
 
 
 
 
 
 
 
 
 
 
 

Implementation of Clocks and Sensors 
 
 
 

Term Paper 
 

EE 382N  Distributed Systems 
 

Dr. Garg 
 
 

November 30, 2000 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Submitted by: 
 
Yousuf Ahmed 
Chandresh Jain 
Onur Mutlu 



 
 

1 

Global Predicate Detection in Distributed Systems 

The detection of global predicates is one of the fundamental problems in 

distributed computing. The diff iculty of the problem arises due to the fact that there is no 

shared memory and no shared clock in a distributed system. Hence, no process has access 

to the global state. Therefore, the truth value of a global predicate cannot be determined 

by a single process. Determining the truth value of a global predicate requires the 

participation of those processes which can change the value of the global predicate. 

The importance of global predicate detection can be seen in several domains such 

as designing, testing, and debugging of distributed programs. For example, predicate 

detection is crucial for implementing breakpoints in a distributed debugger. If we want to 

stop the debugger when local predicates on different processes become true, it is 

necessary to detect that all the local predicates on different processes became true 

concurrently. This is not an easy task given that no process has access to the global state 

of the distributed system. In fact Chase and Garg have shown that global predicate 

detection problem is NP-complete [2]. 

 In this paper, our objective is to present several algorithms used to detect global 

predicates and also give the implementation details of one such algorithm. In Section 1, 

we present a brief classification of predicates. Section 2 is a literature review of 

"predicate detection problem". It includes several possible algorithms and approaches to 

detect global predicates. Section 3 presents the implementation details of our project in 

which we implemented a token-based distributed algorithm to detect generalized 

conjunctive predicates. 
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1. Classification of Predicates 

 Predicates can be classified with respect to locality, stabilit y, and strength. We 

will define each dimension and point out its importance. 

1.1 Local, Channel, and Global Predicates 

 A local predicate is defined as a boolean-valued formula on a local state [5]. A 

process can obviously detect the truth of its local predicates. A channel predicate is any 

boolean function of the state of the channel [7]. The state of the channel is determined by 

the send events and receive events on the channel. A global predicate is a boolean valued 

formula that is formed by the conjunction of channel predicates and local predicates on 

different processes. We will call this a generalized conjunctive predicate (GCP) from 

now on in our paper. 

1.1.1 Linear vs. Non-Linear Channel Predicates 

 A channel predicate is linear (monotonic) if given any channel state in which the 

predicate is false, either receiving more messages on the channel without sending any 

message or sending more messages on the channel without receiving any message is 

guaranteed to leave the predicate false. Linearity is usually a necessary condition for the 

eff icient detection of channel predicates.   

1.2 Stable vs. Unstable Predicates 

 A stable predicate remains true once it becomes true. An unstable predicate does 

not have such a property. Stable predicates can be detected by taking global snapshots of 

the system periodically as described by Chandy and Lamport [1]. However, such an 

approach may miss some snapshots in which an unstable predicate became true and 

therefore cannot be used for detection of unstable predicates. 
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1.3 Strong vs. Weak Predicates 

 A run of a distributed program generates a partial order of events, and there are 

many total orders consistent with this partial order [8]. A predicate is weak if there exists 

a total order of a distributed computation for which the predicate becomes true. This 

definition corresponds to Cooper and Marzullo's definition of possibly φ [3]. A predicate 

is strong if it becomes true for all possible orders. A strong predicate corresponds to 

Cooper and Marzullo's definition of definitely φ [3]. 

2. Review of Literature on Predicate Detection 

Several different algorithms have been proposed to detect different classes of 

predicates. Although we will mention many of these algorithms in this section, we will 

only focus on those that are designed to detect weak unstable GCPs.           

2.1 Detecting Stable Predicates 

As we have already mentioned, stable predicates can be detected by taking 

periodic consistent global snapshots of the distributed system and checking whether or 

not the predicate was true in that snapshot. If the predicate was true at the end of a 

snapshot, then the algorithm detects the predicate as true. If it was false at the end of a 

snapshot then it should have been false at the beginning of the algorithm. The problem of 

detecting unstable predicates is more complicated since we cannot determine whether the 

predicate became true by taking periodic snapshots. 

2.2 Lattice-Based Predicate Detection 

One of the first algorithms to detect unstable predicates was presented by Cooper 

and Marzullo [3]. This algorithm constructs the lattice of consistent global states that 

correspond with an observed execution. A weak unstable predicate will be detected true if 

it is true for any global state in the lattice. A strong unstable predicate will be detected if 
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it becomes true in some global state for each path from the initial global state to the final 

global state. By examining the lattice of consistent global states, we can detect whether a 

predicate becomes true or not. Thus, Cooper and Marzullo's algorithm is able to detect 

both strong and weak unstable predicates. However, the cost of detection might be 

exponential due to the explosion of the number of global states in the lattice.  

2.3 Centralized WCP Algorithm  

 More eff icient algorithms to detect strong and weak unstable predicates were 

proposed by Garg and Waldecker [8, 9]. We will focus on their work on weak unstable 

predicates. In [8], they present a centralized algorithm to detect the weak conjunctive 

predicate (WCP) of the form (l1  Λ l2 Λ...Λ ln) where li is a local predicate on process i. In 

this algorithm one process is designated as a checker process. All the other processes 

keep track of the truth values of their local predicates. Whenever its local predicate 

becomes true for the first time between two external events, each process sends its vector 

clock to the checker process. The checker process receives these vector clocks [4,11] 

from each process in a separate queue in FIFO order and tries to find a consistent cut by 

comparing the vector clocks that are at the head of the queues. If such a consistent cut is 

found then the predicate would be detected. Otherwise, the checker process can advance 

on the queue whose vector clock is smaller than any other. As shown in [8], this 

algorithm requires O(n2m) comparisons among vectors where n is the number of 

processes that are involved in the WCP and m is the maximum number of messages sent 

or received by any process. This algorithm is optimal, because any algorithm that is based 

on comparing vector clocks to determine the truth of a predicate requires at least Ω(n2m) 

comparisons [8].  
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However, the algorithm proposed in [8] has several drawbacks. First, it requires a 

single checker process to store queues from every other process. This may require an 

unreasonable amount of space in the checker process. Second, there is no chance of 

detecting the predicate if the checker process fails. Third, it does not handle the channel 

predicates, which are different from local predicates as we mentioned in Section 1.1. 

Hence, it is not suitable for an application that requires the detection of channel 

predicates.    

2.4 Token-based WCP Algorithm 

  To alleviate some of the drawbacks of this algorithm, Garg and Chase [6] propose 

two distributed algorithms for detecting weak conjunctive predicates. The first algorithm 

is a token-based algorithm that requires a monitor process Mi associated with each 

application process Pi. Each application process checks for its local predicate and sends a 

message (local snapshot) to its monitor process whenever its local predicate becomes true 

for the first time since the last receive or send event. The monitor process maintains a 

queue of the local snapshots of its application process. The monitor process is activated 

whenever it receives the token, which carries two vectors. One vector G defines the 

current candidate cut that is being examined for consistency. If G[i] has the value k then 

state k from process Pi  is part of the candidate cut. Another vector, color, is used to 

indicate the color of the candidate states from each process. If the color of a state is red, 

then that state and all it s predecessors have been eliminated and cannot satisfy the WCP. 

Therefore, the monitor process should receive a snapshot that happened after the state 

that is colored red. If the color of a state is green then there is no state in cut G that 

causally precedes that state.  

 The token is sent to monitor process Mi only when color[i] = red. Upon receiving 
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the token, Mi receives a new candidate state from its application process and checks 

whether it is consistent with the current cut. Mi repeats this process until it receives a 

candidate that is consistent with states from all other processes that are in cut G. Then the 

monitor process updates the vector clock of the token and examines the token to see 

whether any other states in G violate the concurrency requirement. If there is such a state 

on process j, Mi makes color[j] = red and sends the token to Pj. If there is no state that 

violates the consistency of cut G then WCP is detected. This algorithm has the same 

complexity in terms of number of comparisons as the centralized WCP algorithm 

discussed previously, however it is decentralized in the sense that it does not require a 

single checker process. Garg proposes a way to make this algorithm more parallel in [5]. 

However, this algorithm is still not suitable for detecting channel predicates. We now 

turn our attention to algorithms that are designed to detect Generalized Conjunctive 

Predicates, which include channel predicates. 

2.5 Centralized GCP Algorithm 

 The detection of the following predicate (termination) requires the detection of 

several channel predicates: "All processes are passive and all channels are empty". 

Hence, channel predicates need to be detected in order to detect several important GCPs 

in distributed programs. We will survey a centralized and token-based algorithm for 

detecting GCPs. These algorithms are designed for the eff icient detection of linear 

channel predicates.  

 The centralized GCP algorithm was proposed by Garg, Chase, Kilgore, and 

Mitchell [7]. This algorithm is quite similar to the centralized WCP algorithm. It makes 

use of a checker process to detect the GCP. All application processes are responsible for 
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detecting their own local predicates and keeping track of the state of their outgoing and 

incoming channels. The application process sends a local snapshot message to the 

checker process whenever it detects that its local predicate became true for the first time 

since the last receive or send event on the process. In this message, it includes its current 

vector clock just as in the centralized WCP algorithm along with some information about 

the current state of its channels. Specifically it sends the list of messages it received from 

(incremental receive history) and list of messages it sent (incremental send history) to 

other application processes since the last time it sent a local snapshot to the checker 

process, which maintains this information in separate queues dedicated for each process.  

 The task of the checker process is to find a consistent cut that satisfies all the 

channel predicates. Similar to the centralized WCP algorithm the checker process 

advances the cut on the state that has the smallest vector clock or on the state which does 

not satisfy any one of the channel predicates. Whenever the checker process finds a cut in 

which all states are concurrent and all channel predicates are satisfied, the GCP is 

detected. Obviously, this algorithm shares the same drawback with the centralized WCP 

algorithm in that it might impose unreasonable space and time requirements on the 

checker process and the whole detection process depends on one central process. Hence, 

we turn our attention to a token-based GCP algorithm proposed by Mitchell and Garg 

[12]. 

2.6 Token-based GCP Algorithm 

 This algorithm is an extension of the token-based WCP algorithm that handles 

channel predicates. The distributed system is divided into two domains by this algorithm: 

Application Domain and Detection Domain. Application Domain consists of the 
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application processes which communicate with each other using the normal program 

messages. The Detection Domain contains the monitor processes, which are paired with a 

specific application process. A monitor process can send messages to other monitor 

processes using a single token but not the application processes. It can receive messages 

from other monitor processes and its application process. To make the algorithm less 

costly the application process and monitor process can be placed on the same 

uniprocessor so that the communication cost between the monitor and the corresponding 

application process is minimized.  

 An application process keeps track of its local predicates and records the activity 

on its incoming and outgoing channels. When all of its local predicates become true, the 

application process sends to its monitor process its vector clock and lists of messages it 

has sent/received on its channels since the last time it sent a message to its monitor. 

These messages are queued in the monitor process. 

 The monitor process stays passive until it  receives the token from another monitor 

process in the system.  When it receives the token, it starts receiving candidate states 

from the queue (application process) until it  gets a vector clock which is later than the 

vector clock that is maintained in the token. The vector clock maintained in the token 

specifies a possible cut in which desired predicates could be true. After receiving such a 

candidate state from the queue, the monitor process updates its own component of the 

vector clock maintained in the token and checks whether there are any states in the 

current cut that violates consistency. If it finds out that the candidate state on process j is      

inconsistent with then it sends the token to the monitor process j. Otherwise if the current 

cut is consistent, then the monitor process checks whether all the channel predicates are 
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satisfied. It is able to do so, because it has received information on all the channels of its 

application process. If all the channel predicates are true, the GCP is detected. On a high 

level view the application processes are responsible for detecting their local predicates 

and the monitor processes are responsible for detecting the channel predicates and finding 

a consistent cut that satisfies all the predicates. We will elaborate more on the details of 

the implementation of this algorithm in Section 3.  

3. Implementation of Vector Clocks and Sensors 

The implementation of vector clocks and sensors is an extension of the Webscape 

system designed initially. A Webscape system can be viewed as a collection of tables on 

the internet, where each table is a two dimensional array of cells.  Each cell has two fields 

associated with it – expression and value. The value is the number displayed for the cell . 

The expression is a formula associated with the cell , which is used to evaluate its value. 

This may result in communication with other tables, for instance, if the cell ’s value is 

dependent on the value of some remote cells in other tables. A cell may also have a target 

cell . Whenever the value of the cell changes, the new value is sent to the target cell , 

which in turn updates its value. Target cells can be remote cells as well .  The 

communication between the tables is established using cell servers as discussed in the 

problem statement.   

3.1 Vector Clocks 

Vector clocks are associated with every Webscape table. It shows the vector clock 

for that process at all times. It is assumed that each process knows the total number of 

tables (processes) and identity (process_id) of each table. This is read from the input file 

during the initialization of the Webscape tables. The format of the input file is discussed 
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later. The vector clock of a process is included in all out-going messages and is updated 

using Mattern’s vector clock update rules [11]. Whenever a message is sent, the local 

component of the clock is incremented and upon receiving a message, a component-wise 

maximum of the vector is taken and then the local component is incremented.   

3.2  Sensors 

A sensor is a cell type in the Webscape table. Two types of sensors are 

implemented – local and global sensors. A local sensor is simply a boolean condition on 

local data cells. For example, (R2C3  > 4) && (R0C0 == 7) is a local sensor which 

becomes true only when the value of the cell i n R2C3 exceeds 4 AND value of the cell 

R0C0 equals 7. The sensors can only acquire a value of 0 or 1 depending on whether the 

predicate defined by that sensor is true or false. A suff ix LS is displayed in the table to 

distinguish between a normal cell and a local sensor. 

Two types of global sensors, channel sensor and conjunctive sensors are also 

implemented. A channel sensor detects a channel property. It acquires a value of 1, if the 

channel predicate associated with it becomes true. For example the following channel 

predicate R1C0 → tick:8888  > 2 will be true if at anytime the number of messages sent 

from the cell R1C0 in this table to the table at tick exceeds 2. A suff ix CS is displayed in 

the table to differentiate a channel sensor from other cells. 

A conjunctive sensor detects conjunction of local and channel sensors. It is set to 

1, when all the conjuncts (local sensor and channel sensor) become true, for example the 

following predicate (R1C0 → sorata:8888 >= 10) && (R0C0 > 20) is a conjunction of 

the channel sensor (R1C0 → sorata:8888 >= 10)  and the local sensor (R0C0 > 20). A 
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suff ix CNJS is displayed in the table to differentiate a conjunctive sensor from the other 

cells. 

Webscape application can have one cell to detect the global predicate, which is a 

conjunction of local and channel predicates on multiple tables for example 

(tick:8888/R1C1 > 5) && (sorata:8888/R3C2 < 100 ) && (omni:8888/R1C1 → 

tick:8888 == 5) . The value of the cell i s set to 1, when the global predicate is detected. A 

suff ix GS is displayed in the table to differentiate a global sensor from the other cells. 

All the sensors detect if the property they are monitoring ever became true. Once 

they turn true they stay true. An interface is provided to the user to manually reset them 

to false (0). 

3.2.1 Channel Predicates 

We have implemented an algorithm to detect linear, stable as well as unstable 

channel predicates. Also, our algorithm considers multiple channels between processes, 

i.e., there is a channel between each cell of the Webscape application to all other 

Webscape applications.  Channel predicates are of the form   R1C1 → tick:8888 > 5 

The application process keeps track of the minimum (Tmin) and maximum (Tmax) 

number of messages in transit in the channel from each cell to every other process. 

• Tmin [ no_of_processes ] [ no_of_rows] [ no_of_cols]  
• Tmax [ no_of_processes ] [ no_of_rows] [ no_of_cols]  

An AckHandler process keeps track of the number of messages sent (incsend history) 

by each cell to other processes and the number of messages received (increcv history) by 

a particular cell of other processes. 

• SEND [ no_of_processes ] [ no_of_rows] [ no_of_cols]  
• RECV [ no_of_processes ] [ no_of_rows] [  no_of_cols]  
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Whenever a cell (a, b) of process Ai sends a message to process Aj, it updates its 

AckHandler process Hi. Hi increments the send count of the messages from cell (a, b) to 

Aj in SEND. Then it sends a request message to AckHandler Hj to get the number of 

messages received by Aj from cell (a, b) of process Ai. Hj returns the receive count from 

its receive array RECV. Hi calculates the number of messages in transit at this state and 

returns the current value to Ai.  Ai updates its Tmin and Tmax based on the current 

number of messages in transit.  

Upon receive of a message from cell (a, b) of process Aj, the process updates its 

AckHandler, which simply increments the receive count of the messages from cell (a, b) 

of Aj in RECV.  Whenever a channel sensor cell i s evaluated, it gets the Tmin and Tmax 

values for that. Whenever the local predicates are true in a process, information about the 

channels is sent to the monitor process. 

 

 

 

 

 

 

 

 

 

 

 

Application Process (Ai): 

Initialize_clocks_and_vars(i); 
Before send of message m to Aj do 

Increment_send_count(j, myrow, mycol); 
Upon receive of message m from Aj do 

Increment_receive_count(j,row,col); 
Upon local_predicate_true() do { 
 send(v) to Mi as candidate 
 clear_send_rcv_vars(); 
} 
 

Monitor Process (Mi): 

Upon receive of token do { 
   do {  
 receive candidate from Ai  
 update send_rcv_of_token(i); 
 } until candidate.v[i] > token.v[i] 
   update_token(candidate.v[i]);  
   if ∃j : j ≠ i: token.v[j] < candidate.v[j] 
 then send_token(j); /* Send token to Mj  */ 
   if (still has_token) { 
 if chan_predicates_true() { 
       then GCP = true; 
       send_broadcast(pred_detected);  
 } 
   } 
} 

 
Figure 1 : GCP detection algorithm 
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3.2.3 Token Based Distributed Algorithm for Detecting Generalized Conjunctive 

Predicates (GCP) 

A token based distributed algorithm for detecting GCP is implemented (Figure 1). 

It is based on the algorithm suggested by Mitchell and Garg [12]. The implementation of 

the algorithm is divided into application and monitor portions at each process. The 

application process checks for local predicates and keeps track of the activity in the 

channels associated with this process. The algorithm uses a token to detect GCP. The 

token contains a possible global cut in which the desired predicates could be true. The 

monitor receives the token and checks for a consistent cut. If the global cut is consistent 

then all the local predicates are true concurrently. If not, the token is forwarded to any 

process which violates the consistency. Also, other processes that violate the consistent 

cut are marked so that they will receive the token at some point in the future. Before 

forwarding the token, vector clock information inside the token is updated according to 

the current candidate. If the global cut is consistent, then the monitor process checks for 

the channel predicates associated with the application process. If channel predicates are 

also satisfied, then GCP will be detected. Otherwise, the whole detection process starts 

again by labeling the violating processes as inconsistent and sending them the token.  

The monitor code is activated only if it has the token, otherwise it just buffers the 

candidates received from the application process. Figure 2 shows the message flow 

between the application process and monitor process. Candidates are nothing but the 

vector clocks in which the local predicate became true first time after an external event 

and channel states associated with them. The application and the monitor process are 

placed on the same uniprocessor to reduce communication complexity.  
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3.3 Implementation Details 

3.3.1 Initialization of the Webscape Table 

The first step at the start of the process is the initialization of the Webscape table. The 

initial configuration of the table is read from an input file. The input file has the 

following information: 

• Total number of processes 

• Process ID of the running process 

• Identity of the other tables  (machine name:port, process id) 

• Total number of rows and columns in this table 

• Initial cell entries (expression, value, target) 

• Local conjuncts (process’ part of the global predicate) 

 
Application Process 

Ai 

 
Monitor 

Mi 

 
Application Process 

Aj 

 
Monitor 

Mj 

Candidates 

Candidates 

Token 

Figure 2 : The application and monitor process of GCP 
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User interface for updating the cell entries and saving the current state into a file is 

also provided. It is assumed that the table has a fixed size. 

Every process has a unique process id. A hashtable of process id’s and addresses is 

constructed and it is used for communication with other tables. A cell -server thread is 

launched during the initialization phase. The cell -server serves the requests for reading 

and updating cells. This server starts li stening on the port number associated with the 

table. TCP/IP sockets are used for communication. Initialization for the AckHandler and 

the monitor processes is then done. The token, vector clock and other data structures are 

also initialized. Only one monitor process has the token in the beginning. The vector 

clock of the token is initialized so that the token eventually visits all the monitor 

processes at least once before the global predicate is detected. 

3.3.2 Cell Updates 

The run time system picks the cell i n a round robin fashion, evaluates the 

expression associated with the cell , updates the new value in the table and if a target cell 

exists, it sends its value to the remote cell . Two interfaces getRemoteVal and 

sendRemoteVal are provided to achieve this functionality. getRemoteVal gets the value of 

the remote cell and sendRemoteVal sends the current value to the remote cell . It then 

checks if the local predicate and the channel predicates associated with it are true. If true, 

then it sends a candidate to the monitor process.  The GCP algorithm is run in the 

monitor process as described in Section 3.2.3. One of the monitor process eventually 

detects the global predicate (if it exists) and sends a broadcast to all the other processes so 

that they stop checking for their local predicates. 
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4. Conclusion 

In this project we have implemented a token-based distributed algorithm that is 

able to detect weak unstable Generalized Conjunctive Predicates, which are formed by 

the conjunction of local and channel predicates on multiple independent processes. Our 

implementation is based on an algorithm proposed by Mitchell and Garg in [12]. This 

algorithm would be very useful in debugging and testing distributed programs as  

discussed in Section 1. 

 One shortcoming of our implementation is the fact that it is not fault-tolerant. If 

one of the monitor processes or application processes become faulty, our implementation 

will not work correctly. Perhaps a next step to improve our project is to make it more 

fault-tolerant. Garg and Mitchell describe an algorithm that will detect a conjunction of 

local and send-monotonic channel predicates in faulty, asynchronous distributed 

environments in [10] using infinitely-often accurate detectors. Our implementation might 

be modified to be suited for their algorithm to be made more fault-tolerant. 

 Another problem with our implementation is that it relies on only one token. It is 

not distributed enough to provide higher levels of fault-tolerance. A more distributed 

algorithm is proposed in [7]. Perhaps, by combining the approaches of [7] and [10], a 

more fault-tolerant and parallel predicate detection scheme can be implemented. 
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