor e system

6.5. Optimizing PADC for Fairness Improvement in CMP Systens: Incorporating Request Ranking

PADC can be better tuned and optimized for the requiremdr@d/> systems. One major issue in designing memory contsolle
for CMP systems is the need to ensure fair access to memoryffeyedt cores [20]. So far, we have considered PADC only as
a way to improve overall system performance. However, to beereffective in CMP systems, PADC can be be augmented with
a mechanism that provides fairness to different cores’ @stpy To achieve this purpose, this section describes a ctezdsling
algorithm that incorporates a request ranking schemeaindalthe one used in Parallelism-Aware Batch SchedulindrdBs) [20]
into our Adaptive Prefetch Scheduling (APS) mechanism.

Recall that APS prioritizes urgent requests (demand regdiesn cores whose prefetch accuracy is low) over othersitigate
performance degradation and unfairness for prefetchiendty applications. However, APS follows the FCFS politwll other
priorities (i.e. criticality, row-hit, urgency) are thers&. This FCFS rule can degrade fairness and system perfoenbgrprioritizing

requests of memory intensive applications over those of amgmon-intensive applications, as was shown in previousk23,
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19, 20]. This happens because delaying the requests of ngemarintensive applications results in a lower individepkeedup
(or a higher slowdown) for those applications than it woudd fnemory intensive applications which already suffer friomg
DRAM service time. Therefore, PADC (APS) itself cannot coetgly solve the unfairness problem. This is especiallg trucases
where all of the applications behave the same in terms oefmeffriendliness (either all are prefetch-friendly or aié prefetch-
unfriendly). In such cases, PADC will likely degenerateittie FCFS policy (since the criticality, row-hit, and urggpriorities
would be equal), resulting in high unfairness and perforoeastegradation. For example, in case study Il discussedcitioBes.3.2,
all the applications are prefetch-unfriendly. Therefé?&DC prioritizes demands over prefetches most of the tild@&@®mitigates
performance degradation by prioritizing demand requestisciiopping useless prefetches. Howewgt,is very memory intensive
and continuously generates many demand requests. Thesedeeguests significantly interfere with other applicagiademand
requests, resulting in high slowdowns for the other appitices whileart itself experiences very little slowdown, thereby creating
unfairness in the system.

To take into account fairness in PADC, we incorporate theceph of ranking, as employed in [20]. Our ranking scheme is
based on thehortest job firsprinciple [29] which can better mitigate the unfairnesshpeon and performance degradation caused
by the FCFS rule, as explained in detail in [20]. For each iappibn, the DRAM controller keeps track of the total numioér
critical (demand and useful prefetch) requests in the mgmeaquest buffer. Applications with fewer outstandingicat requests
are given a higher rank. The insight is that if an applicattoat has fewer critical requests is delayed, the impactatfdelay on that
application’s slowdown is much higher than the impact oagilg an application with a large number of critical reqsest other
words, it is more unfair to delay an application that has alsmanber of useful requests (i.e., a “shorter” applicatjob) than
delaying an application that has a large number of usefulests (i.e., a “longer” application/job). To achieve thisile still being
prefetch-aware, the DRAM controller schedules memory estgibased on the modified rule shown in Rule 2. A highly-rdnke
request is scheduled by the DRAM controller when all reqauigsthe memory request buffer have the same priority foroaiity,

row-hit, and urgency.

Rule 2 Adaptive Prefetch Scheduling with Ranking
1. Critical request (C): Critical requests are prioritized over all other requests
2. Row-hit request (RH): Row-hit requests are prioritized over row-conflict reqises
3. Urgent request (U} Demand requests generated by cores with low prefetch acgare prioritized over other requests.
4. Highest rank request (RANK): Critical requests from a higher-ranked core are pricetizover critical requests from a
lower-ranked core. Critical requests from cores that haveef outstanding critical requests are ranked higher.
5. Oldest request (FCFS) Older requests are prioritized over younger requests.

To implement this ranking mechanism, the priority field face memory request is augmented as shown in Figure 18. To keep
track of the total number of critical requests in the memaguest buffer, a counter per core is requittd/Vhen the estimated
prefetch accuracy of a core is greater thaomotion_threshold, the total number of outstanding demand and prefetch régjues
(critical requests) for that core are counted. When the r@oguis less than the threshold, the counter stores only tingber of
outstanding demand requests. Cores are ranked accordihg total number of critical requests they have in the memeqguest
buffer: a core that has a higher number of critical requestanked lower. The RANK field of a request is the same as tHevane

of the core determined in this manner. As such, the critiealiests of a core with a lower value in its counter are pikanit'? This

11we assume without loss of generality that each core can &xealy one application/thread. If each core can executdipheipplications, our mechanism can
simply be extended to distinguish between those appliegiio ranking.

12In this study, we do not rank non-critical requests (i.e.fgheh requests from cores whose prefetch accuracy is low RANK field of these requests is
automatically set to 0, the lowest rank value. We evaluategehanism that also ranks non-critical requests basedtwnatsd prefetch accuracy and found that
this mechanism does not perform better than the mechanistmethks only critical requests.
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process is done every DRAM bus cycle in our implementatidterAatively, determination of the ranking can be donequtidally
since it does not need to be highly accurate and is not on itieatpath.

Rank (log (N) bits)

C | RH U | RANK FCFS | P ID AGE

Priority for APS Information for APD
N: Number of cores

Figure 18. Memory request fields for PADC with ranking

Figure 19 shows the average system performance, bus tafficunfairness when we incorporate the ranking mechanitm in
PADC for the 32 4-core workloads. On average, the rankinghaeism slightly degrades weighted speedup (by 0.4%) agltisti
improves harmonic mean of speedups (by 0.9%) and keeps lidthdv@nsumption about the same compared to the original®AD
Unfairness is improved from 1.63 to 1.53. The performanceravement is not significant because the contention in theaomng
system is not very high in the 4-core system. Nonethelesgathking scheme improves all the system performance arairne$s
metrics for some workloads with memory intensive benchmafor the workload in case study I, the ranking scheme ingso
WS, HS, and UF by 7.5%, 10.3%, and 15.1% compared to PADC wuiittamking.
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Figure 19. Optimized PADC using ranking mechanism on the 4-c ore system

We also evaluate the optimized PADC scheme with ranking erBthore system, which places significantly more pressure on
the DRAM system. As shown in Figure 20, the ranking mecharimproves WS and HS by 2.0% and 5.4% respectively and
reduces unfairness by 10.4% compared to PADC without rgnKiie effectiveness of the ranking scheme is much highédren t
8-core system than the 4-core system since it is more driicechedule memory requests fairly in many-core bandwiiitited
systems. Improving fairness reduces starvation of somescoesulting in improved utilization of the cores in theteys, which in
turn results in improved system performance. Since stimvas more likely when the memory system is shared betweeor@sc
rather than 4, the performance improvement obtained wihahking scheme is higher in the 8-core system.

We conclude that augmenting PADC with an intelligent fadsmerechanism improves both unfairness and system perfognan
6.6. Effect on Multiple DRAM Controllers

We also evaluate the performance impact of PADC when two DRANtrollers are employed in the 4- and 8-core systems. Each
memory controller works independently through a dedicatethnel (address and data buses) doubling the peak menratyickh.
Because there is more bandwidth available in the systententon of prefetch and demand requests is also significaatiuced.
Therefore, the baseline system performance is significémghroved compared to the single controller. Adding one eldRAM
controller improves weighted speedup by 16.9% and 30.9%peoed to the single controller for 4- and 8-core systemgpgetively.
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Figures 21 and 22 show the average performance and bus faaffle and 8-core systems with two memory controllers. Note

that for the 8-core system, unlike the single memory colgralonfiguration (shown in Figure 17(a)) where adding a gic¥er

actually degrades performance, performance increases ad@ing a prefetcher even for the rigid scheduling politiesause of

the increased memory bandwidth.
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PADC is still very effective with two memory controllers amdproves weighted speedup by 5.9% and 5.5% and also reduces

bandwidth consumption by 12.9% and 13.2% compared to thade+first policy for 4- and 8-core systems respectively.réfae,

we conclude that PADC still performs effectively on a multire processor with very high DRAM bandwidth.

6.7. Effect with Different DRAM Row Buffer Sizes

As motivated in Section 3, PADC takes advantage of and reliethe row buffer locality of demand and prefetch requests

generated at runtime. To determine the sensitivity of PAD@otv buffer size, we varied the size of the row buffer from 2kB
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128KB for the 32 workloads run on the 4-core system. Figuret&®8vs the WS improvements of PADC and APS compared to no

prefetching, demand-first, and demand-prefetch-equal.
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Figure 23. Effect of PADC with various DRAM row buffer sizes o n the 4-core system

PADC consistently outperforms no prefetching, demand;fasd demand-prefetch-equal with various row buffer siadete
that the demand-first policy starts degrading performamepared to no prefetching as the row buffer becomes verg largpre
than 64KB). This is because preserving row buffer localdy dseful requests is more critical when the row buffer seéaige,
especially when the stream prefetcher is enabled. No pfafeg with larger row buffer sizes exploits row buffer loitglmore
(higher row-hit rate) than smaller row buffer sizes. Howeweath demand-first, the negative performance impact ofjdient re-
activations of DRAM rows for demand and prefetch requestobees significantly worse at larger row buffer sizes. Thenefthe
demand-first policy experiences a higher memory service imaverage than no prefetching with large row buffer sizes.

Similarly, the demand-prefetch-equal policy does not iovprperformance compared to no prefetching for 64KB and B8K
row buffer sizes since it does not take into account the Uise$s of prefetches. With a large row buffer, useless prbét have
higher row buffer locality because many of them hit in the touffer due to the streaming nature of the prefetcher. As alties
demand-prefetch-equal significantly delays the servicdeshand requests at large row buffer sizes by servicing msetess
row-hit prefetches first.

In contrast to these two rigid scheduling policies, PAD@grto service only useful row-hit memory requests first, géhgr
significantly improving performance even for large row laufsizes (8.8% and 7.3% compared to no prefetching for 64KdB an
128KB row buffers). Therefore, PADC can make a prefetchabhld and effective even when a large row buffer size is usedus®=
it takes advantage of the increased row buffer locality opptty provided by a larger row buffesnly for useful requests instead

of wasting the increased amount of bandwidth enabled bygataow buffer on useless prefetch requests.
6.8. Effect with a Closed-Row DRAM Row Buffer Policy

So far we have assumed that the DRAM controller employs tlemapw policy (i.e., it keeps the accessed row open in the
row buffer after the access, even if there are no more oudsigrrequests requiring the row). In this section, we evaube
effectiveness of PADC with a closed-row policy. The closed-policy closes (by issuing a precharge command) the otiyre
opened row when all row-hit requests in the memory requefféibbhave been serviced by the DRAM controller. This poli@nc
hide effective precharge time by 1) overlapping the preghatency with the row-access latency [15] and 2) issuiegtiecharge
command (closing a row buffer) earlier than the open-rovigyaland thereby converting a row-conflict access into a ohwsed
access, if the next access is to a different row). Therefbre, more requests to the same row arrive at the memory reédudier
after a row buffer is closed by a precharge command, the dtos® policy can outperform the open-row policy. This is bese,
with the closed-row policy, the later requests do not needeaharge before activating the different row. However, ieguest

to the same row arrives at the memory request buffer soom gagerow is closed, this policy has to pay a penalty (the sum of
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the non-overlapped precharge latency and the activatiemds), which would not have been required for the open-rolicp.
Consequently, for applications that have high row buffealdy (i.e. applications that generate bursty row-hituests), such as
streaming/striding applications, the open-row policypmiforms the closed-row policy by reducing re-activatiohthe same rows
that will be needed again in the near future.

Since the closed-row policy still services row-hit reqeefatst until no more requests to the same row remain in the mgmo
request buffer, it can increase DRAM throughput within tbepe of the requests that are outstanding in the memory sequéer.
When a prefetcher is enabled with the closed-row policy,ddwme problem exists as for the open-row policy: none of thiel ri
prefetch scheduling policies can achieve the best perfoceéor all applications since they are not aware of prefetsdfulness.
Therefore PADC can still work effectively with the closealar policy, as we show empirically below.

Figure 24 shows the performance and bus traffic when PADCé&d usth the closed-row policy for the 32 4-core workloads.
The closed-row policy with demand-first scheduling slightlegrades performance by 0.5% compared to the open-rowypoli
with demand-first scheduling. This is because there is & latgnber of streaming/striding (and prefetch-friendlyplagations in
the SPEC 2000/2006 benchmarks whose performance can bcsigtty improved with the open-row policy. The performanc
improvement of the open-row policy is not very significant@ese there is also a large number of applications that wetkwith

the closed-row policy as they do not have high row buffer libga
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Figure 24. Effect on closed-row policy

The results show that PADC is still effective with the closed policy since it still effectively exploits row buffeokality (within
the scope of the requests outstanding in the memory requéist)band reduces the negative effects of useless prefetpests.
PADC improves weighted speedup by 7.6% and reduces barfdaddtsumption by 10.9% compared to demand-first scheduling
with the closed-row policy. Note that PADC with the open-rpalicy slightly outperforms PADC with the closed-row by %Xor
weighted speedup. Overall, we conclude that PADC is sutiduldifferent row buffer management policies, but it is meffective

with the open-row policy due to the existence of a larger nendf benchmarks with high row buffer locality.

6.9. Effect with Different Last-Level Cache Sizes

PADC aims to maximize DRAM throughput for useful memory (dem and useful prefetch) requests and to delay and drop
useless memory requests. One might think that a prefetetade management technique such as PADC would not be needed fo
larger L2 (last-level) caches since a larger cache can eedache misses (i.e. memory requests). However, a prefatahestill
generate a significant amount of useful prefetch requestsoime applications or program phases by correctly predjadiemand
access patterns which cannot be stored even in large caabds the large working set size or streaming nature of thgrara.

In addition, the prefetcher can issue a significant numbeisefess prefetches for some other applications or progreasgs. For
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these reasons, the interference between demands andpesfatill exists in systems with large caches. Therefoed)ypothesize
PADC is likely to be effective in systems with large lastdeeaches.

To test this hypothesis, we evaluated the effectivenes&\bDidPfor various L2 cache sizes. We varied the L2 cache size fro
512KB to 8MB per core on our 4-core CMP system. Figure 25 shbesystem performance (weighted speedup) for the 32 4-core

workloads.

>
)

)
3
g_ =
- j . . el
] ‘ -
O 309" _ —
) = - -
9 -o- no-pref
£ i//ﬁ/ﬁ/l demand-first
%’ -o-demand-pref-equal
o -e aps
= - aps-apd (PADC)
2.0 . i : )
512KB 1MB 2MB 4MB sSMB

Figure 25. Effect of PADC on various cache sizes per core on th e 4-core system

As expected, with larger cache sizes, baseline systemrpsafece improves. However, the stream prefetcher stillcéffely
improves performance compared to no prefetching with eittre demand-first and the demand-prefetch-equal policgdtiition,
PADC consistently and significantly improves performanoenpared to both demand-first and demand-prefetch-equadigml
regardless of cache size. This is mainly because even wih taches there is still a significant number of both usefdluseless
prefetches generated. Therefore, the interference batpredetch and demand requests still needs to be intelligeontrolled.

There are two notable observations from Figure 25: 1) theasehpref-equal policy starts outperforming the demarst-fir
policy for caches greater than 1MB, and 2) the performandeR8 (without APD) becomes closer to that of PADC (APS and APD
together) as the cache size becomes larger.

Both observations can be explained by two reasons. Firstigeil cache reduces irregular (or hard-to-prefetch) carfiche
misses due to the increased cache capacity. This makesefetgher more accurate because it reduces the allocatfaiseam
entries for hard-to-prefetch access patterns (note tHgtaodemand cache miss allocates a stream prefetch entnsassdied in
Section 2.3). Second, a larger cache can tolerate someadefgzache pollution. Due to the increased cache capaciyrtbability
of replacing a demand or useful prefetch line with a uselestefch in the cache is reduced.

For these reasons, the effect of deprioritizing or droppikegly-useless prefetches becomes less significant wigtnget cache.
As aresult, as cache size increases, techniques thatigeatemands (e.g. demand-first) and drop prefetches (ARD)}coming
less effective. However, the interference between priafatcd demand requests is not completely eliminated since sppiications
still suffer from useless prefetches. PADC (and APS) isatiffe in reducing this interference in systems with largehes and
therefore still performs significantly better than the digicheduling policies.

Note that PADC with a 512KB L2 cache per core performs almuessame as demand-first with a 2MB L2 cache per core. Thus,
PADC, which requires only 4.25KB storage, achieves thevadgmt performance improvement that an additional 6MBNIB5x

4 (cores)) of cache storage would provide in the 4-core gyste
6.10. Effect with a Shared Last-Level Cache

Throughout the paper, we evaluate our mechanism on CMPrsgstéth private on-chip last-level (L2) caches rather than a
shared cache where all cores share a large on-chip ladistkesiee. This allowed us to easily show and analyze the aifdRADC in
the shared DRAM system by isolating the effect of contenitiche DRAM system from the effect of interference in sharadres.
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However, many commercial processors already employ sHastdevel caches in their CMP designs [34, 35]. In thisisactwe
evaluate the performance of PADC in on-chip shared L2 cachéke 4- and 8-core systems to show the effectiveness of HADC
systems with a shared last-level cache.

For this experiment, we use a shared L2 cache whose sizeiiatmni to the sum of all the private L2 cache sizes in our liase
system. We scaled the associativity of the shared cachdlé@thumber of cores on the chip since as the number of coresaises,
the contention for a cache set increases. Therefore theglsystem employs a 2MB, 16 way set-associative cache ar@itbee
system has a 4MB, 32 way set-associative cache.

Figures 26 and 27 show weighted speedup and average bus traffine 4- and 8-core systems with shared L2 caches. PADC
outperforms demand-first by 8.0% and 7.6% on the 4- and 8sym&ms respectively. We conclude that PADC works effitient
for shared last-level caches as well.
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Figure 27. Effect on shared L2 cache on 8-core system

Note that the demand-prefetch-equal policy does not wotkameeither of the shared cache systems (degrading WS by antho
10.4% compared to demand-first for 4- and 8-core systemd$3.i3because the contention in the shared cache among tinesteq
from different cores significantly increases compared #tt thf a private cache system. With private caches, uselesfstphes
from one core can only replace useful lines of that same ddosvever, with a shared cache, useless prefetches from oaean
also replace the useful lines of all the other cores. Theskaced lines must be brought back into the cache again frolANDR
when they are needed. Therefore, the total bandwidth copsamsignificantly increases. This cache contention ammorgs
becomes especially worse with demand-prefetch-equalrédetzh-unfriendly applications. This is because the dainarefetch-
equal policy results in high cache pollution since it blngrefers to increase DRAM throughput without considerimg tisefulness
of prefetches. The demand-prefetch-equal policy inciebas traffic by 22.3% and 46.3% compared to demand-first éodttand
8-core systems as shown in Figures 26(b) and 27(b). In cinPADC delays the service of useless prefetches and alps threm,
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thereby mitigating contention in both the shared cache hadhared DRAM system.
6.11. Effect on Other Prefetching Mechanisms

We briefly evaluate the effect of our PADC on different typdprefetchers: PC-based stride [1], CZone Delta Corretatio
(C/DC) [24], and the Markov prefetcher [7]. Figure 28 shotws performance and bus traffic results averaged over all 3Rloaxls
run on the 4-core system with the three different prefesh&ADC consistently improves performance and reducesvidiiu
consumption compared to the demand-first or demand-pretoal policies with all three prefetchers.

The PC-based stride and C/DC prefetchers successfullymeaptsignificant amount of memory access patterns as thenstre
prefetchers does, thereby increasing the potential fologkpy row buffer locality. In addition, those prefetclsealso generate
many useless prefetches for certain applications. ThexgRADC significantly improves performance and bandwidfitiency
with these prefetchers by increasing DRAM throughput fafukrequests and reducing the negative impact of uselefstphes.

The performance improvement of PADC on the Markov prefatéh¢he least. This is because the Markov prefetcher, which
exploits temporal as opposed to spatial correlation, do¢swork as well as the other prefetchers for the SPEC bendisndt
generates many useless prefetches, which lead to significeste/interference in DRAM bandwidth, cache space, anchong
queue resources. Furthermore, it does not generate mafy psefetches for the SPEC benchmarks, and therefore itgmanm
potential for performance improvement is low. As such, therkbv prefetcher significantly increases bandwidth cortion and
results in little performance improvement compared to refgiching as shown in Figure 28(b). PADC improves the peréorce
of the Markov prefetcher (mainly due to APD) by removing ayanumber of useless prefetches while keeping the small eumb
of useful prefetches. PADC improves WS by 2.2% and reducedwiath consumption by 10.3% (mainly due to APD) compared

to the demand-first policy. We conclude that PADC is effextiith a wide variety of prefetching mechanisms.
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Figure 28. PADC on stride, C/DC, and Markov prefetchers

6.12. Comparison with Dynamic Data Prefetch Filtering and Feedback Directed Prefetching

Dynamic Data Prefetch Filtering (DDPF) [41] tries to eliraia useless prefetches based on whether or not the prefagch w
useful in the past. It records either the past usefulnesBeoptefetched address (or the PC of the instruction whigigéried the
prefetch) in a table similar to how a two-level branch préatistores history information. When a prefetch requestréaited,
the history table is consulted and the previous usefulmdssmation is used to determine whether or not to send ouptéfetch
request. Feedback Directed Prefetching (FDP) [32] adelptizdjusts the aggressiveness of the prefetcher in ordesdiace its
negative effects.

Recall that PADC has two components: APS (Adaptive Pref8ieduling) and APD (Adaptive Prefetch Dropping). Both
DDPF and FDP are orthogonal to APS because they do not déatheischeduling of prefetches with respect to demands. &s su
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they can be employed together with APS to maximize the berfiirefetching. On the other hand, the benefits of DDPF, BB,
APD overlap. DDPF filters out useless prefetches before @hegent to the memory system. FDP eliminates uselessgirefeby
reducing the aggressiveness of the prefetcher therebyirgglthe likelihood that useless prefetch requests arergtate In contrast,
APD eliminates useless prefetches by dropping tladter they are generated. As a result, we find (based on our expet@mne
analyses) that APD has the following advantages over DDEFF&P:

1. Both DDPF and FDP eliminate not only useless prefetchealba a significant fraction of useful prefetches. DDPF re@so
many useful prefetches by falsely predicting many usefefgiches to be useless. This is due to the aliasing probleiseda
by sharing the limited size of the history table among manyresses. FDP can eliminate useful prefetches when it redhee
aggressiveness of the prefetcher. In addition, we founttRDB& can be very slow in increasing the aggressiveness girtéfetcher
when a new phase starts execution. In such cases, FDP casumeuseful prefetches whereas APD would have issued theamde

it always keeps the prefetcher aggressive.

2. The hardware cost of DDPF for an L2 cache is expensive gach L2 cache line and MSHR must carry several bits for
indexing the prefetch history table (PHT) to update thedappropriately. For example, for a PC-based gshare DDHFamiK-
entry PHT, 24 bits (12-bit branch history and 12-bit load RS)tper cache line are needed in addition to the prefetchesitache
line. For the 4-core system we use, this index informatiamalaccounts for 96KB storage. In contrast, APD does notineequ

significant hardware cost as we have shown in Section 4.4.

3. FDP requires the tuning of multiple threshold values 82hrottle the aggressiveness of the prefetcher, whicmmratrivial
optimization problem. APD allows the baseline prefetcloaaltvaysbe very aggressive because it can eliminate useless gregetc
after they are generated. As such, there is no need to tuntgphaulifferent threshold values in APD because the aggressss of

the prefetcher never changes.

To evaluate the performance of these mechanisms, we imptechdDPF (PC-based gshare DDPF for L2 cache prefetch
filtering [41]) and FDP in our CMP system. All the relevant aaueters (FDP: prefetch accuracy (90%, 40%), lateness @8d),
pollution (0.5%) thresholds and pollution filter size (4k)j DDPF: filtering threshold (3), table size (4K entry 2-tdunters),
and other train/predict policies) for DDPF and FDP were tufa the best performance with the stream prefetcher in ddPC
system. Figure 29 shows the performance and bus traffic tdrdift combinations of DDPF, FDP, and PADC averaged across
the 32 workloads run on the 4-core system. From left to rigfnt, seven bars show: 1) baseline stream prefetching with the
rigid demand-first policy, 2) DDPF with demand-first poli@), FDP with demand-first policy, 4) APD with demand-first [pgli
5) DDPF combined with APS, 6) FDP combined with APS, and 7) Alihbined with APS (i.e. PADC). When used with the
demand-first policy, DDPF and FDP improve performance bydlahd 1.7% respectively while reducing bus traffic by 22.8% an
12.6%. In contrast, APD improves performance by 2.6% wielducing bus traffic by 10.4%. DDPF and FDP eliminate more
useless prefetches than APD resulting in less bus traffieveder, for the very same reason, DDPF and FDP eliminate mseifylu

prefetches as well. Therefore, their performance impramns not as high as APD.

Our adaptive scheduling policy and DDPF/FDP are compleamgrand improve performance significantly when combined
together. When used together with Adaptive Prefetch SdieggDDPF and FDP improve performance by 6.3% and 7.4% respe
tively. Finally, the results show that PADC outperforms ttmembination of DDPF/FDP and APS, which illustrates that ptolee
Prefetch Dropping is better suited to eliminate the neggtierformance effects of prefetching than DDPF and FDP. Wielade
that 1) our adaptive scheduling technique complements D&fH-DP whereas our APD technique outperforms DDPF and FDP,

and 2) DDPF and FDP reduce bandwidth consumption more th@y Bt they do so at the expense of performance.
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If a prefetch filtering mechanism is able to eliminate alllase prefetches while keeping all useful prefetches, theael-

prefetch-equal policy would be best performing. That is,deeot need an adaptive memory scheduling policy since efeprhes
sent to the memory system would be useful. However, it is maglt to design such perfect prefetch filtering mechanisiAs
discussed above, DDPF and FDP filter out not only uselesstptefs but also a lot of useful prefetches. Therefore, coimpthose
schemes with demand-prefetch-equal does not necessgrilficantly improve performance since benefits of usefefgiches are
reduced.

Figure 30 shows performance and average traffic when DDPFBiRdare combined with demand-prefetch-equal. Since DDPF
and FDP remove a significant amount of useful prefetchespéhiermance improvement of them is not very significant ydm}
2.3% and 2.7% compared to demand-first). On the other harldCPgnificantly improve performance (by 8.2%) by keeping th
benefits of useful prefetches as much as possible.
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Figure 30. Comparison to DDPF and FDP with demand-prefetch-  equal scheduling

6.13. Effect with a DRAM Bank Remapping Scheme

Permutation-based page interleaving [38] aims to redueecanflicts by randomly remapping the DRAM bank indexes of
addresses so that they are more spread out across the mblipks in the memory system. This technique significantfyraves
DRAM throughput by increasing utilization of multiple DRABRNks. The increased utilization of the banks has the patdat
reduce the interference between memory requests. Howbngtechnigque cannot completely eliminate the interfeecetween
demand and prefetch requests in the presence of prefetchnygigid prefetch scheduling policy in conjunction withi$ technique
will still have the same problem we describe in Section 3: enohthe rigid prefetch scheduling policies can achieve testb
performance for all applications since they are not awapefietch usefulness. Therefore, PADC is complementargtmptation-
based page interleaving.

Figure 31 shows the performance impact of PADC for the 32ré-emrkloads when a permutation-based interleaving scheme

is applied. The Permutation-based scheme improves sysefiormance by 3.8% over our baseline with the demand-firktyo
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APS and PADC consistently work effectively combined witk flermutation-based interleaving scheme. APS and PADCowepr
system performance by 2.9% and 5.4% repectively comparedetalemand-first policy with the permutation-base intefilez
scheme. Also, PADC reduces bandwidth consumption by 1184aladaptive prefetch dropping.
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6.14. Effect on a Runahead Execution Processor

Runahead execution is a promising technique that prefetebeful data by executing future instructions that arepedédent of
a long latency (runahead-causing) load instruction dutfiegstall time of the load instruction. Because it is basetherexecution
of actual instructions, runahead execution can prefetggidar data access patterns as well as regular ones. Ysuslahead
execution complements hardware prefetching and resutiggmperformance. In this section, we analyze the effect?d® on a
runahead processor. We implemented runahead capabilityri€MP simulator. Since memory requests during runaheateso
are very accurate most of the time [21], we treat runaheage®lg the same as demand requests in DRAM scheduling.

Figure 32 shows the effect of PADC on a runahead processtiéd32 workloads on the 4-core CMP system. Adding runahead
execution on top of the baseline demand-first policy impsssestem performance by 3.7% and also reduces bandwidthoption
by 5.0%. This is because we use a prefetcher update polityraias existing stream prefetch entries but does not ateoa new
stream prefetch entry on a cache miss during runahead ésedcanly-train). Previous research [18] shows that this policy is best
performing and most efficient. Runahead execution with thig-train policy can make prefetching more accurate andieffit
by capturing irregular cache misses during runahead exgcuEurthermore, these irregular misses train existingesth prefetch
entries, but new, more speculative, stream prefetch entvik not be created during runahead mode. This not only gmes/the
prefetcher from generating useless prefetches due tdyfalseated streams but also improves the accuracy and tiessiof the

stream prefetcher since existing streams continue to beettaluring runahead mode.
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Figure 32. Effect on runahead execution

Figure 32 shows that PADC still effectively improves penfiance by 6.7% and reduces bandwidth consumption by 10.2%
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compared to a runahead CMP processor with the stream pnefedad the demand-first policy. We conclude that PADC iscéffe
at improving performance and bandwidth-efficiency for agragsive runahead CMP by successfully reducing the imarée

between demand/runahead and prefetch requests in the DRAtvbHer.

7. Related Work

The main contribution of our work beyond previous reseaschn adaptive way of handling prefetch requests in the memory
controller's scheduling and buffer management policies.olir knowledge, none of the previously proposed DRAM cdlere
adaptively prioritize between prefetch and demand regusst do they adaptively drop useless prefetch requestsl lmasprefetch
usefulness information obtained from the prefetcher. Vgewls closely related work in DRAM scheduling, prefetclefiitg, and

adaptive prefetching.

7.1. Prefetch Handling in DRAM Controllers

Many previous DRAM scheduling policies were proposed tormep DRAM throughput in single-threaded [42, 27, 5], multi-
threaded [26, 22, 39], and stream-based [14, 37] systenasidition, several recent works [23, 19, 20] proposed teqpas for fair
DRAM scheduling across different applications sharing@f®AM system. Some of these previous proposals [42, 27, 2239
19, 20] do not discuss how prefetch requests are handled@gffect to demand requests. Therefore, our mechanisnmhizgonal
to these scheduling policies. These policies can be extetudadaptively prioritize between demand and prefetchestyuand to
adaptively drop useless prefetch requests.

The remaining DRAM controller proposals take two differapiproaches to handling prefetch requests. First, someogrop
als [11, 5, 6] always prioritize demand requests over pebfeequests. Other proposals [37, 26] treat prefetch ragiles same
as demand requests. As such, these previous DRAM contmlgiosals handle prefetch requests rigidly. As we have shiow
Sections 1 and 3, rigid handling of prefetches can causéfisigmt performance loss compared to adaptive prefetchlmandOur

work improves upon these proposals by incorporating thecéffeness of prefetching into DRAM scheduling decisions.

7.2. Prefetch Filtering

Our Adaptive Prefetch Dropping (APD) scheme shares the g@aleof eliminating useless prefetches with several otheripus
proposals. However, our mechanism provides either higaedidth-efficiency or better adaptivity compared to theseks.

Charney and Puzak [2] and Mutlu et al. [17] proposed prefétigring mechanisms using on-chip caches (using the tag)sto
Both of these proposals unnecessarily consume memory hdtidaince useless prefetches are filtered out aitgr they are
serviced by the DRAM systein contrast, APD eliminates useless prefetches befosedbesume valuable DRAM bandwidth.

Mowry et al. [16] proposed a mechanism that cancels softwartetches when the prefetch issue queue is full. Their ergisim
is not aware of the usefulness of prefetches. On the othet,lmam scheme drops prefetch requests only if their age stgrehan
a dynamically adjusted threshold (based on prefetch acguraAlso, our mechanism can be applied to software prefetcto
remove useless software prefetches more efficiently. sain et al. [33] use a profiling technique to mark load irtsions that
are likely to generate useful prefetches. This mechanissdsi6SA support to mark the selected load instructions andataadapt
to phase behavior in prefetcher accuracy. In contrast, AB&sdhot require ISA changes and can adapt to changes inghrerfet
accuracy.

Zhuang and Lee [40, 41] propose a mechanism that eliminagegrefetch request for an address if the prefetch requetitdo

same address was useless in the past. PADC outperformssancbahplements their mechanism as discussed in Section 6.12
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7.3. Adaptive Prefetching

Several previous works proposed changing the aggressisesfehe hardware prefetcher based on dynamic informatur.
work is either complementary to or higher-performing thhede proposals, as described below.

Hur and Lin [6] designed a probabilistic prefetching tecjug which adjusts prefetcher aggressiveness. They alsalgieh
prefetch requests to DRAM adaptively based on the frequefidgmand request DRAM bank conflicts caused by prefetchastqu
However, their scheme always prioritizes demand requesds refetches. In contrast, our mechanism adapts theitpéion
policy between demands and prefetches based on prefetotigaay. As a result, Hur and Lin’s proposal can be combinih w
our adaptive prefetch scheduling policy to provide everaigperformance.

Srinath et al. [32] show how adjusting the aggressivenetigegirefetcher based on accuracy, lateness, and cachéguolhfor-
mation can reduce bus traffic without compromising the béeonéfirefetching. As we showed in Section 6.12, PADC outpenfo

and also complements their mechanism.
8. Conclusion

This paper shows that existing DRAM controllers that empigid, non-adaptive prefetch scheduling and buffer mansaye
policies cannot achieve the best performance since theyttake into account the usefulness of prefetch requestsv@ome
this limitation, we propose a low-cost Prefetch-Aware DRAMnNtroller (PADC), which aims to 1) maximize the benefit oéfug
prefetches by adaptively prioritizing them, and 2) minieihe harm caused by useless prefetches by adaptively déping them
and dropping them from the memory request buffers. To this &\DC dynamically adapts its memory scheduling and buffer
management policies based on prefetcher accuracy. Owradigal shows that PADC significantly improves system pemntarce and
bandwidth-efficiency on both single-core and multi-corsteyns. We conclude that incorporating awareness of pretetefulness

into memory controllers is critical to efficiently utilizgwvaluable memory system resources in current and fututersgs
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