| mplementation of Clocks and Sensors

Term Paper
EE 382N Distributed Systems

Dr. Garg

November 30, 2000

Submitted by:

Yousuf Ahmed
Chandresh Jain
Onur Mutlu

Global Predicate Detection in Distributed Systems

The detedion of global predicaes is one of the fundamenta problems in
distributed computing. The difficulty of the problem arises due to the fad that thereis no
shared memory and noshared clock in a distributed system. Hence, no processhas access
to the global state. Therefore, the truth value of a global predicae caana be determined
by a single process Determining the truth value of a global predicae requires the
participation d those processes which can change the value of the global predicate.

The importance of global predicae detedion can be seen in several domains such
as designing, testing, and debuggng of distributed programs. For example, predicae
detedionis crucia for implementing bre&kpoints in a distributed debugger. If we want to
stop the debugger when locd predicaes on dfferent processes becme true, it is
necessary to deted that all the locd predicaes on dfferent processes becane true
concurrently. Thisis not an easy task given that no processhas accessto the global state
of the distributed system. In fad Chase and Garg have shown that global predicae
detedion poblem is NP-complete [2].

In this paper, ou objedive isto present several agorithms used to deted global
predicates and also give the implementation cetail s of one such algorithm. In Sedion 1,
we present a brief classficdion d predicaes. Sedion 2 is a literature review of
"predicae detedion problem”. It includes svera possble dgorithms and approacdhes to
deted global predicaes. Sedion 3 pesents the implementation details of our projed in
which we implemented a token-based dstributed agorithm to deted generalized

conjunctive predicaes.

1. Classification of Predicates

Predicates can be dasdfied with resped to locdity, stability, and strength. We
will define eabh dmensionand pant out itsimportance
1.1 Local, Channel, and Global Predicates

A locd predicae is defined as a bodean-valued formula on a locd state [5]. A
process can obviously deted the truth of its locd predicates. A channel predicate is any
bodean function d the state of the cdhannel [7]. The state of the dhannel is determined by
the send events and receve events on the channel. A global predicae is abodean valued
formula that is formed by the wnjunction d channel predicates and locd predicaes on
different processes. We will cdl this a generalized conjunctive predicae (GCP) from
NOw onin ou paper.
1.1.1 Linear vs. Non-Linear Channel Predicates

A channel predicae is linea (monaonic) if given any channel state in which the
predicate is fase, either recaving more messages on the dhannel withou sending any
message or sending more messages on the dhannel withou recaving any message is
guaranteel to leave the predicate false. Lineaity is usually a necessary condtion for the
efficient detedion d channel predicaes.
1.2 Stable vs. Unstable Predicates

A stable predicae remains true once it beames true. An urstable predicate does
nat have such a property. Stable predicates can be deteded by taking dobal snapshats of
the system periodicdly as described by Chandy and Lamport [1]. However, such an
approadh may miss ®me snapshots in which an urstable predicae becane true and

therefore canna be used for detedion d unstable predicates.

1.3 Strong vs. Weak Predicates

A run d adistributed program generates a partial order of events, and there ae
many total orders consistent with this partial order [8]. A predicae is we& if there eists
a total order of a distributed computation for which the predicae becomes true. This
definition corresponds to Cooper and Marzull 0's definition d possibly @ [3]. A predicae
is grong if it becmes true for al possble orders. A strong predicae rresponds to
Cooper and Marzull o's definition o definitely @[3].
2. Review of Literature on Predicate Detection

Severa different algorithms have been proposed to deted different classes of
predicaes. Althoughwe will mention many of these dgorithms in this sdion, we will
only focus onthose that are designed to deted weak unstable GCPs.
2.1 Detecting Stable Predicates

As we have drealy mentioned, stable predicaes can be deteded by taking
periodic consistent global snapshats of the distributed system and cheding whether or
not the predicae was true in that snapshot. If the predicae was true & the end d a
snapshat, then the dgorithm deteds the predicae & true. If it was false & the end o a
snapshat then it shoud have been false & the beginning of the dgorithm. The problem of
deteding unstable predicaes is more cmplicated sincewe caana determine whether the
predicae becane true by taking periodic snapshats.
2.2 Lattice-Based Predicate Detection

One of the first algorithms to deted unstable predicaes was presented by Cooper
and Marzullo [3]. This algorithm constructs the lattice of consistent global states that
correspondwith an olserved exeaution. A weak unstable predicate will be deteded true if

it is true for any gobal state in the lattice A strong urstable predicae will be deteded if
3

it becomes true in some global state for ead path from the initial global state to the final
global state. By examining the lattice of consistent global states, we can deted whether a
predicate becmes true or not. Thus, Cooper and Marzullo's algorithm is able to deted
both strong and we& unstable predicaes. However, the st of detedion might be
exporential dueto the explosion d the number of global states in the lattice
2.3 Centralized WCP Algorithm

More dficient algorithms to deted strong and we&k unstable predicaes were
proposed by Garg and Waldeder [8, 9. We will focus on their work on we& unstable
predicaes. In [8], they present a centralized algorithm to deted the weg conjunctive
predicate (WCP) of the form (I A1, A..A 1) wherel; isalocd predicate on processi. In
this algorithm one processis designated as a diedker process All the other processes
keep tradk of the truth values of their locd predicaes. Whenever its locd predicae
bemmes true for the first time between two external events, ead process nds its vedor
clock to the dhedker process The deder process recaves these vedor clocks [4,1]]
from eat processin a separate queue in FIFO order and tries to find a consistent cut by
comparing the vedor clocks that are a the head of the queues. If such a @wnsistent cut is
foundthen the predicate would be deteded. Otherwise, the thedker processcan advance
on the queue whose vedor clock is gnaler than any other. As down in [8], this
algorithm reguires O(n’m) comparisons among vedors where n is the number of
processes that are invalved in the WCP and m is the maximum number of messages sent
or recaved by any process This agorithm is optimal, becaise ay algorithm that is based
on comparing vedor clocks to determine the truth of a predicate requires at least Q(n’m)

comparisons [8].

However, the dgorithm propased in [8] has svera drawbadks. First, it requires a
single dnedker process to store queues from every other process This may require an
unreasonable anount of spacein the deder process Sewmnd, there is no chance of
deteding the predicae if the dhedker processfails. Third, it does nat hande the channel
predicaes, which are different from locd predicaes as we mentioned in Sedion 1.1.
Hence, it is nat suitable for an applicaion that requires the detedion d channel
predicaes.

2.4 Token-based WCP Algorithm

To aleviate some of the drawbadks of this algorithm, Garg and Chase [6] propcse
two distributed algorithms for deteding weak conjunctive predicaes. The first algorithm
is a token-based algorithm that requires a monitor process M; associated with ead
applicaion processP;. Each applicaion pocesscheds for itslocd predicae and sends a
message (locd snapshat) to its monitor processwhenever its locd predicae becomes true
for the first time since the last receve or send event. The monitor process maintains a
gueue of the locd snapshats of its application pocess The monitor processis adivated
whenever it recaves the token, which caries two vedors. One vedor G defines the
current candidate ait that is being examined for consistency. If G[i] has the value k then
state k from process P; is part of the candidate ait. Ancther vedor, color, is used to
indicae the wlor of the candidate states from ead process If the lor of a state is red,
then that state and all its predecessors have been eliminated and canna satisfy the WCP.
Therefore, the monitor process $ioud recave asnapshot that happened after the state
that is colored red. If the wlor of a state is green then there is no state in cut G that
causaly precedes that state.

The token is nt to monitor process M; only when color[i] = red. Uponrecaving

5

the token, M; recaves a new candidate state from its applicaion process and cheds
whether it is consistent with the aurrent cut. M; repeds this process urtil it receves a
candidate that is consistent with states from all other processes that arein cut G. Then the
monitor process upcktes the vedor clock of the token and examines the token to see
whether any other states in G violate the concurrency requirement. If there is such a state
on pocessj, M; makes color[j] = red and sends the token to P,. If there is no state that
violates the cmnsistency of cut G then WCP is deteded. This agorithm has the same
complexity in terms of number of comparisons as the centralized WCP algorithm
discussed previously, however it is decentralized in the sense that it does nat require a
single chedker process Garg proposes away to make this algorithm more paralle in [5].
However, this algorithm is gill not suitable for deteding channel predicates. We now
turn ou attention to algorithms that are designed to deted Generalized Conjunctive
Predicaes, which include dhannel predicaes.
2.5 Centralized GCP Algorithm

The detedion d the following predicae (termination) requires the detedion d
several channel predicaes. "All proceses are passve and al channels are empty”.
Hence, channel predicaes neal to be deteded in order to deted several important GCPs
in dstributed programs. We will survey a centralized and token-based algorithm for
deteding GCPs. These dgorithms are designed for the dficient detedion d linear
channel predicaes.

The cetralized GCP algorithm was proposed by Garg, Chase, Kilgore, and
Mitchell [7]. This algorithm is quite similar to the centralized WCP algorithm. It makes

use of a dhedker processto deted the GCP. All applicaion processes are resporsible for

deteding their own locd predicates and keegping tradk of the state of their outgoing and
incoming channels. The gplicaion pocess €nds a locd snapshat message to the
cheder processwhenever it deteds that its locd predicae becane true for the first time
sincethe last receve or send event on the process In this message, it includes its current
vedor clock just asin the centralized WCP algorithm along with some information abou
the airrent state of its channels. Spedficdly it sends the list of messages it receved from
(incremental receve history) and list of messages it sent (incremental send history) to
other applicaion processes snce the last time it sent a locd snapshot to the dedker
process which maintains this information in separate queues dedicated for ead process

The task of the dhedker processis to find a consistent cut that satisfies al the
channel predicaes. Similar to the centralized WCP agorithm the dedker process
advances the ait on the state that has the small est vedor clock or on the state which dces
nat satisfy any one of the dhannel predicaes. Whenever the chedker processfindsa aut in
which all states are wncurrent and al channel predicaes are satisfied, the GCP is
deteded. Obvioudly, this algorithm shares the same drawbadk with the centralized WCP
agorithm in that it might impose unreasonable space ad time requirements on the
cheder processand the whole detedion processdepends on ore ceitral process Hence,
we turn ou attention to a token-based GCP agorithm proposed by Mitchell and Garg
[12].
2.6 Token-based GCP Algorithm

This algorithm is an extension d the token-based WCP agorithm that handles
channel predicaes. The distributed system is divided into two damains by this algorithm:

Applicaion Domain and Detedion Domain. Applicgion Doman consists of the

application pocesses which communicae with ead other using the normal program
messages. The Detedion Domain contains the monitor processes, which are paired with a
spedfic gplicaion pocess A monitor process can send messages to ather monitor
processes using a single token bu not the gplicaion processs. It can recave messages
from other monitor processes and its applicaion process To make the dgorithm less
costly the @gplicaion process and monitor process can be placel on the same
uniprocesor so that the communication cost between the monitor and the @rrespondng
applicaion processis minimized.

An applicaion processkeeps tradk of its locd predicaes and records the adivity
on its incoming and ougoing channels. When all of its locd predicates become true, the
applicaion process &nds to its monitor processits vedor clock and lists of messages it
has snt/receved on its channels snce the last time it sent a message to its monitor.
These messages are queued in the monitor process

The monitor process $ays passve urtil it receves the token from ancther monitor
processin the system. When it receves the token, it starts recaving candidate states
from the queue (applicaion pocesy urtil it gets a vedor clock which is later than the
vedor clock that is maintained in the token. The vedor clock maintained in the token
spedfies a possble ait in which desired predicaes could be true. After recaving such a
candidate state from the queue, the monitor process updates its own comporent of the
vedor clock maintained in the token and chedks whether there ae awy states in the
current cut that violates consistency. If it finds out that the candidate state on processj is
inconsistent with then it sends the token to the monitor processj. Otherwise if the aurrent

cut is consistent, then the monitor process cheds whether all the dannel predicaes are

satisfied. It is able to doso, because it has recaved information onall the dannels of its
applicaion pocess If al the dhannel predicaes are true, the GCP is deteded. On a high
level view the goplicaion processes are resporsible for deteding their locd predicaes
and the monitor processes are resporsible for deteding the channel predicates and finding
a onsistent cut that satisfies all the predicaes. We will elaborate more on the detail s of
the implementation d this algorithm in Sedion 3.
3. Implementation of Vector Clocks and Sensors

The implementation d vedor clocks and sensors is an extension d the Webscape
system designed initially. A Webscgpe system can be viewed as a olledion d tables on
the internet, where eab tableisatwo dmensiona array of cdls. Ead cdl hastwo fields
asciated with it — expresson and value. The value is the number displayed for the cdl.
The expresson is a formula associated with the cel, which is used to evaluate its vaue.
This may result in communicaion with ather tables, for instance, if the cdl’s value is
dependent on the value of some remote cdlsin aher tables. A cdl may aso have atarget
cdl. Whenever the value of the cdl changes, the new value is snt to the target cdl,
which in turn updites its value. Target cdls can be remote cdls as well. The
communication between the tables is established using cdl servers as discussed in the
problem statement.
3.1 Vector Clocks

Vedor clocks are asciated with every Webscepe table. It shows the vedor clock
for that processat all times. It is assumed that eat process knows the total number of
tables (processes) and identity (process id) of ead table. Thisis read from the inpu file

during the initialization d the Webscgpe tables. The format of the inpu file is discussed

later. The veaor clock of a processis included in al out-going messages and is updated
using Mattern’s vedor clock update rules [11]. Whenever a message is sent, the locd
comporent of the dock is incremented and uponrecaving a message, a wmponrent-wise
maximum of the vedor is taken and then the locd componrent is incremented.

3.2 Sensors

A sensor is a cdl type in the Webscgoe table. Two types of sensors are
implemented — locd and global sensors. A locd sensor is sSmply a bodean condtion on
locd data cdls. For example, (R2C3 > 4) && (ROCO == 7) is a locd sensor which
beames true only when the value of the cédl in R2C3 exceals 4 AND value of the cdl
ROCO equals 7. The sensors can only aqquire avalue of 0 or 1 depending on whether the
predicae defined by that sensor is true or false. A suffix LS is displayed in the table to
distinguish between anormal cdl andalocd sensor.

Two types of global sensors, channel sensor and conjunctive sensors are dso
implemented. A channel sensor deteds a dhannel property. It acqquires avalue of 1, if the
channel predicate associated with it becomes true. For example the foll owing channel
predicae R1CO - tick:8888 > 2 will betrueif at anytime the number of messages sent
from the cdl R1CO in thistable to thetable & tick exceals 2. A suffix CSisdisplayedin
the table to dfferentiate a ¢vannel sensor from other cdls.

A conjunctive sensor deteds conjunction d locd and channel sensors. It is %t to
1, when all the conjuncts (locd sensor and channel sensor) beaome true, for example the

following predicate (R1CO - sorata:8888>= 10) && (ROCO > 20) is a wnjunction d

the channel sensor (R1CO - sorata:8888>= 10) and the locd sensor (ROCO > 20). A

1C

suffix CNJS is displayed in the table to dfferentiate a ©njunctive sensor from the other
cdls.

Webscgpe goplicaion can have one cdl to deted the global predicate, which isa
conunction d locd and channel predicaes on multiple tables for example
(tick:8883R1C1 > 5) && (sorata8883R3C2 < 100) && (omni:8883R1C1 -
tick:8888==15) . The value of the cdl is st to 1, when the global predicae is deteded. A
suffix GSis displayed in the table to diff erentiate aglobal sensor from the other cdls.

All the sensors deted if the property they are monitoring ever becane true. Once
they turn true they stay true. An interfaceis provided to the user to manually reset them
to false (0).

3.2.1 Channel Predicates

We have implemented an algorithm to deted linea, stable & well as unstable
channel predicaes. Also, ou agorithm considers multiple channels between processes,
i.e., there is a channel between ead cdl of the Webscagpe gplicaion to al other
Webscgpe goplications. Channel predicaes are of theform R1C1 - tick:8888>5

The gplication processkegps tradk of the minimum (Tmin) and maximum (Tmax)
number of messages in transit in the cdhannel from ead cdl to every other process

e Tmin[no_d processes] [no_d rows] [no_d_colg]
e Tmax[no d processes] [no_d rows] [no_d colg]

An AckHand er processkeeps tradk of the number of messages sent (incsend history)
by eadt cdl to ather processes and the number of messages receved (increov history) by
aparticular cdl of other processes.

e SEND[no_d proceses][no_d_rows| [no_d_cols|

e RECV[no _d proceses] [no_d rows| [no_d colg]

11

Whenever a cédl (a, b) of process A; sends a message to process A, it updates its
AckHander processH;. H; increments the send cournt of the messages from cdl (a, b) to
A in SEND. Then it sends a request messsge to AckHander H; to get the number of
messages receved by A from cdl (a, b) of processAi. H; returns the receve ourt from
its recave aray RECV. H; cdculates the number of messages in transit at this date and
returns the airrent value to Ai. A updates its Tmin and Tmax based on the airrent
number of messagesin transit.

Upon recave of a message from cdl (a, b) of process A, the process updtes its
AckHander, which simply increments the recaeve @mun of the messages from cdl (a, b)
of A;in RECV. Whenever a channel sensor cel is evaluated, it gets the Tmin and Tmax
values for that. Whenever the locd predicates are true in a process information abou the

channelsis snt to the monitor process

Application Process (Ai):

Initialize_clocks_and_vars(i);
Before send of message mto A do

I ncrenent _send_count (j, nmyrow, nycol);
Upon recei ve of message mfrom do

I ncrenent _receive_count (j,row, col);
Upon | ocal _predicate_true() do {

send(v) to M as candi date

clear _send_rcv_vars();

Monitor Process (M):

Upon receive of token do {
do {
recei ve candi date fromA
update send_rcv_of token(i);
} until candidate.v[i] > token.v[i]
updat e_t oken(candi date. v[i]);

if O @ j #£i: token.v[j] < candidate.v[j]
then send_token(j); /* Send token to M */
if (still has_token) {

i f chan_predicates_true() {
then GCP = true;
send_broadcast (pred_det ect ed);

Figure 1 : GCP detedion algorithm

12

3.2.3 Token Based Distributed Algorithm for Detecting Generalized Conjunctive
Predicates (GCP)

A token based dstributed algorithm for deteding GCP is implemented (Figure 1).
It is based onthe dgorithm suggested by Mitchell and Garg [12]. The implementation
the dgorithm is divided into applicaion and monitor portions at eathy process The
applicaion pocess cheds for locd predicaes and keeps track of the adivity in the
channels associated with this process The dgorithm uses a token to deted GCP. The
token contains a possble global cut in which the desired predicates could be true. The
monitor recaves the token and chedks for a mnsistent cut. If the global cut is consistent
then al the locd predicaes are true wncurrently. If nat, the token is forwarded to any
process which violates the ansistency. Also, aher processes that violate the cnsistent
cut are marked so that they will receve the token at some point in the future. Before
forwarding the token, vedor clock information inside the token is updated acarding to
the aurrent candidate. If the global cut is consistent, then the monitor process cheds for
the channel predicaes associated with the goplicaion pocess If channd predicaes are
aso satisfied, then GCP will be deteded. Otherwise, the whole detedion pocess sarts
again by labeling the violating processs as inconsistent and sending them the token.

The monitor code is adivated only if it has the token, aherwise it just buffers the
candidates recaved from the gplicaion process Figure 2 shows the message flow
between the gplicaion process and monitor process Candidates are nothing but the
vedor clocks in which the locd predicae becane true first time dter an externa event
and channel states associated with them. The gplicaion and the monitor process are

placed onthe same uniprocessor to reduce @mmunicaion complexity.

13

Application Process W Candidates >
A
~
Candidates
Applicaion Process >
A
J

Figure 2 : The gplicaion and monitor processof GCP

3.3 Implementation Details
3.3.1 Initialization of the Webscape Table

Thefirst step at the start of the processis the initialization o the Webscgpe table. The
initial configuration d the table is read from an inpu file. The inpu file has the
foll owing information:

e Tota number of processes

* ProcessID of the running process

e ldentity of the other tables (madhine name:port, processid)

* Total number of rows and columnsin this table

» Initia cdl entries (expresson, \value, target)

* Locd conjuncts (process part of the global predicae)

14

User interfacefor updeting the cél entries and saving the aurrent state into a file is
aso provided. It is assumed that the table has afixed size.

Every process has a unique processid. A hashtable of processid’ s and addresss is
constructed and it is used for communicaion with aher tables. A cdl-server thread is
launched duing the initialization prese. The cédl-server serves the requests for realing
and upditing cdls. This rver starts listening on the port number associated with the
table. TCP/IP sockets are used for communication. Initialization for the AckHander and
the monitor processs is then dore. The token, vedor clock and aher data structures are
also initialized. Only one monitor process has the token in the beginning. The vedor
clock of the token is initialized so that the token eventualy visits al the monitor
processes at least once before the global predicae is deteded.

3.3.2 Cedl Updates

The run time system picks the cdl in a round robin fashion, evaluates the
expresson asociated with the cdl, upcates the new value in the table and if atarget cdl
exists, it sends its value to the remote cdl. Two interfaces getRemoteVal and
sendRemoteVal are provided to adhieve this functionality. getRemoteVal gets the value of
the remote cdl and sendRemoteVal sends the aurrent value to the remote cdl. It then
chedsif the locd predicae and the dhannel predicaes associated with it are true. If true,
then it sends a candidate to the monitor process The GCP agorithm is run in the
monitor process as described in Sedion 3.2.3.0ne of the monitor process eventually
deteds the global predicate (if it exists) and sends a broadcast to all the other processes ©

that they stop cheding for their locd predicates.

15

4. Conclusion

In this projed we have implemented a token-based distributed algorithm that is
able to deted weak unstable Generalized Conjunctive Predicaes, which are formed by
the wmnjunction d locd and channel predicaes on multiple independent processes. Our
implementation is based on an algorithm proposed by Mitchell and Garg in [12]. This
algorithm would be very useful in debugging and testing distributed programs as
discus=ed in Sedion 1.

One shortcoming of our implementation is the fad that it is nat fault-tolerant. If
one of the monitor processes or applicaion pocesses bemme faulty, our implementation
will not work corredly. Perhaps a next step to improve our projed is to make it more
fault-tolerant. Garg and Mitchell describe an algorithm that will deted a conjunction o
locd and send-monaonic channel predicaes in faulty, asynchronows distributed
environments in [10] using infinitely-often acarate detedors. Our implementation might
be modified to be suited for their algorithm to be made more fault-tolerant.

Another problem with ou implementation is that it relies on orly one token. It is
not distributed enough to provide higher levels of fault-tolerance A more distributed
algorithm is proposed in [7]. Perhaps, by combining the gproades of [7] and [10], a

more fault-tolerant and parall el predicate detedion scheme can be implemented.

References

[1] K. M. Chandy, and L. Lamport, "Distributed Snapshats: Determining Global
States of Distributed Systems’, ACM Transactions on Computer Systems, Vol. 3,
No. 1, pp. 6375, February 1985.

[2] C. M. Chase, and V. K. Garg, "Efficient Detedion o Restricted Classes of Global

16

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

[12]

Predicates’, Proceedings of the Sth International Workshop on Distributed
Algorithms, Lecture Notes in Computer Science, Vol. 927, pp. 303817, 1995.
R. Cooper, and K. Marzull o, "Consistent Detedion d Global Predicates’,
Proceedings of the ACM/ONR Wor kshop on Parallel and Distributed Debugging,
Santa Cruz, California, pp. 163173,May 1991.

C. Fidge, "Partial Ordersfor Parallel Debugging”, Proceedings of the ACM
Workshop on Parallel and Distributed Debugging, Madison, Wisconsin, pp. 130
140,May 1988.

V. K. Garg, "Observation d global propertiesin distributed systems®, IEEE
International Conference on Software and Knowledge Engineering, Lake Tahoe,
Nevada, pp. 418425,June 1996.

V. K. Garg, C. Chase, "Distributed Algorithms for Detecting Conjunctive
Predicates’, Proc. |EEE International Conference on Distributed Computing
Systems, Vancouver, Canada, pp. 423430, June 1995.

V. K. Garg, C. Chase, J. R. Mitchell, R. Kilgore, "Deteding Conjunctive
Channel Predicaes in aDistributed Programming Environment”, 28th Hawaii
International Conference on System Sciences, pp. 232241, January 1995.

V. K. Garg, B. Waldedker, "Detedion d Wegk Unstable Predicatesin
Distributed Programs’, |EEE Transactions on Parallel and Distributed Systems,
Vol. 5,No. 3, pp. 298B07,March 1994.

V. K. Garg, B. Waldedker, "Detedion d Strong Unstable Predicaesin
Distributed Programs’, |IEEE Transactions on Parallel and Distributed Systems,
Vol. 7,No. 12, p. 1323- 1333,Decanber 1996.

V. K. Garg, J. R. Mitchell, "Distributed Predicate Detedion in a Faulty
Environment”, Proceedings of |EEE International Conference on Distributed
Computing Systems, Amsterdam, Netherlands, 1998

F. Mattern, "Virtual Time and Global States of Distributed Systems’, Parallél
and Distributed Algorithms: Proceedings of the International Workshop on
Parallel and Distributed Algorithms, Elsevier Science Publishers, pp 215226,
1989.

J. R. Mitchell, V. K. Garg, Deriving Distributed Algorithms from a General
Predicate Detedor", Proceedings of the Nineteenth Intl. Computer Software and
Applications Conference, Dall as, Texas, pp. 268-- 273,August 1995.

17

