
OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance

Adwait Jog† Onur Kayiran† Nachiappan Chidambaram Nachiappan† Asit K. Mishra§

Mahmut T. Kandemir† Onur Mutlu∗ Ravishankar Iyer§ Chita R. Das†

The Pennsylvania State University† Carnegie Mellon University∗ Intel Labs §

University Park, PA 16802 Pittsburgh, PA 15213 Hillsboro, OR 97124

(adwait, onur, nachi, kandemir, das)@cse.psu.edu onur@cmu.edu (asit.k.mishra, ravishankar.iyer)@intel.com

Abstract

Emerging GPGPU architectures, along with programming models
like CUDA and OpenCL, offer a cost-effective platform for many
applications by providing high thread level parallelism at lower
energy budgets. Unfortunately, for many general-purpose applica-
tions, available hardware resources of a GPGPU are not efficiently
utilized, leading to lost opportunity in improving performance. A
major cause of this is the inefficiency of current warp scheduling
policies in tolerating long memory latencies.

In this paper, we identify that the scheduling decisions made by
such policies are agnostic to thread-block, or cooperative thread
array (CTA), behavior, and as a result inefficient. We present a co-
ordinated CTA-aware scheduling policy that utilizes four schemes
to minimize the impact of long memory latencies. The first two
schemes, CTA-aware two-level warp scheduling and locality aware
warp scheduling, enhance per-core performance by effectively re-
ducing cache contention and improving latency hiding capabil-
ity. The third scheme, bank-level parallelism aware warp schedul-
ing, improves overall GPGPU performance by enhancing DRAM
bank-level parallelism. The fourth scheme employs opportunistic
memory-side prefetching to further enhance performance by tak-
ing advantage of open DRAM rows. Evaluations on a 28-core
GPGPU platform with highly memory-intensive applications in-
dicate that our proposed mechanism can provide 33% average
performance improvement compared to the commonly-employed
round-robin warp scheduling policy.

Categories and Subject Descriptors C.1.4 [Computer Systems
Organization]: Processor Architectures—Parallel Architectures;
D.1.3 [Software]: Programming Techniques—Concurrent Pro-
gramming

General Terms Design, Performance

Keywords GPGPUs; Scheduling; Prefetching; Latency Tolerance

1. Introduction

General Purpose Graphics Processing Units (GPGPUs) have re-
cently emerged as a cost-effective computing platform for a wide

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

range of applications due to their immense computing power com-
pared to CPUs [1, 6, 7, 25, 28, 48]. GPGPUs are characterized by
numerous programmable computational cores and thousands of si-
multaneously active fine-grained threads. To facilitate ease of pro-
gramming on these systems, programming models like CUDA [46]
and OpenCL [39] have been developed. GPGPU applications are
typically divided into several kernels, where each kernel is capa-
ble of spawning many threads. The threads are usually grouped
together into thread blocks, also known as cooperative thread ar-
rays (CTAs). When an application starts its execution on a GPGPU,
the CTA scheduler initiates scheduling of CTAs onto the available
GPGPU cores. All the threads within a CTA are executed on the
same core typically in groups of 32 threads. This collection of
threads is referred to as a warp and all the threads within a warp
typically share the same instruction stream, which forms the basis
for the term single instruction multiple threads, SIMT [7, 8, 37].

In spite of the high theoretically achievable thread-level par-
allelism (TLP) (for example, GPGPUs are capable of simultane-
ously executing more than 1024 threads per core [48]), GPGPU
cores suffer from high periods of inactive times resulting in under-
utilization of hardware resources [24, 44]. Three critical reasons for
this are: 1) on-chip memory and register files are limiting factors
on parallelism, 2) high control flow divergence, and 3) inefficient
scheduling mechanisms. First, GPGPUs offer a limited amount of
programmer-managed memory (shared memory) and registers. If
the per-CTA requirements for these resources are high, then the ef-
fective number of CTAs that can be scheduled simultaneously will
be small, leading to lower core utilization [5, 28]. Second, when
threads within a warp take different control flow paths, the number
of threads that can continue execution in parallel reduces. Recent
works that have tackled this problem include [14, 15, 44, 49]. Third,
the inefficiency of the commonly-used round-robin (RR) schedul-
ing policy [5, 15, 44] to hide long memory fetch latencies, primarily
caused by limited off-chip DRAM bandwidth, contributes substan-
tially to the under-utilization of GPGPU cores.

With the RR scheduling policy, both the CTAs assigned to a core
and all the warps inside a CTA are given equal priority, and are exe-
cuted in a round-robin fashion. Due to this scheduling policy, most
of the warps arrive at long latency memory operations roughly at
the same time [44]. As a result, the GPGPU core becomes inac-
tive because there may be no warps that are not stalling due to
a memory operation, which significantly reduces the capability of
hiding long memory latencies. Such inactive periods are especially
prominent in memory-intensive applications. We observe that out
of 38 applications covering various benchmarks suites, 19 appli-
cations suffer from very high core inactive times (on average 62%
of total cycles are spent with no warps executing). The primary

1

cause of the high core inactivity is the large amount of on-chip and
off-chip traffic caused by the burst of long-latency memory oper-
ations coming from all warps, leading to high round-trip fetch la-
tencies. This in turn is mainly attributed to limited off-chip DRAM
bandwidth available in GPGPUs. It is anticipated that this problem
will be aggravated in emerging heterogeneous architectures, where
the main memory is unified and shared by both CPU and GPGPU
cores [3, 29–31]. This problem also becomes more severe with core
scaling and the increase in the number of simultaneously execut-
ing threads [24], in a way that is similar to the memory bandwidth
problem in multi-core systems [38, 42].

The goal of this paper is to tackle the under-utilization of
cores for improving the overall GPGPU performance. In this con-
text, we propose the c(O)operative thread array a(W)are warp

schedu(L)ing policy, called OWL1. OWL is based on the concept
of focused CTA-aware scheduling, which attempts to mitigate the
various components that contribute to long memory fetch latencies
by focusing on a selected subset of CTAs scheduled on a core (by
always prioritizing them over others until they finish). The pro-
posed OWL policy is a four-pronged concerted approach:

First, we propose a CTA-aware two-level warp scheduler that
exploits the architecture and application interplay to intelligently
schedule CTAs onto the cores. This scheme groups all the available
CTAs (N CTAs) on a core into smaller groups (of n CTAs) and
schedules all groups in a round-robin fashion. As a result, it per-
forms better than the commonly-used baseline RR warp scheduler
because 1) it allows a smaller group of warps/threads to access the
L1 cache in a particular interval of time, thereby reducing cache
contention, 2) improves latency hiding capability and reduces inac-
tive periods as not all warps reach long latency operations around
the same time. This technique improves the average L1 cache hit
rate by 8% over RR for 19 highly memory intensive applications,
providing a 14% improvement in IPC performance.

Second, we propose a locality aware warp scheduler to improve
upon the CTA-aware two-level warp scheduler, by further reduc-
ing L1 cache contention. This is achieved by always prioritizing a
group of CTAs (n CTAs) in a core over the rest of the CTAs (until
they finish). Hence, unlike the base scheme, where each group of
CTAs (consisting of n CTAs) is executed one after another and
thus, does not utilize the caches effectively, this scheme always
prioritizes one group of CTAs over the rest whenever a particu-
lar group of CTA is ready for execution. The major goal is to take
advantage of the locality between nearby threads and warps (as-
sociated with the same CTA) [21]. With this scheme, average L1
cache hit rate is further improved by 10% over the CTA-aware two-
level warp scheduler, leading to an 11% improvement in IPC per-
formance.

Third, the first two schemes are aware of different CTAs but do
not exploit any properties common among different CTAs. Across
38 GPGPU applications, we observe that there is significant DRAM
page locality between consecutive CTAs. On average, the same
DRAM page is accessed by consecutive CTAs 64% of the time.
Hence, if two consecutive CTA groups are scheduled on two differ-
ent cores and are always prioritized according to the locality aware
warp scheduling, they would access a small set of DRAM banks
more frequently. This increases the queuing time at the banks and
reduces memory bank level parallelism (BLP) [41]. On the other
hand, if non-consecutive CTA groups are scheduled and always pri-
oritized on two different cores, as we propose, they would concur-
rently access a larger number of banks. This reduces the contention

1 Owl is a bird known for exceptional vision and focus while it hunts for
food. Our proposed scheduling policy also follows an owl’s philosophy.
It intelligently selects (visualizes) a subset of CTAs (out of many CTAs
launched on a core) and focuses on them to achieve performance benefits.

at the banks and improves BLP. This proposed scheme (called the
bank-level parallelism aware warp scheduler), increases average
BLP by 11% compared to the locality aware warp scheduler, pro-
viding a 6% improvement in IPC performance.

Fourth, a drawback of the previous scheme is that it reduces
DRAM row locality. This is because rows opened by a CTA cannot
be completely utilized by its consecutive CTAs since consecutive
CTAs are not scheduled simultaneously any more. To recover the
loss in DRAM row locality, we develop an opportunistic prefetch-
ing mechanism, in which some of the data from the opened row is
brought to the nearest on-chip L2 cache partition. The mechanism
is opportunistic because the degree of prefetching depends upon the
number of pending demand requests at the memory controller.

We evaluate the performance of the OWL scheduling policy,
consisting of the four components integrated together, on a 28-core
GPGPU platform simulated via GPGPU-Sim [5] and a set of 19
highly memory intensive applications. Our results show that OWL
improves GPGPU performance by 33% over the baseline RR warp
scheduling policy. OWL also outperforms the recently-proposed
two-level scheduling policy [44] by 19%.

2. Background and Experimental Methodology

This section provides a brief description of GPGPU architecture,
typical scheduling strategies, main memory layouts of CTAs, ap-
plication suite and evaluation metrics.

2.1 Background

Our Baseline GPGPU Architecture: A GPGPU consists of
many simple cores (streaming multiprocessors), with each core
typically having a SIMT width of 8 to 32 (NVIDIA’s Fermi series
has 16 streaming multiprocessors with a SIMT width of 32 [48]
and AMD’s ATI 5870 Evergreen architecture has 20 cores with a
SIMT width of 16 [2]). Our target architecture (shown in Figure 1
(A)) consists of 28 shader cores each with a SIMT width of 8,
and 8 memory controllers. This configuration is similar to the ones
studied in recent works [4, 5]. Each core is associated with a private
L1 data cache and read-only texture and constant caches along with
a low latency shared memory (scratchpad memory). Every memory
controller is associated with a slice of the shared L2 cache for faster
access to the cached data. We assume write-back polices for both
L1 and L2 caches and optimistic performance model for atomic
instructions [5, 16]. The minimum L2 miss latency is assumed to
be 120 compute core cycles [56]. The actual miss latency could be
higher because of queuing at the memory controllers and variable
DRAM latencies. Cores and memory controllers are connected
via a two-dimensional mesh. We use a 2D mesh topology, as it

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

CTA Data Layout

On Chip Network

C

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

A(0,0) A(0,1) A(0,2) A(0,3)

:

:

DRAM Data Layout (Row Major)

Bank 1 Bank 2 Bank 3 Bank 4

A(1,0) A(1,1) A(1,2) A(1,3)

:

:

A(2,0) A(2,1) A(2,2) A(2,3)

:

:

A(3,0) A(3,1) A(3,2) A(3,3)

:

:

L1

C
L1

C
L1

C
L1

C
L1

C
L1

Core 1 Core 28

(A) (B)

(C)

mapped to

Bank 1

mapped to

Bank 2

mapped to

Bank 3

mapped to

Bank 4

CTA 1 CTA 2

CTA 3 CTA 4

Figure 1. (A) GPGPU architecture, (B) CTA data layout, and (C)
Main memory layout with CTA’s data mapped.

2

is scalable, simple, and regular [4, 5, 43]. A detailed baseline
platform configuration is described in Table 1, which is simulated
on GPGPU-Sim 2.1.2b, a cycle-accurate GPGPU simulator [5].

Canonical GPGPU Application Design: A typical CUDA ap-
plication consists of many kernels (or grids) as shown in Figure 2
(A). These kernels implement specific modules of an application.
Each kernel is divided into groups of threads, called cooperative
thread arrays (CTAs) (Figure 2 (B)). A CTA is an abstraction which
encapsulates all synchronization and barrier primitives among a
group of threads [28]. Having such an abstraction allows the un-
derlying hardware to relax the execution order of the CTAs to max-
imize parallelism. The underlying architecture in turn, sub-divides
each CTA into groups of threads (called warps) (Figure 2 (C) and
(D)). This sub-division is transparent to the application program-
mer and is an architectural abstraction.

CTA, Warp, and Thread Scheduling: Execution on GPGPUs
starts with the launch of a kernel. In this work, we assume sequen-
tial execution of kernels, which means only one kernel is executed
at a time. After a kernel is launched, the CTA scheduler sched-
ules available CTAs associated with the kernel in a round-robin and
load balanced fashion on all the cores [5]. For example, CTA 1 is
assigned to core 1, CTA 2 is assigned to core 2 and so on. After as-
signing at least one CTA to each core (provided that enough CTAs
are available), if there are still unassigned CTAs, more CTAs can
be assigned to the same core in a similar fashion. The maximum
number of CTAs per core (N) is limited by core resources (number
of threads, size of shared memory, register file size, etc. [5, 28]).
Given a baseline architecture, N may vary across kernels depend-
ing on how much resources are needed by a CTA of a particular
kernel. If a CTA of a particular kernel needs more resources, N
will be smaller compared to that of another kernel whose CTAs
need fewer resources. For example, if a CTA of kernel X needs
16KB of shared memory and the baseline architecture has 32KB of
shared memory available, a maximum of 2 CTAs of kernel X can
be executed simultaneously.

CTA 1

CTA 2

Kernel 1

Kernel Application

Kernel 2

Kernel 3

CTA 3

Warp 1

CTA

Warp 2

Warp 3

Warp 4

Threads

(A)

(B)

(C)
(D)

Figure 2. GPGPU application
hierarchy.

The above CTA assign-
ment policy is followed
by per-core GPGPU warp
scheduling. Warps associ-
ated with CTAs are sched-
uled in a round-robin (RR)
fashion on the assigned
cores [5, 44] and get equal
priority. Every 4 cycles,
a warp ready for execu-
tion is selected in a round-
robin fashion and fed to
the 8-way SIMT pipeline
of a GPGPU core. At the
memory stage of the core

pipeline, if a warp gets blocked on a long latency memory opera-
tion, the entire warp (32 threads) is scheduled out of the pipeline
and moved to the pending queue. At a later instant, when the data
for the warp arrives, it proceeds to the write-back stage, and then
fetches new instructions.

CTA Data Layout: Current GPU chips support ∼10× higher
memory bandwidth compared to CPU chips [25]. In order to take
full advantage of the available DRAM bandwidth and to reduce
the number of requests to DRAM, a kernel must arrange its data
accesses so that each request to the DRAM is for a large num-
ber of consecutive DRAM locations. With the SIMT execution
model, when all threads in a warp execute a memory operation, the
hardware typically detects if the threads are accessing consecutive
memory locations; if they are, the hardware coalesces all these ac-
cesses into a single consolidated access to DRAM that requests all

Table 1. Baseline configuration
Shader Core Config. 1300MHz, 5-Stage Pipeline, SIMT width = 8

Resources / Core Max. 1024 Threads, 32KB Shared memory,
32684 Registers

Caches / Core 32KB 8-way L1 Data cache, 8KB 4-way Texture cache
8KB 4-way Constant cache, 64B line size

L2 Cache 16-way 512 KB/Memory channel, 64B line size

Scheduling Round-robin warp scheduling,
(among ready warps), Load balanced CTA scheduling

Features Memory coalescing enabled, 32 MSHRs/core,
Immediate post dominator based
branch divergence handling

Interconnect 2D Mesh (6× 6; 28 cores + 8 Memory controllers),
650MHz, 32B channel width

DRAM Model FR-FCFS (Maximum 128 requests/MC), 8MCs,
4 DRAM banks/MC, 2KB row size

GDDR3 Timing 800MHz, tCL = 10, tRP = 10, tRC = 35, tRAS = 25
tRCD = 12, tRRD = 8, tCDLR = 6, tWR = 11

consecutive locations at once. To understand how data blocks used
by CTAs are placed in the DRAM main memory, consider Figure 1
(B). This figure shows that all locations in the DRAM main mem-
ory form a single, consecutive address space. The matrix elements
that are used by CTAs are placed into the linearly addressed loca-
tions according to the row major convention as shown in Figure 1
(B). That is, the elements of row 0 of a matrix are first placed in
order into consecutive locations (see Figure 1 (C)). The subsequent
row is placed in another DRAM bank. Note that, this example is
simplified for illustrative purposes only. The data layout may vary
across applications (our evaluations take into account different data
layouts of applications).

2.2 Workloads and Metrics

Application Suite: There is increasing interest in executing var-
ious general-purpose applications on GPGPUs in addition to the
traditional graphics rendering applications [5, 32]. In this spirit,
we consider a wide range of emerging GPGPU applications imple-
mented in CUDA, which include NVIDIA SDK [47], Rodinia [10],
Parboil [53], MapReduce [19], and a few third party applications.
In total, we study 38 applications. While Rodinia applications are
mainly targeted for heterogeneous platforms, Parboil benchmarks
primarily stress throughput computing focused architectures. Data-
intensive MapReduce and third party applications are included for
diversity. We execute these applications on GPGPU-Sim, which
simulates the baseline architecture described in Table 1. The ap-
plications are run until completion or for 1 billion instructions
(whichever comes first), except for IIX where we execute only
400 million instructions because of infrastructure limitations.

Evaluation Metrics: In addition to using instructions per cy-
cle (IPC) as the primary performance metric for evaluation, we
also consider auxiliary metrics like bank level parallelism and row
buffer locality. Bank level parallelism (BLP) is defined as the num-
ber of average memory banks that are accessed when there is at
least one outstanding memory request at any of the banks [26, 27,
41, 42]. Improving BLP enables better utilization of DRAM band-
width. Row-buffer locality (RBL) is defined as the average hit-rate
of the row buffer across all memory banks [27]. Improving RBL
increases the memory service rate and hence also enables better
DRAM bandwidth utilization.

3. Motivation and Workload Analysis

Round robin (RR) scheduling of warps causes almost all warps to
execute the same long latency memory operation (with different ad-
dresses) at roughly the same time, as previous work has shown [44].
For the computation to resume in the warps and the core to become
active again, these long-latency memory accesses need to be com-
pleted. This inefficiency of RR scheduling hampers the latency hid-

3

ing capability of GPGPUs. To understand it further, let us consider
8 CTAs that need to be assigned to 2 cores (4 CTAs per core). Ac-
cording to the load-balanced CTA assignment policy described in
Section 2.1, CTAs 1, 3, 5, 7 are assigned to core 1 and CTAs 2, 4,
6, 8 are assigned to core 2. With RR, warps associated with CTAs
1, 3, 5 and 7 are executed with equal priority on core 1 and are ex-
ecuted in a round-robin fashion. This execution continues until all
the warps are blocked (when they need data from main memory).
At this point, there may be no ready warps that can be scheduled,
making core 1 inactive. Typically, this inactive time is very sig-
nificant in memory intensive applications, as multiple requests are
sent to the memory subsystem by many cores in a short period of
time. This increases network and DRAM contention, which in turn
increases queuing delays, leading to very high core inactive times.

To evaluate the impact of RR scheduling on GPGPU applica-
tions, we first characterize our application set. We quantify how
much IPC improvement each application gains if all memory re-
quests magically hit in the L1 cache. This improvement, called
PMEM, is depicted in Table 2, where the 38 applications are sorted
in descending order of PMEM. Applications that have high PMEM
(>= 1.4×) are classified as Type-1, and the rest as Type-2. We
have observed that the warps of highly memory intensive applica-
tions (Type-1) wait longer for their data to come back than warps
of Type-2 applications. If this wait is eliminated, the performance
of SAD, PVC, and SSC would improve by 639%, 499% and 460%,
respectively (as shown by the PMEM values for these applications).

Across Type-1 applications, average core inactive time (CINV)
is 62% of the total execution cycles of all cores (Table 2). Dur-
ing this inactive time, no threads are being executed in the core.
The primary reason behind this high core inactivity is what we
call MemoryBlockCycles, which is defined as the number of cycles
during which all the warps in the core are stalled waiting for their
memory requests to come back from L2 cache/DRAM (i.e., there
are warps on the core but they are all waiting for memory). Figure 3
shows the fraction of MemoryBlockCycles of all the cores out of the
total number of cycles taken to execute each application. Across
all 38 applications, MemoryBlockCycles constitute 32% of the to-
tal execution cycles, i.e., 70% of the total inactive cycles. These
results clearly highlight the importance of reducing the Memory-
BlockCycles to improve the utilization of cores, and thus GPGPU
performance.

Another major constituent of inactive cycles is NoWarpCycles,
which is defined as number of cycles during which a core has
no warps to execute, but an application has not completed its
execution as some other cores are still executing warps. This might
happen due to two reasons: (1) availability of a small number of
CTAs within an application (due to an inherently small amount of
parallelism) [24] or (2) the CTA load imbalance phenomenon [5],
where some of the cores finish their assigned CTAs earlier than the
others. We find that NoWarpCycles is prominent in LUD and NQU,
which are Type-2 applications. From Table 2, we see that although
core inactive time is very high in LUD and NQU (64% and 95%,
respectively), MemoryBlockCycles is very low (Figure 3). We leave

Table 2. GPGPU application characteristics: (A) PMEM: IPC improvement with perfect memory (All memory requests are satisfied in L1
caches), Legend: H = High (>= 1.4x) , L = Low (< 1.4x); (B) CINV: The ratio of inactive cycles to the total execution cycles of all the cores.

App. Suite Type-1 Applications Abbr. PMEM CINV # App. Suite Type-2 Applications Abbr. PMEM CINV

1 Parboil Sum of Abs. Differences SAD H (6.39x) 91% 20 CUDA SDK Separable Convolution CON L (1.23x) 20%

2 MapReduce PageViewCount PVC H (4.99x) 93% 21 CUDA SDK AES Cryptography AES L (1.23x) 51%

3 MapReduce SimilarityScore SSC H (4.60x) 85% 22 Rodinia SRAD1 SD1 L (1.17x) 20%

4 CUDA SDK Breadth First Search BFS H (2.77x) 81% 23 CUDA SDK Blackscholes BLK L (1.16x) 17%

5 CUDA SDK MUMerGPU MUM H (2.66x) 72% 24 Rodinia HotSpot HS L (1.15x) 21%

6 Rodinia CFD Solver CFD H (2.46x) 66% 25 CUDA SDK Scan of Large Arrays SLA L (1.13x) 17%

7 Rodinia Kmeans Clustering KMN H (2.43x) 65% 26 3rd Party Denoise DN L (1.12x) 22%

8 CUDA SDK Scalar Product SCP H (2.37x) 58% 27 CUDA SDK 3D Laplace Solver LPS L (1.10x) 12%

9 CUDA SDK Fast Walsh Transform FWT H (2.29x) 58% 28 CUDA SDK Neural Network NN L (1.10x) 13%

10 MapReduce InvertedIndex IIX H (2.29x) 65% 29 Rodinia Particle Filter (Native) PFN L (1.08x) 10%

11 Parboil Sparse-Matrix-Mul. SPMV H (2.19x) 65% 30 Rodinia Leukocyte LYTE L (1.08x) 15%

12 3rd Party JPEG Decoding JPEG H (2.12x) 54% 31 Rodinia LU Decomposition LUD L (1.05x) 64%

13 Rodinia Breadth First Search BFSR H (2.09x) 64% 32 Parboil Matrix Multiplication MM L (1.04x) 4%

14 Rodinia Streamcluster SC H (1.94x) 52% 33 CUDA SDK StoreGPU STO L (1.02x) 3%

15 Parboil FFT Algorithm FFT H (1.56x) 37% 34 CUDA SDK Coulombic Potential CP L (1.01x) 4%

16 Rodinia SRAD2 SD2 H (1.53x) 36% 35 CUDA SDK N-Queens Solver NQU L (1.01x) 95%

17 CUDA SDK Weather Prediction WP H (1.50x) 54% 36 Parboil Distance-Cutoff CP CUTP L (1.01x) 2%

18 MapReduce PageViewRank PVR H (1.41x) 46% 37 Rodinia Heartwall HW L (1.01x) 9%

19 Rodinia Backpropogation BP H (1.40x) 33% 38 Parboil Angular Correlation TPAF L (1.01x) 6%

0%

20%

40%

60%

80%

100%

S
A

D
P

V
C

S
S

C
B

F
S

M
U

M
C

F
D

K
M

N
S

C
P

F
W

T
II

X
S

P
M

V
JP

E
G

B
F

S
R

S
C

F
F

T
S

D
2

W
P

P
V

R
B

P
C

O
N

A
E

S
S

D
1

B
L

K
H

S
S

L
A

D
N

L
P

S
N

N
P

F
N

L
Y

T
E

L
U

D
M

M
S

T
O

C
P

N
Q

U
C

U
T

P
H

W
T

P
A

F

A
V

G
A

V
G

-T
1P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l C

yc
le

s

Figure 3. Fraction of total execution cycles (of all the cores) during which all the warps launched on a core are waiting for their respective
data to come back from L2 cache/DRAM. We call the number of cycles where all warps are stalled due to memory MemoryBlockCycles.
AVG-T1 is the average (arithmetic mean) value across all Type-1 applications. AVG is the average value across all 38 applications.

4

improving the performance of Type-2 applications for future work,
and focus on improving the performance of Type-1 applications
where the main cause of core idleness is waiting on memory.

Note that Type-1 applications are present across all modern
workload suites like MapReduce, Parboil, Rodinia, and CUDA
SDK, indicating that memory stalls are a fundamental bottleneck
in improving the performance of these applications. We have found
that Type-1 applications are most affected by limited off-chip
DRAM bandwidth, which leads to long memory stall times. Our
goal is to devise new warp scheduling mechanisms to both reduce
and tolerate long memory stall times in GPGPUs.

4. The Proposed OWL Scheduler

In this section, we describe OWL, c(O)operative thread array
a(W)are warp schedu(L)ing policy, which consists of four schemes:
CTA-aware two-level warp scheduling, locality aware warp schedul-
ing, bank-level parallelism aware warp scheduling, and opportunis-
tic prefetching, where each scheme builds on top of the previous.

4.1 CTA-Aware: CTA-aware two-level warp scheduling

To address the problem posed by RR scheduling, we propose a
CTA-aware two-level warp scheduler, where all the available CTAs
launched on a core (N CTAs) are divided into smaller groups of
n CTAs. Assume that the size of each CTA is k warps (which
is pre-determined for an application kernel). This corresponds to
each group having n× k warps. CTA-Aware selects a single group
(having n CTAs) and prioritizes the associated warps (n × k) for
execution over the remaining warps ((N − n) × k) associated
with the other group(s). Warps within the same group have equal
priority and are executed in a round-robin fashion. Once all the
warps associated with the first selected group are blocked due to
the unavailability of data, a group switch occurs giving opportunity
to the next CTA group for execution (and this process continues in a
round-robin fashion among all the CTA groups). This is an effective
way to hide long memory latencies, as now, a core can execute the
group(s) of warps that are not waiting for memory while waiting
for the data for the other group(s).

How to choose n: A group with n CTAs should have enough
warps to keep the core pipeline busy in the absence of long latency
operations [44]. Based on the GPU core’s scheduling model de-
scribed in Section 2, we set the minimum number of warps in a
group to the number of pipeline stages (5 in our case). It means
that, the minimum value of n× k should be 5. Since k depends on
the GPGPU application kernel, the group size can vary for different
application kernels. As each group can only have integral number
of CTAs (n), we start with n = 1. If n× k is still smaller than the
minimum number of warps in a group, we increase n by 1 until we
have enough warps in the group for a particular application kernel.
After the first group is formed, remaining groups are also formed
in a similar fashion. For example, assume that the total number of
CTAs launched on a core is N = 10. Also, assume that the number
of pipeline stages is 5, and the number of warps in a CTA (k) is 2.
In this case, the size of the first group (n) will be set to 3 CTAs,
as now, a group will have 6 (3× 2) warps, satisfying the minimum
requirement of 5 (number of pipeline stages). The second group
will follow the same method and have 3 CTAs. Now, note that the
third group will have 4 CTAs to include the remaining CTAs. The
third group cannot have only 3 CTAs (n = 3), because that will
push the last CTA (10th CTA) to become the fourth group by itself,
violating the minimum group size (in warps) requirement for the
fourth group. We call this scheme CTA-aware two-level schedul-
ing (CTA-Aware), as the groups are formed taking CTA boundaries
into consideration and a two-level scheduling policy is employed,
where scheduling within a group (level 1) and switching among
different groups (level 2) are both done in a round-robin fashion.

The need to be CTA-aware: Two types of data locality are
primarily present in GPGPU applications [21, 44, 51]: (1) Intra-
warp data locality, and (2) Intra-CTA (inter-warp) data locality.
Intra-warp locality is due to the threads in a warp that share con-
tiguous elements of an array, which are typically coalesced to the
same cache line. This locality is exploited by keeping the threads
of a warp together. Intra-CTA locality results from warps within
the same thread-block sharing blocks or rows of data. Typically,
data associated with one CTA is first moved to the on-chip mem-
ories and is followed by the computation on it. Finally, the re-
sults are written back to the main global memory. Since the dif-
ference between access latencies of on-chip and off-chip memories
is very high [5], it is critical to optimally utilize the data brought
on-chip and maximize reuse opportunities. Prioritizing some group
of warps agnostic to the CTA boundaries may not utilize the data
brought on-chip to the full extent (because it may cause eviction of
data that is reused across different warps in the same CTA). Thus,
it is important to be CTA-aware when forming groups.

4.2 CTA-Aware-Locality: Locality aware warp scheduling

Although CTA-Aware scheduling we just described is effective in
hiding the long memory fetch latencies, it does not effectively uti-
lize the private L1 cache capacity associated with every core. Given
the fact that L1 data caches of the state-of-the art GPGPU architec-
tures are in the 16-64 KB range [48] (as well as in CMPs [22]),
in most cases, the data brought by a large number of CTAs exe-
cuting simultaneously does not fit into the cache (this is true for a
majority of the memory-intensive applications). This hampers the
opportunity of reusing the data brought by warps, eventually lead-
ing to a high number of L1 misses. In fact, this problem is more
severe with the RR scheduling policy, where the number of simul-
taneously executing CTAs taking advantage of the caches in a given
interval of time is more than that with our CTA-Aware schedul-
ing policy. In many-core and SMT architectures, others [11, 55]
also observed a similar phenomenon, where many simultaneously
executing threads (which share the same cache) cause cache con-
tention, leading to increased cache misses. One might argue that,
this situation can be addressed by increasing the size of L1 caches,
but that would lead to (1) higher cache access latency, and (2) re-
duced hardware resources dedicated for computation, thereby ham-
pering parallelism and the ability of the architecture to hide mem-
ory latency further.

Problem: In order to understand the problem with CTA-Aware
scheme, consider Figure 4 (A). Without the loss of generality, let
us assume that the group size is equal to 1. Further, assume that at
core 1, CTA 1 belongs to group 1, CTA 3 belongs to group 2, etc.,
and each CTA has enough warps to keep the core pipeline busy
(1 × k ≥ number of pipeline stages). According to CTA-Aware,
the warps of group 1 are prioritized until they are blocked waiting
for memory. At this point, the warps of CTA 3 are executed. If
the warps of CTA 1 become ready to execute (because their data

(A)

(B)

Data for CTA 1 arrives.

Switch to CTA 1.

Data for CTA 1 arrives.

No switching.

1 3 7 1 3

1 3 1 3 5 5 5

5 5 7

7 7

T

Figure 4. An illustrative example showing the working of (A)
CTA-aware two-level warp scheduling (CTA-Aware) (B) Locality
aware warp scheduling (CTA-Aware-Locality). Label in each box
refers to the corresponding CTA number.

5

Table 3. Reduction in combined L1 miss rates (texture, constant, data) with our warp scheduling mechanisms over baseline RR scheduling.
App. CTA-Aware CTA-Aware-Locality # App. CTA-Aware CTA-Aware-Locality # App. CTA-Aware CTA-Aware-Locality

1 SAD 6% 42% 7 KMN 27% 49% 14 SC 0% 0%

2 PVC 89% 90% 8 SCP 0% 0% 15 FFT 1% 1%

3 SSC 1% 8% 9 FWT 0% 0% 16 SD2 0% 0%

4 BFS 1% 17% 10 IIX 27% 96% 17 WP 0% 0%

5 MUM 1% 2% 11 SPMV 0% 8% 18 PVR 1% 2%

6 CFD 1% 2% 12 JPEG 0% 0% 19 BP 0% 0%

13 BFSR 2% 16% AVG-T1 8% 18%

arrives from memory) when the core is executing warps of CTA 5
(Figure 4 (A)), CTA-Aware will keep executing the warps of CTA 5
(and will continue to CTA 7 after that). It will not choose the warps
from CTA 1 even though they are ready because it follows a strict
round-robin policy among different CTAs. Thus, the data brought
by the warps of CTA 1 early on (before they were stalled) becomes
more likely to get evicted by other CTAs’ data as the core keeps
on executing the CTAs in a round-robin fashion. This strict round
robin scheduling scheme allows larger number of threads to bring
data to the relatively small L1 caches, thereby increasing cache
contention due to the differences in the data sets of different CTAs
and hampering the effective reuse of data in the caches. Although
CTA-Aware performs better in utilizing L1 caches compared to RR
(because it restricts the number of warps sharing the L1 cache
simultaneously), it is far from optimal.

Solution: To achieve better L1 hit rates, we strive to reduce the
number of simultaneously executing CTAs taking advantage of L1
caches in a particular time interval. Out of N CTAs launched on a
core, the goal is to always prioritize only one of the CTA groups
of size n. n is chosen by the method described in Section 4.1. In
general, on a particular core, CTA-Aware-Locality starts scheduling
warps from group 1. If warps associated with group 1 (whose size
is n CTAs) are blocked due to unavailability of data, the scheduler
can schedule warps from group 2. This is essential to keep the core
pipeline busy. However, as soon as any warps from group 1 are
ready (i.e., their requested data has arrived), CTA-Aware-Locality
again prioritizes these group 1 warps. If all warps belonging to
group 1 have completed their execution, the next group (group 2)
is chosen and is always prioritized. This process continues until all
the launched CTAs finish their execution.

The primary motivation of using this scheme is that, in a particu-
lar time interval, only n CTAs are given higher priority to keep their
data in the private caches such that they get the opportunity to reuse
it. Since this scheme reduces contention and increases reuse in the
L1 cache, we call it locality aware warp scheduling (CTA-Aware-
Locality). Note that, as n is closer to N , CTA-Aware-Locality de-
generates into RR, as there can be only one group with N CTAs.

Typically, a GPGPU application kernel does not require fair-
ness among the completion of different CTAs. CTAs can execute
and finish in any order. The only important metric from the appli-
cation’s point of view is the total execution time of the kernel. A
fair version of CTA-Aware-Locality can also be devised, where the
CTA group with highest priority is changed (and accordingly, pri-
orities of all groups will change) in a round-robin fashion (among
all the groups) after a fixed interval of time. We leave the design of
such schemes to future work.

Figure 4 (B) shows how CTA-Aware-Locality works. Again,
without loss of generality, let us assume that the group size is equal
to 1. We show that, CTA-Aware-Locality starts choosing warps
belonging to CTA 1 (belonging to group 1) once they become ready,
unlike CTA-Aware, where scheduler keeps on choosing warps from
CTA 5 (group 3), 7 (group 4) and so on. In other words, we always
prioritize a small group of CTAs (in this case, group 1 with n = 1)
and shift the priority to the next CTA only after CTA 1 completes
its execution. During time interval T , we observe that only 3 CTAs
are executing and taking advantage of the private caches, contrary

to 4 CTAs in the baseline system (Figure 4 (A)). This implies that a
smaller number of CTAs gets the opportunity to use the L1 caches
concurrently, increasing L1 hit rates and reducing cache contention.

Discussion: CTA-Aware-Locality aims to reduce the L1 cache
misses. Table 3 shows the reduction in L1 miss rates (over baseline
RR) when CTA-Aware and CTA-Aware-Locality schemes are incor-
porated. On average, for Type-1 applications, CTA-Aware reduces
the overall miss rate by 8%. CTA-Aware-Locality is further able
to reduce the overall miss rate (by 10%) by scheduling warps as
soon as the data arrives for them, rather than waiting for their turn,
thereby reducing the number of CTAs currently taking advantage
of the L1 caches. With CTA-Aware-Locality, we observe maximum
benefits with Map-Reduce applications PVC and IIX, where the
reduction in L1 miss rates is 90% and 96%, respectively, leading
to significant IPC improvements (see Section 5). Since these ap-
plications are very memory intensive (highly ranked among Type-
1 applications in Table 2) and exhibit good L1 data reuse within
CTAs, they significantly benefit from CTA-Aware-Locality. Inter-
estingly, we find that 8 out of 19 Type-1 applications show negli-
gible reduction in L1 miss rates with both CTA-Aware and CTA-
Aware-Locality. Detailed analysis shows that these applications do
not exhibit significant cache sensitivity, thus, do not provide suffi-
cient L1 data reuse opportunities. In WP, because of resource limi-
tations posed by the baseline architecture (Section 2), there are only
6 warps that can be simultaneously executed. This restriction elim-
inates the possibility of getting benefits from CTA-Aware-Locality,
as only one group (with 6 warps) can be formed, and no group
switching/prioritization occurs.

4.3 CTA-Aware-Locality-BLP: BLP aware warp scheduling

In the previous section, we discussed how CTA-Aware-Locality
helps in hiding memory latency along with reducing L1 miss rates.
In this section, we propose CTA-Aware-Locality-BLP, which not
only incorporates the benefits of CTA-Aware-Locality, but also
improves DRAM bank-level parallelism (BLP) [41].

Problem: In our study of 38 applications, we observe that the
same DRAM row is accessed (shared) by consecutive CTAs 64%
of the time. Table 4 shows these row sharing percentages for all
the Type-1 applications. This metric is determined by calculating
the average fraction of consecutive CTAs (out of total CTAs) ac-
cessing the same DRAM row, averaged across all rows. For exam-
ple, if a row is accessed by CTAs 1, 2, 3, and 7, its consecutive
CTA row sharing percentage is deemed to be 75% (as CTAs 1, 2,
3 are consecutive). We observe that for many GPGPU applications,
the consecutive CTA row sharing percentages are very high (up to
99% in JPEG). For example, in Figure 1 (B), we observe that the
row sharing percentage is 100%, as CTA 1 opens 2 rows in Bank
1 (A(0,0) and A(0,1)) and Bank 2 (A(1,0) and A(1,1)); and, CTA
2 opens the same rows again as the data needed by it to execute is
also mapped to the same rows. These high consecutive CTA row
sharing percentages are not surprising, as CUDA programmers are
encouraged to form CTAs such that the data required by the consec-
utive CTAs is mapped to the same DRAM row for high DRAM row
locality, improving DRAM bandwidth utilization [28]. Also, many
data layout optimizations are proposed to make CTA conform to
the DRAM layout [54] to get the maximum performance.

6

Table 4. GPGPU application characteristics: Consecutive CTA row sharing: Fraction of consecutive CTAs (out of all CTAs) accessing the
same DRAM row. CTAs/Row: Average number of CTAs accessing the same DRAM row.

App. Cons. CTA row sharing CTAs/Row # App. Cons. CTA row sharing CTAs/Row # App. Cons. CTA row sharing CTAs/Row

1 SAD 42% 32 7 KMN 66% 2 14 SC 1% 2

2 PVC 36% 2 8 SCP 0% 1 15 FFT 14% 5

3 SSC 20% 2 9 FWT 85% 2 16 SD2 98% 35

4 BFS 23% 5 10 IIX 36% 2 17 WP 93% 7

5 MUM 17% 32 11 SPMV 98% 6 18 PVR 38% 2

6 CFD 81% 10 12 JPEG 99% 16 19 BP 99% 4

13 BFSR 71% 8 AVG 64% 15

In Section 4.2, we proposed CTA-Aware-Locality where a sub-
set of CTAs (one group) is always prioritized over others. Although
this scheme is effective at reducing cache contention and improving
per-core performance, it takes decisions agnostic to inter-CTA row
sharing properties. Consider a scenario where two consecutive CTA
groups are scheduled on two different cores and are being always
prioritized according to CTA-Aware-Locality. Given that the con-
secutive CTAs (in turn warps) share DRAM rows, the CTA groups
access a small set of DRAM banks more frequently. This increases
the queuing time at the banks and reduces the bank level paral-
lelism (BLP). To understand this problem in-depth, let us revisit
Figure 1 (C), which shows the row-major data layout of CTAs in
DRAM [28]. The elements in row 0 of the matrix in Figure 1 (B) are
mapped to a single row in bank 1, elements in row 1 are mapped to
bank 2, and so on. To maximize row locality, it is important that the
row that is loaded to a row buffer in a bank is utilized to the maxi-
mum, as row buffer hit latency (10 DRAM cycles (tCL)) is almost
twice cheaper than row closed latency (22 DRAM cycles (tRCD

+ tCL)), and almost three times cheaper than row conflict latency
(32 DRAM cycles (tRP + tRCD + tCL)) [41]. CTA-Aware-Locality
prioritizes CTA 1 (group 1) at core 1 and CTA 2 (also, group 1) at
core 2. When both the groups are blocked, their memory requests
access the same row in both bank 1 and bank 2, as CTA 1 and CTA
2 share the same rows (row sharing = 100%).

Figure 5 (A) depicts this phenomenon pictorially. Since consec-
utive CTAs (CTAs 1 and 2) share the same rows, prioritizing them
in different cores enables them to access these same rows concur-
rently, thereby providing high row buffer hit rate. Unfortunately, for
the exact same reason, prioritizing consecutive CTAs in different
cores leads to low BLP because all DRAM banks are not utilized
as consecutive CTAs access the same banks (In Figure 5 (A), two
banks stay idle). Our goal is to develop a series of techniques that
achieve both high BLP and high row buffer hit rate. First, we de-
scribe a bank-level parallelism aware warp scheduling mechanism,
CTA-Aware-Locality-BLP, which improves BLP at the expense of
row locality.

Solution: To address the above problem, we propose CTA-
Aware-Locality-BLP, which not only inherits the positive aspects

of CTA-Aware-Locality (better L1 hit rates), but also improves
DRAM bank level parallelism. The key idea is to still always
prioritize one CTA group in each core, but to ensure that non-
consecutive CTAs (i.e., CTAs that do not share rows) are always
prioritized in different cores. This improves the likelihood that the
executing CTA groups (warps) in different cores access different
banks, thereby improving bank level parallelism.

Figure 5 (B) depicts the working of CTA-Aware-Locality-BLP
pictorially with an example. Instead of prioritizing consecutive
CTAs (CTAs 1 and 2) in the two cores, CTA-Aware-Locality-BLP
prioritizes non-consecutive ones (CTAs 1 and 4). This enables all
four banks to be utilized concurrently, instead of two banks stay-
ing idle, which was the case with CTA-Aware-Locality (depicted
in Figure 5 (A)). Hence, prioritizing non-consecutive CTAs in dif-
ferent cores leads to improved BLP. Note that this comes at the
expense of row buffer locality, which we will restore with our next
proposal, Opportunistic Prefetching (Section 4.4).

One way to implement the key idea of CTA-Aware-Locality-
BLP is to prioritize different-numbered CTA groups in consecutive
cores concurrently, instead of prioritizing the same-numbered CTA
groups in each core concurrently. In other words, the warp sched-
uler in each core prioritizes, for example, the first CTA group in
core 1, the second CTA group in core 2, the third CTA group in
core 3, and so on. Since different-numbered CTA groups are un-
likely to share DRAM rows, this technique is likely to maximize
parallelism. Algorithm 1 more formally depicts the group forma-
tion and group priority assignment strategies for the three schemes
we have proposed so far.

Discussion: Figure 6 shows the change in BLP and row buffer
hit rate with CTA-Aware-Locality-BLP compared to CTA-Aware-
Locality. Across Type-1 applications, there is an 11% average in-
crease in BLP (AVG-T1), which not only reduces the DRAM queu-
ing latency by 12%, but also reduces overall memory fetch latency
by 22%. In JPEG, the BLP improvement is 46%. When CTA-
Aware-Locality-BLP is incorporated, we observe 14% average re-
duction in row locality among all Type-1 applications. We note that,
even though there is a significant increase in BLP, the decrease in
row locality (e.g., in JPEG, SD2) is a concern, because reduced row

Bank

1

Bank

2

Bank

3

Bank

4

L2

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

High BLP

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

Low Row Locality

Low BLP

High Row Locality

High BLP

High Row Locality

(A) (B) (C1)

Bank

1

L2 L2

Bank

2

Bank

3

Bank

4

Idle! Idle!

Bank

1

Bank

2

Bank

3

Bank

4

Prefetch

Bank

1

Bank

2

Bank

3

Bank

4

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

Prefetch hits at L2

L2

(C2)

Figure 5. An example illustrating (A) the under-utilization of DRAM banks with CTA-Aware-Locality, (B) improved bank-level parallelism
with CTA-Aware-Locality-BLP, (C1, C2) the positive effects of Opportunistic Prefetching.

7

Algorithm 1 Group formation and priority assignment

⊲ k is the number of warps in a CTA
⊲ N is the number of CTAs scheduled on a core
⊲ n is the minimum number of CTAs in a group

⊲ g size is the minimum number of warps in a group
⊲ g core is the number of groups scheduled on a core
⊲ num cores is the total number of cores in GPGPU

⊲ group size[i] is the group size (in number of CTAs) of the ith group

⊲ g pri[i][j] is the group priority of the ith group scheduled on the jth core.
⊲ The lower the g pri[i][j], the higher the scheduling priority. Once a group is

chosen, the scheduler cannot choose warps from different group(s) unless all warps
of the already-chosen group are blocked because of unavailability of data.
procedure FORM GROUPS

n← 1
while (n× k) < g size do

n← n + 1

g core← ⌊N/n⌋
for g num = 0→ (g core− 1) do

group size[g num]← n

if (N mod n) 6= 0 then

group size[g core−1]← group size[g core−1]+(N mod n)

procedure CTA-AWARE

FORM GROUPS

for core ID = 0→ (num cores− 1) do

for g num = 0→ (g core− 1) do

g pri[g num][core ID]← 0

⊲ All groups have equal priority and executed in RR fashion.

procedure CTA-AWARE-LOCALITY

FORM GROUPS

for core ID = 0→ (num cores− 1) do

for g num = 0→ (g core− 1) do

g pri[g num][core ID]← g num

procedure CTA-AWARE-LOCALITY-BLP
FORM GROUPS

for core ID = 0→ (num cores− 1) do

for g num = 0→ (g core− 1) do

g pri[g num][core ID]← (g num− core ID) mod g core

locality adversely affects DRAM bandwidth utilization. To address
this problem, we propose our final scheme, memory-side Oppor-
tunistic Prefetching.

-50%

-30%

-10%

10%

30%

50%

S
A

D

P
V

C

S
S

C

B
F

S

M
U

M

C
F

D

K
M

N

S
C

P

F
W

T

II
X

S
P

M
V

J
P

E
G

B
F

S
R

S
C

F
F

T

S
D

2

W
P

P
V

R

B
P

A
V

G
-T

1

Im
p

ro
v
e

m
e

n
t

Bank Level Parallelism Row Locality

-6
2
%

0%

0%

11%

14%

Figure 6. Effect of CTA-Aware-Locality-BLP on DRAM bank-
level parallelism and row locality, compared to CTA-Aware-
Locality.

4.4 Opportunistic Prefetching

In the previous section, we discussed how CTA-Aware-Locality-
BLP improves bank-level parallelism, but this comes at the cost
of row locality. Our evaluations show that, on average, 15 CTAs
access the same DRAM row (shown under CTAs/row in Table 4).
If these CTAs do not access the row when the row is fetched into
the row buffer the first time, data in the row buffer will not be

efficiently utilized. In fact, since CTA-Aware-Locality-BLP tries
to schedule different CTAs that access the same row at different
times to improve BLP, these different CTAs will need to re-open
the row over and over before accessing it. Hence, large losses in
row locality are possible (and we have observed these, as shown in
Figure 6), which can hinder performance. Our goal is to restore row
buffer locality (and hence efficiently utilize an open row as much
as possible) while keeping the benefits of improved BLP.

Solution: We observe that prefetching cache blocks of an al-
ready open row can achieve this goal: if the prefetched cache blocks
are later needed by other CTAs, these CTAs will find the prefetched
data in the cache and hence do not need to access DRAM. As such,
in the best case, even though CTAs that access the same row get
scheduled at different times, they would not re-open the row over
and over because opportunistic prefetching would prefetch all the
needed data into the caches.

The key idea of opportunistic prefetching is to prefetch the
so-far-unfetched cache lines in an already open row into the L2
caches, just before the row is closed (i.e., after all the demand
requests to the row in the memory request buffer are served). We
call this opportunistic because the prefetcher, sitting in the memory
controller, takes advantage of a row that was already opened by
a demand request, in an opportunistic way. The prefetched lines
can be useful for both currently executing CTAs, as well as, CTAs
that will be launched later. Figure 5 (C1, C2) depicts the potential
benefit of this scheme. In Figure 5 (C1), during the execution of
CTAs 1 and 4, our proposal prefetches the data from the open rows
that could potentially be useful for other CTAs (CTAs 2 and 3 in
this example). If the prefetched lines are useful (Figure 5 (C2)),
when CTAs 2 and 3 execute and require data from the same row,
their requests will hit in the L2 cache and hence they will not need
to access DRAM for the same row.

Implementation: There are two key design decisions in our op-
portunistic prefetcher: what cache lines to prefetch and when to stop
prefetching. In this paper, we explore simple mechanisms to pro-
vide an initial study. However, any previously proposed prefetching
method can be employed (as long as they generate requests to the
same row that is open) – we leave the exploration of such sophisti-
cated techniques to future work.

What to prefetch? The prefetcher we evaluate starts prefetch-
ing when there are no more demand requests to an open row. It
sequentially prefetches the cache lines that were not accessed by
demand requests (after the row was opened the last time) from the
row to the L2 cache slice associated with the memory controller.

When to stop opportunistic prefetching? We study two pos-
sible schemes, although there are many design choices possible. In
the first scheme, the prefetcher stops immediately after a demand
request to a different row arrives. The intuition is that a demand
request is more critical than a prefetch, so it should be served im-
mediately. However, this intuition may not hold true because ser-
vicing useful row-hit prefetch requests before row-conflict demand
requests can eliminate future row conflicts, thereby improving per-
formance (also shown by Lee et al. [34]). In addition, additional
latency incurred by the demand request if prefetches were contin-
ued to be issued to the open row even after the demand arrives can
be hidden in GPGPUs due to the existence of a large number of
warps. Hence, it may be worthwhile to keep prefetching even after
a demand to a different row arrives. Therefore, our second scheme
prefetches at least a minimum number of cache lines (C) regardless
of whether or not a demand arrives. The value of C is set to a value
lower initially. The prefetcher continuously monitors the number
of demand requests at the memory controller queue. If that number
is less than a threshold, the value of C is set to a value higher. The
idea is that if there are few demand requests waiting, it could be
beneficial to keep prefetching. In our baseline implementation, we

8

set lower to 8, higher to 16, and threshold to the average number
of pending requests at the memory controller. Section 5.1 explores
sensitivity to these parameters. More sophisticated mechanisms are
left as part of future work.

4.5 Hardware Overheads

CTA-aware scheduling: The nVIDIA warp scheduler has low
warp-switching overhead [37] and warps can be scheduled accord-
ing to their pre-determined priorities. We take advantage of such
priority-based warp scheduler implementations already available in
existing GPGPUs. Extra hardware is needed to dynamically calcu-
late the priorities of the warps using our schemes (Algorithm 1).
In addition, every core should have a group formation mechanism
similar to Narasiman et al.’s proposal [44]. We synthesized the RTL
design of the hardware required for our warp scheduler using the
65nm TSMC libraries in the Synopsys Design Compiler. For a 28-
core system, the power overhead is 57 mW and the area overhead
is 0.18 mm

2, which is less than 0.05% of the nVIDIA GeForce
GTX 285 area.

Opportunistic prefetching: Opportunistic prefetching requires
the prefetcher to know which cache lines in a row were already
sent to the L2. To keep track of this for the currently-open row
in a bank, we add n bits to the memory controller, corresponding
to n cache lines in the row. When the row is opened, the n bits
are reset. When a cache block is sent to the L2 cache from a row,
its corresponding bit is set. For 4 MCs, each controlling 4 banks,
with a row size of 32 cache blocks (assuming column size of 64B),
the hardware overhead is 512 bits (4 × 4 × 32 bits). The second
prefetching mechanism we propose also requires extra hardware
to keep track of the average number of pending requests at the
memory controller. This range of this register is 0-127 and its value
is computed approximately with the aid of shift registers.

5. Experimental Results

In this section, we evaluate our proposed scheduling and memory-
side prefetching schemes with 19 Type-1 applications, where main
memory is the main cause of core idleness.

5.1 Performance Results

We start with evaluating the performance impact of our scheduling
schemes (in the order of their appearance in the paper) against the
Perfect-L2 case, where all memory requests are L2 cache hits. We
also show results with Perfect-L1 (PMEM), which is the ultimate
upper bound of our optimizations. Recall that each scheme builds
on top of the previous.

Effect of CTA-Aware: We discussed in Section 4.1 that this
scheme not only helps in hiding memory latency, but also partially
reduces cache contention. Figure 7 shows the IPC improvements of

Type-1 applications (normalized to RR). Figure 8 shows the impact
of our scheduling schemes on MemoryBlockCycles as described in
Section 3. On average (arithmetic mean), CTA-Aware provides 14%
(9% harmonic mean (hmean), 11% geometric mean (gmean)) IPC
improvement, with 9% reduction in memory waiting time (Mem-
oryBlockCycles) over RR. The primary advantage comes from the
reduction in L1 miss rates and improvement in memory latency
hiding capability due to CTA grouping. We observe significant IPC
improvements in PVC (2.5×) and IIX (1.22×) applications, as
the miss rate drastically reduces by 89% and 27%, respectively.
As expected, we do not observe significant performance improve-
ments in SD2, WP, and SPMV as there is no reduction in miss rate
compared to RR. We see improvements in JPEG (6%) and SCP

(19%), even though there is no reduction in miss-rates (see Ta-
ble 3). Most of the benefits in these benchmarks are due to the
better hiding of memory latency, which comes inherently from the
CTA-aware two-level scheduling. We further observe (not shown)
that CTA-Aware achieves similar performance benefits compared
to the recently proposed two-level warp scheduling [44]. In con-
trast to [44], by introducing awareness of CTAs, our CTA-Aware
warp scheduling mechanism provides a strong foundation for the
remaining three schemes we develop.

Effect of CTA-Aware-Locality: The main advantage of this
scheme is further reduced L1 miss rates. We observe 11% aver-
age IPC improvement (6% decrease in MemoryBlockCycles) over
CTA-Aware, and 25% (17% hmean, 21% gmean) over RR. We ob-
serve 81% IPC improvement in IIX, primarily because of 69% in
L1 miss rates. Because of the row locality and BLP trade-off (this
scheme sacrifices BLP for increased row locality), we observe that
some applications may not attain optimal benefit from CTA-Aware-
Locality. For example, in SC, IPC decreases by 4% and Memo-
ryBlockCycles increases by 3% compared to CTA-Aware, due to
a 26% reduction in BLP (7% increase in row locality). We also
observe similar results in MUM: 1% increase in row locality, 10%
reduction in BLP, which causes 3% reduction in performance com-
pared to CTA-Aware. In SD2, we observe a 7% IPC improvement
over CTA-Aware on account of a 14% increase in row-locality, with
a 21% reduction in BLP. Nevertheless, the primary advantage of
CTA-Aware-Locality is the reduced number of memory requests
due to better cache utilization (Section 4.2), and as a result of this,
we also observe an improvement in DRAM bandwidth utilization
due to reduced contention in DRAM banks.

Effect of CTA-Aware-Locality-BLP: In this scheme, we strive
to achieve better BLP at the cost of row locality. Using this scheme,
on average, we observe 6% IPC (4% hmean, 4% gmean) improve-
ment, and 3% decrease in MemoryBlockCycles over CTA-Aware-
Locality. BLP increases by 11%, which also helps in the observed
22% reduction in overall memory fetch latency (12% reduction

0.5

1.0

1.5

2.0

2.5

3.0

S
A

D

P
V

C

S
S

C

B
F

S

M
U

M

C
F

D

K
M

N

S
C

P

F
W

T

II
X

S
P

M
V

J
P

E
G

B
F

S
R

S
C

F
F

T

S
D

2

W
P

P
V

R

B
P

A
V

G
 -

T
1

N
o

rm
a

liz
e

d
 I
P

C

CTA-Aware CTA-Aware-Locality CTA-Aware-Locality-BLP OWL Perfect-L2 Perfect-L1 (PMEM)

6
.3

9

4
.9

9

4
.6

0

Figure 7. Performance impact of our schemes on Type-1 applications. Results are normalized to RR.

9

0%

20%

40%

60%

80%

100%

S
A

D

P
V

C

S
S

C

B
F

S

M
U

M

C
F

D

K
M

N

S
C

P

F
W

T

II
X

S
P

M
V

JP
E

G

B
F

S
R

S
C

F
F

T

S
D

2

W
P

P
V

R

B
P

A
V

G
-T

1

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l C

yc
le

s RR CTA-Aware CTA-Aware-Locality CTA-Aware-Locality-BLP

Figure 8. Impact of different scheduling schemes on MemoryBlockCycles for Type-1 applications. Results are normalized to the total
execution cycles with baseline RR scheduling.

in queuing latency). In SD2, we see a significant increase in BLP
(48%) over CTA-Aware-Locality, but performance still reduces (by
10%) compared to CTA-Aware-Locality, due to a 46% reduction
in row locality. In contrast, in JPEG, the effects of the 62% re-
duction in row locality is outweighed by the 46% increase in BLP,
yielding a 10% IPC improvement over CTA-Aware-Locality. This
shows that both row locality and BLP are important for GPGPU
performance.

Combined Effect of OWL (Integration of CTA-Aware-
Locality-BLP and opportunistic prefetching): The fourth bar
from the left in Figure 7 shows the performance of the system with
OWL. We can draw four main conclusions from this graph. First,
using opportunistic prefetching on top of CTA-Aware-Locality-BLP
consistently either improves performance or has no effect. Second,
on average, even a simple prefetching scheme like ours can pro-
vide an IPC improvement of 2% over CTA-Aware-Locality-BLP,
which is due to a 12% improvement in L2 cache hit rate. Overall,
OWL achieves 19% (14% hmean, 17% gmean) IPC improvement
over CTA-Aware and 33% (23% hmean, 28% gmean) IPC im-
provement over RR. Third, a few applications, such as JPEG, gain
significantly (up to 15% in IPC) due to opportunistic prefetching,
while others, such as FWT, SPMV, and SD2, gain only moderately
(around 5%), and some do not have any noticeable gains, e.g., SAD,
PVC, and WP. The variation seen in improvements across different
applications can be attributed to their different memory latency
hiding capabilities and memory access patterns. It is interesting to
note that, in SCP, FWT, and KMN, some rows are accessed by only
one or two CTAs. The required data in these rows are demanded
when they are opened for the first time. In these situations, even
if we prefetch all the remaining lines, we do not observe signifi-
cant improvements. Fourth, we find that the scope of improvement
available for opportunistic prefetching over CTA-Aware-Locality-
BLP is limited: Perfect-L2 can provide only 13% improvement
over CTA-Aware-Locality-BLP. This is mainly because if an appli-
cation inherently has a large number of warps ready to execute, the
application will also be able to efficiently hide the long memory
access latency. We observe that prefetching might not be beneficial
in these applications even if the prefetch-accuracy is 100%.

We conclude that the proposed schemes are effective at improv-
ing GPGPU performance by making memory less of a bottleneck.
As a result, OWL enables the evaluated GPGPU to have perfor-
mance within 11% of a hypothetical GPGPU with a perfect L2.

5.2 Sensitivity Studies

In this section, we describe the critical sensitivity studies we per-
formed related to group size, DRAM configuration and opportunis-
tic prefetching.

Sensitivity to group size: In Section 4.1, we mentioned that
the minimum number of warps in a group should be at least equal
to the number of pipeline stages. Narasiman et al. [44] advocated
that, if the group size is too small, the data fetched in DRAM row
buffers is not completely utilized, as fewer warps are prioritized
together. If the group size is too large, the benefits of two-level
scheduling diminishes. Figure 9 shows the effect of the group size
on performance. The results are normalized to RR and averaged
across all Type-1 applications. We observe that when minimum
group size is 8 warps, we get the best IPC improvements (14%
for CTA-Aware, 25% for CTA-Aware-Locality and 31% for CTA-
Aware-Locality-BLP over RR), and thus, throughout our work, we
have used a minimum group size of 8, instead of 5 (which is the
number of pipeline stages).

Sensitivity to the number of DRAM banks: Figure 10 shows
the change in performance of CTA-Aware-Locality-BLP with the
number of DRAM banks per MC. We observe that as the number
of banks increases, the effectiveness of CTA-Aware-Locality-BLP
increases. This is because having additional banks enables more
benefits from exposing higher levels of BLP via our proposed tech-
niques. As a result, the performance improvement of our proposal
is 2% higher with 8 banks per MC than with 4 banks per MC (our
baseline system). We conclude that our techniques are likely to be-
come more effective in future systems with more banks.

0.8
1.8

5 8 10 15
CTA-Aware CTA-Aware-Locality CTA-Aware-Locality-BLP

0.8

0.9

1

1.1

1.2

1.3

1.4

5 8 10 15

N
o

rm
a

liz
d

 I
P

C

Figure 9. Sensitivity of
IPC to group size (normal-
ized to RR).

0.8

0.9

1

1.1

1.2

1.3

1.4

2 4 8

Figure 10. Sensitivity of
IPC to the number of banks
(normalized to RR).

Sensitivity to Opportunistic Prefetching Parameters: We ex-
perimented with all combinations of lower and upper values for the
prefetch degree in the range of 0 (no-prefetching) to 32 (prefetching
all the columns in a row) with a step size of 8. The value of thresh-
old is also varied similarly, along with the case when it is equal to
the average memory controller queue length. Figure 11 shows the
best case values achieved across all evaluated combinations (Best
OWL). We find that the average performance improvement achiev-
able by tuning these parameter values is only 1% (compare Best
OWL vs. OWL). This can possibly be achieved by implementing a
sophisticated prefetcher that can dynamically adjust its parameters
based on the running application’s characteristics, which comes at

10

0.9

1

1.1

1.2

B
F

S

M
U

M

C
F

D

S
C

P

F
W

T

S
P

M
V

J
P

E
G

S
D

2

B
P

A
V

G
-T

1

N
o

rm
a

li
z
e

d
 I
P

C
CTA-Aware-Locality-BLP OWL Best OWL

Figure 11. Prefetch degree and throttling threshold sensitivity.

the cost of increased hardware complexity. We leave the design of
such application-aware memory-side prefetchers as a part of the fu-
ture work, along with more sophisticated techniques to determine
what parts of a row to prefetch.

6. Related Work

To our knowledge, this is the first paper in the context of GPGPUs
to propose (1) CTA-aware warp scheduling techniques to improve
both cache hit rates and DRAM bank-level parallelism, and (2)
memory-side prefetching mechanisms to improve overall GPGPU
performance by taking advantage of open DRAM row buffers. We
briefly describe the closely related works in this section.

Scheduling in GPGPUs: The two-level warp scheduling mech-
anism proposed by Narasiman et al. [44] increases the core uti-
lization by creating larger warps and employing a two-level warp
scheduling scheme. This mechanism is not aware of CTA bound-
aries. In our work, we propose CTA-aware warp scheduling poli-
cies, which improve not only L1 hit rates, but also DRAM band-
width utilization. We find that the combination of all of our tech-
niques, OWL, provides approximately 19% higher performance
than two-level warp scheduling. Gebhart et al. [17] also proposed a
two-level warp scheduling technique. Energy reduction is the pri-
mary purpose of their approach. Even though we do not evaluate it,
OWL is also likely to provide energy benefits as reduced execution
time (with low hardware overhead) is likely to translate into re-
duced energy consumption. Concurrent work by Rogers et al. [51]
proposed a cache-conscious warp scheduling policy. Their work
improves L1 hit rates for cache-sensitive applications. OWL not
only reduces cache contention, but also improves DRAM band-
width utilization for a wide range of applications. Recent work
from Kayiran et al. [24] dynamically estimates the amount of
thread-level parallelism that would improve GPGPU performance
by reducing cache and DRAM contention. Our approach is orthog-
onal to theirs as our CTA-aware scheduling techniques improve
cache and DRAM utilization for a given amount of thread-level
parallelism.

BLP and Row Locality: Bank-level parallelism and row buffer
locality are two important characteristics of DRAM performance.
Several memory request scheduling [3, 12, 26, 27, 33–35, 41, 50,
58, 59] and data partitioning [20, 40, 57] techniques have been
proposed to improve one or both within the context of multi-core,
GPGPU, and heterogeneous CPU-GPU systems [3]. Our work can
be combined with these approaches. Mutlu and Moscibroda [41]
describe parallelism-aware batch scheduling, which aims to pre-
serve each thread’s BLP in a multi-core system. Hassan et al. [18]
suggest that optimizing BLP is more important than improving row
buffer hits, even though there is a trade-off. Our work uses this ob-
servation to focus on enhancing BLP, while restoring the lost row
locality by memory-side prefetching. This is important because, in
some GPGPU applications, we observe that both BLP and row lo-

cality are important. Similar to our proposal, Jeong et al. [20] ob-
serve that both BLP and row locality are important for maximiz-
ing benefits in multi-core systems. The memory access scheduling
proposed by Yuan et al. [58] restores the lost row access local-
ity caused by the in-order DRAM scheduler, by incorporating an
arbitration mechanism in the interconnection network. The staged
memory scheduler of Ausavarungnirun et al. [3] batches memory
requests going to the same row to improve row locality while also
employing simple in-order request scheduling at the DRAM banks.
Lakshminarayana et al. [33] propose a potential function that mod-
els the DRAM behavior in GPGPU architectures and a SJF DRAM
scheduling policy. The scheduling policy essentially chooses be-
tween SJF and FR-FCFS at run-time based on the number of re-
quests from each thread and their potential of generating a row
buffer hit. In our work, we propose low-overhead warp schedul-
ing and prefetching schemes to improve both row locality and BLP.
Exploration of the combination of our warp scheduling techniques
with memory request scheduling and data partitioning techniques
is a promising area of future work.

Data Prefetching: To our knowledge, OWL is the first work
that uses a memory-side prefetcher in GPUs. Our opportunistic
prefetcher complements the CTA-aware scheduling schemes by
taking advantage of open DRAM rows. The most relevant work
on hardware prefetching in GPUs is the L1 prefetcher proposed
by Lee et al. [36]. Carter et al. [9] present one of the earliest
works done in the area of memory-side prefetching in the CPU
domain. Many other prefetching mechanisms (e.g., [13, 23, 45,
52]) have been proposed within the context of CPU systems. Our
contribution in this work is a specific prefetching algorithm (in
fact, our proposal can potentially use the algorithms proposed in
literature), but to employ the idea prefetching in conjunction with
new BLP-aware warp scheduling techniques to restore row buffer
locality and improve L1 hit rates in GPGPUs.

7. Conclusion

This paper proposes a new warp scheduling policy, OWL, to en-
hance GPGPU performance by overcoming the resource under-
utilization problem caused by long latency memory operations. The
key idea in OWL is to take advantage of characteristics of cooper-
ative thread arrays (CTAs) to concurrently improve cache hit rate,
latency hiding capability, and DRAM bank parallelism in GPG-
PUs. OWL achieves these benefits by 1) selecting and prioritizing
a group of CTAs scheduled on a core, thereby improving both L1
cache hit rates and latency tolerance, 2) scheduling CTA groups
that likely do not access the same memory banks on different cores,
thereby improving DRAM bank parallelism, and 3) employing op-
portunistic memory-side prefetching to take advantage of already-
open DRAM rows, thereby improving both DRAM row locality
and cache hit rates. Our experimental evaluations on a 28-core
GPGPU platform demonstrate that OWL is effective in improving
GPGPU performance for memory-intensive applications: it leads to
33% IPC performance improvement over the commonly-employed
baseline round-robin warp scheduler, which is not aware of CTAs.
We conclude that incorporating CTA awareness into GPGPU warp
scheduling policies can be an effective way of enhancing GPGPU
performance by reducing resource under-utilization.

Acknowledgments

We thank the anonymous reviewers, Rachata Ausavarungnirun,
Kevin Kai-Wei Chang, Mahshid Sedghi, and Bikash Sharma for
their feedback on earlier drafts of this paper. This research is sup-
ported in part by NSF grants #1213052, #1152479, #1147388,
#1139023, #1017882, #0963839, #0811687, #0953246 and grants
from Intel and nVIDIA.

11

References

[1] AMD. Radeon and FirePro Graphics Cards, Nov. 2011.
[2] AMD. Heterogeneous Computing: OpenCL and the ATI Radeon HD

5870 (Evergreen) Architecture, Oct. 2012.
[3] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and

O. Mutlu. Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems. In ISCA, 2012.

[4] A. Bakhoda, J. Kim, and T. Aamodt. Throughput-effective On-chip
Networks for Manycore Accelerators. In MICRO, 2010.

[5] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing
CUDA Workloads Using a Detailed GPU Simulator. In ISPASS, 2009.

[6] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. A Compiler Framework for Optimiza-
tion of Affine Loop Nests for GPGPUs. In ICS 2008.

[7] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-
CUDA Code Generation for Affine Programs. In CC/ETAPS 2010.

[8] M. Bauer, H. Cook, and B. Khailany. CudaDMA: Optimizing GPU
Memory Bandwidth via Warp Specialization. In SC, 2011.

[9] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. Impulse: Building a Smarter Memory Controller. In
HPCA, 1999.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing.
In IISWC, 2009.

[11] X. E. Chen and T. Aamodt. Modeling Cache Contention and
Throughput of Multiprogrammed Manycore Processors. IEEE Trans.

Comput., 2012.
[12] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao,

O. Mutlu, and Y. N. Patt. Parallel Application Memory Scheduling.
MICRO, 2011.

[13] E. Ebrahimi, O. Mutlu, and Y. N. Patt. Techniques for Bandwidth-
Efficient Prefetching of Linked Data Structures in Hybrid Prefetching
Systems. In HPCA, 2009.

[14] W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic Warp Formation
and Scheduling for Efficient GPU Control Flow. In MICRO, 2007.

[15] W. W. L. Fung and T. M. Aamodt. Thread Block Compaction for
Efficient SIMT Control Flow. In HPCA, 2011.

[16] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt.
Hardware Transactional Memory for GPU Architectures. In MICRO,
2011.

[17] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron. Energy-efficient Mechanisms for
Managing Thread Context in Throughput Processors. In ISCA, 2011.

[18] S. Hassan, D. Choudhary, M. Rasquinha, and S. Yalamanchili.
Regulating Locality vs. Parallelism Tradeoffs in Multiple Memory
Controller Environments. In PACT, 2011.

[19] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A
MapReduce Framework on Graphics Processors. In PACT, 2008.

[20] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and
M. Erez. Balancing DRAM Locality and Parallelism in Shared Memory
CMP Systems . In HPCA, 2012.

[21] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and Improving
the Use of Demand-fetched Caches in GPUs. In ICS, 2012.

[22] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and
C. R. Das. Cache Revive: Architecting Volatile STT-RAM Caches for
Enhanced Performance in CMPs. In DAC, 2012.

[23] D. Joseph and D. Grunwald. Prefetching Using Markov Predictors.
IEEE Trans. Comput., 1999.

[24] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither More
Nor Less: Optimizing Thread-Level Parallelism for GPGPUs. In CSE

Penn State Tech Report, TR-CSE-2012-006, 2012.
[25] S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs

and the Future of Parallel Computing. IEEE Micro, 2011.
[26] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A

Scalable and High-performance Scheduling Algorithm for Multiple
Memory Controllers. In HPCA, 2010.

[27] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
Cluster Memory Scheduling: Exploiting Differences in Memory Access
Behavior. In MICRO, 2010.

[28] D. Kirk and Wen-mei. W. Hwu. Programming Massively Parallel
Processors. 2010.

[29] K. Krewell. Amd’s Fusion Finally Arrives. MPR, 2011.
[30] K. Krewell. Ivy Bridge Improves Graphics. MPR, 2011.
[31] K. Krewell. Most Significant Bits. MPR, 2011.
[32] K. Krewell. Nvidia Lowers the Heat on Kepler. MPR, 2012.
[33] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin. DRAM

Scheduling Policy for GPGPU Architectures Based on a Potential
Function. Computer Architecture Letters, 2012.

[34] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-Aware
DRAM Controllers. In MICRO, 2008.

[35] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving Memory
Bank-Level Parallelism in the Presence of Prefetching. In MICRO, 2009.

[36] J. Lee, N. Lakshminarayana, H. Kim, and R. Vuduc. Many-thread
Aware Prefetching Mechanisms for GPGPU Applications. In MICRO,
2010.

[37] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro,
2008.

[38] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial
of Memory Service in Multi-Core Systems. In USENIX SECURITY,
2007.

[39] A. Munshi. The OpenCL Specification, June 2011.
[40] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and

T. Moscibroda. Reducing Memory Interference in Multicore Systems
via Application-Aware Memory Channel Partitioning”. In MICRO,
2011.

[41] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems.
In ISCA, 2008.

[42] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors. In MICRO, 2007.

[43] N. Chidambaram Nachiappan, A. K. Mishra, M. Kandemir, A. Siva-
subramaniam, O. Mutlu, and C. R. Das. Application-aware Prefetch
Prioritization in On-chip Networks. In PACT, 2012.

[44] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt. Improving GPU Performance Via Large Warps and
Two-level Warp Scheduling. In MICRO, 2011.

[45] K. J. Nesbit, and J. E. Smith. Data Cache Prefetching Using a Global
History Buffer. In HPCA, 2004.

[46] NVIDIA. CUDA C Programming Guide, Oct. 2010.
[47] NVIDIA. CUDA C/C++ SDK code samples, 2011.
[48] NVIDIA. Fermi: NVIDIA’s Next Generation CUDA Compute

Architecture, Nov. 2011.
[49] M. Rhu and M. Erez. CAPRI: Prediction of Compaction-Adequacy

for Handling Control-Divergence in GPGPU Architectures. In ISCA

2012.
[50] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D. Owens.

Memory Access Scheduling. In ISCA, 2000.
[51] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-conscious

Wavefront Scheduling. In MICRO, 2012.
[52] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback Directed

Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers. In HPCA, 2007.

[53] J. A. Stratton et al. Parboil: A Revised Benchmark Suite for Scientific
and Commercial Throughput Computing. 2012.

[54] I. J. Sung, J. A. Stratton, and W.-M. W. Hwu. Data Layout
Transformation Exploiting Memory-level Parallelism in Structured Grid
Many-core Applications. In PACT, 2010.

[55] R. Thekkath, and S. J. Eggers. The Effectiveness of Multiple
Hardware Contexts. In ASPLOS, 1994.

[56] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos. Demystifying GPU Microarchitecture Through Mi-
crobenchmarking. In ISPASS, 2010.

[57] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu.
Row Buffer Locality Aware Caching Policies for Hybrid Memories. In
ICCD, 2012.

[58] G. Yuan, A. Bakhoda, and T. Aamodt. Complexity Effective Memory
Access Scheduling for Many-core Accelerator Architectures. In MICRO,
2009.

[59] W. K. Zuravleff and T. Robinson. Controller for a Synchronous
DRAM that Maximizes Throughput by Allowing Memory Requests and
Commands to Be Issued Out of Order. U.S. Patent Number 5,630,096,
1997.

12

