
Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt}@ece.utexas.edu

Abstract

Runahead execution is a technique that improves proces-
sor performance by pre-executing the running application
instead of stalling the processor when a long-latency cache
miss occurs. Previous research has shown that this tech-
nique significantly improves processor performance. How-
ever, the efficiency of runahead execution, which directly
affects the dynamic energy consumed by a runahead pro-
cessor, has not been explored. A runahead processor exe-
cutes significantly more instructions than a traditional out-
of-order processor, sometimes without providing any per-
formance benefit, which makes it inefficient. In this paper,
we describe the causes of inefficiency in runahead execu-
tion and propose techniques to make a runahead processor
more efficient, thereby reducing its energy consumption and
possibly increasing its performance.

Our analyses and results provide two major insights:
(1) the efficiency of runahead execution can be greatly im-
proved with simple techniques that reduce the number of
short, overlapping, and useless runahead periods, which we
identify as the three major causes of inefficiency, (2) sim-
ple optimizations targeting the increase of useful prefetches
generated in runahead mode can increase both the perfor-
mance and efficiency of a runahead processor. The tech-
niques we propose reduce the increase in the number of in-
structions executed due to runahead execution from 26.5%
to 6.2%, on average, without significantly affecting the per-
formance improvement provided by runahead execution.

1. Introduction

Today’s high-performance processors are facing main
memory latencies in the order of hundreds of processor
clock cycles. As a result, even the most aggressive state-
of-the-art processors end up spending a significant portion
of their execution time stalling and waiting for main mem-
ory accesses to return data into the execution core. Previous
research has shown that “runahead execution” is a technique
that significantly increases the ability of a high-performance
processor to tolerate the long main memory latencies [5,
13, 2]. Runahead execution improves the performance of
a processor by speculatively pre-executing the application
program while a long-latency data cache miss is being ser-
viced, instead of stalling the processor for the duration of
the long-latency miss. Thus, runahead execution allows
the execution of instructions that cannot be executed by a

state-of-the-art processor under a long-latency data cache
miss. These pre-executed instructions generate prefetches
that will later be used by the application program, which
results in performance improvement.

A runahead processor executes significantly more in-
structions than a traditional out-of-order processor, some-
times without providing any performance benefit. This
makes runahead execution inefficient and results in higher
dynamic energy consumption than a traditional processor.
To our knowledge, previous research has not explored the
efficiency problems in a runahead processor. In this paper,
we examine the causes of inefficiency in runahead execution
and propose techniques to make a runahead processor more
efficient. By making runahead execution more efficient, our
goal is to reduce the dynamic energy consumption of a runa-
head processor and possibly increase its performance. The
questions we answer in this paper to achieve this goal are:

1. As a runahead processor speculatively pre-executes
portions of the instruction stream, it executes more in-
structions than a traditional high-performance proces-
sor, resulting in higher dynamic energy consumption.
How can the processor designer decrease the number
of instructions executed in a runahead processor, while
still preserving most of the performance improvement
provided by runahead execution? In other words, how
can the processor designer increase the efficiency of a
runahead processor? (Section 5)

2. As the pre-execution of instructions targets the genera-
tion of useful prefetches, instruction processing during
runahead mode should be optimized for maximizing
the number of useful prefetches generated during runa-
head execution. What kind of techniques increase the
probability of the generation of useful prefetches and
hence increase the performance of a runahead proces-
sor, while reducing or not significantly increasing the
number of instructions executed? (Section 6)

2. Background on Runahead Execution

To provide the terminology used in this paper, we give a
brief overview of the operation of runahead execution. For
a thorough description, we refer the reader to [13].

Runahead execution avoids stalling the processor when
a long-latency L2 cache miss blocks instruction retirement,
preventing new instructions from being placed into the in-
struction window. When the processor detects that the old-
est instruction is a long-latency cache miss that is still being
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serviced, it checkpoints the architectural register state, the
branch history register, and the return address stack, records
the program counter of the blocking long-latency instruction
and enters a speculative processing mode, which is called
the “runahead mode.” The processor removes this long-
latency instruction from the instruction window. While in
runahead mode, the processor continues to execute instruc-
tions without updating the architectural state and without
blocking retirement due to long-latency cache misses and
instructions dependent on them. The results of the long-
latency cache misses and their dependents are identified
as bogus (INV). Instructions that source INV results (INV
instructions) are removed from the instruction window so
that they do not prevent independent instructions from be-
ing placed into the window. The removal of instructions
from the window during runahead mode is accomplished in
program order and it is called “pseudo-retirement.” Some
of the instructions in runahead mode that are independent
of long-latency cache misses may miss in the instruction,
data, or unified caches. Their miss latencies are overlapped
with the latency of the runahead-causing cache miss. When
the runahead-causing cache miss completes, the processor
exits the speculative runahead mode by flushing the in-
structions in its pipeline. It restores the checkpointed state
and resumes normal instruction fetch and execution start-
ing with the runahead-causing instruction. Once the pro-
cessor returns to “normal mode,” it is able to make faster
progress without stalling because some of the data and in-
structions needed during normal mode have already been
prefetched into the caches during runahead mode. Previ-
ous research showed that runahead execution increases per-
formance mainly because it parallelizes independent long-
latency L2 cache misses [14, 2].

3. Methodology

We first describe our baseline processor and experimen-
tal evaluation methodology. Analyses and results presented
in later sections are based on the baseline processor de-
scribed in this section.

Our baseline processor is an aggressive superscalar, out-
of-order processor that implements the Alpha ISA. Machine
parameters are summarized in Table 1. As the performance
impact of runahead execution is highly dependent on the
accuracy of the memory model, we use a detailed mem-
ory model, which models bandwidth, port contention, bank
conflicts, and queueing delays at every level in the memory
system. We use a large, 1 MB L2 cache. An aggressive
state-of-the-art stream-based prefetcher similar to the one
described in [15] is also employed in the baseline processor.
All experiments are performed using the SPEC 2000 Inte-
ger (INT) and Floating Point (FP) benchmarks. INT bench-
marks are run to completion with a reduced input set [9].
FP benchmarks are simulated using the reference input set.
The initialization portion is skipped for each FP benchmark
and simulation is done for the next 250 million instructions.

Table 1. Baseline processor configuration.

64KB, 4-way I-cache; 8-wide fetch, decode, rename; 64K-entry
Front End gshare/PAs hybrid branch pred.; min. 20-cycle mispred. penalty;

4K-entry, 4-way BTB; 64-entry RAS; 64K-entry indirect target cache
Execution 128-entry reorder buffer; 8 functional units; 128-entry st buffer;
Core store misses do not block retirement unless store buffer is full

64KB, 4-way, 2-cycle L1 D-cache, 128 L1 MSHRs, 4 load ports;
Caches 1MB, 32-way, 10-cycle unified L2, 1 ld/st port; 128 L2 MSHRs;

all caches have LRU replacement and 64B line size; 1-cycle AGEN
Memory 500-cycle min. latency; 32 banks; 32B-wide, split-trans. core-to-mem.

bus at 4:1 freq. ratio; conflicts, bandwidth, and queueing modeled
Prefetcher Stream-based [15]; 32 stream buffers; can stay 64 cache lines ahead

Figure 1 shows, for reference, the IPC (retired In-
structions Per Cycle) performance of four processors for
each benchmark: from left to right, a processor with no
prefetcher, the baseline processor, the baseline processor
with runahead, and the baseline processor with a perfect
(100% hit rate) L2 cache. All IPC averages are calculated
as the harmonic average. The baseline prefetcher is quite
effective and improves the average IPC by 90.4%.
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Figure 1. Baseline IPC performance.

4. The Problem: Inefficiency of Runahead
Execution

Runahead execution increases processor performance by
pre-executing the instruction stream while an L2 cache miss
is in progress. At the end of a runahead execution period,
the processor restarts its pipeline beginning with the instruc-
tion that caused entry into runahead mode. Hence, a runa-
head processor executes some instructions in the instruction
stream more than once. As each execution of an instruction
consumes dynamic energy, a runahead processor consumes
more dynamic energy than a processor that does not imple-
ment runahead execution. To reduce the energy consumed
by a runahead processor, it is desirable to reduce the number
of instructions executed during runahead mode. Unfortu-
nately, reducing the number of instructions executed during
runahead mode may significantly reduce the performance
improvement of runahead execution, since runahead execu-
tion relies on the execution of instructions during runahead
mode to discover useful prefetches. Our goal is to increase
the efficiency of a runahead processor without significantly
decreasing its IPC performance improvement. We define
efficiency as follows:
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Efficiency =

Percent Increase In IPC

Percent Increase In Executed Instructions

Percent Increase In IPC is the percentage IPC in-
crease after the addition of runahead execution to the
baseline processor. Percent Increase In Executed Instruc-
tions is the percentage increase in the number of exe-
cuted instructions after the addition of runahead execu-
tion.1 We use this definition, because it is congruent
with the ∆Performance/∆Power metric used in power-
aware design to decide whether or not a new microarchi-
tectural feature is power aware [7]. We examine techniques
that increase efficiency by reducing the Percent Increase In
Executed Instructions in Section 5. Techniques that increase
efficiency by increasing the Percent Increase In IPC are ex-
amined in Section 6.

Note that efficiency by itself is not a very meaningful
metric. Observing the increase in the executed instructions
and the increase in IPC together gives a better view of both
efficiency and performance, especially because our goal is
to increase efficiency without significantly reducing perfor-
mance. Therefore, we always report changes in these two
metrics. Efficiency values can be easily computed using
these two metrics.

Figure 2 shows the increase in IPC and increase in the
number of executed instructions due to the addition of runa-
head execution to our baseline processor. All instructions
executed in the processor core, INV or valid, are counted
to obtain the number of executed instructions. On average,
runahead execution increases the IPC by 22.6% at a cost of
increasing the number of executed instructions by 26.5%.
Unfortunately, runahead execution in some benchmarks re-
sults in a large increase in the number of executed instruc-
tions without yielding a correspondingly large IPC improve-
ment. For example, in parser, runahead increases the num-
ber of executed instructions by 47.8% while decreasing the
IPC by 0.8% (efficiency = −0.8/47.8 = −0.02). In art,
there is an impressive 108.4% IPC increase, only to be over-
shadowed by a 235.4% increase in the number of executed
instructions (efficiency = 108.4/235.4 = 0.46).

5. Techniques for Improving Efficiency

We have identified three major causes of inefficiency in
a runahead processor: short, overlapping, and useless runa-
head periods. This section describes these causes and pro-
poses techniques to eliminate them. For the purposes of
these studies, we only consider those benchmarks with an
IPC increase of more than 5% or with an executed instruc-
tion increase of more than 5%.

1There are other ways to define efficiency. We also examined
a definition based on Percent Increase In Fetched Instructions. This
definition gave similar results to the definition provided in this paper, since
the increase in the number of fetched instructions due to runahead execu-
tion is very similar to the increase in the number of executed instructions.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110

In
cr

ea
se

 o
ve

r 
B

as
el

in
e 

(%
)

% Increase in IPC
% Increase in Executed Instructions

235

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

mk

tw
olf

vo
rte

x
vp

r
am

mp
ap

plu ap
si art

eq
ua

ke

fac
ere

c

fm
a3

d

ga
lge

l
luc

as
mes

a
mgr

id

six
tra

ck

sw
im

wup
wise

mea
n

Figure 2. Increase in IPC and executed instructions due to runa-

head execution.

5.1. Eliminating Short Runahead Periods

One cause of inefficiency in runahead execution is short
runahead periods, where the processor stays in runahead
mode for tens, instead of hundreds, of cycles. A short
runahead period can occur because the processor may en-
ter runahead mode due to an L2 miss that was already
prefetched by the prefetcher, a wrong-path instruction, or
a previous runahead period, but that has not completed yet.
Short runahead periods are not desirable, because the pro-
cessor may not be able to pre-execute enough instructions
far ahead into the instruction stream and hence may not
be able to generate any useful prefetches during runahead
mode. As exit from runahead execution is costly (it requires
a full pipeline flush), short runahead periods can actually be
detrimental to performance.

Ideally, we would like to know when an L2 cache miss
is going to return back from main memory. If the L2 miss
is going to return soon enough, the processor can decide not
to enter runahead mode on that L2 miss. Unfortunately, in
a realistic memory system, latencies to main memory are
variable and are not known beforehand due to bank con-
flicts, queueing delays, and contention in the memory sys-
tem. To eliminate the occurrence of short runahead periods,
we propose a simple heuristic to predict that an L2 miss is
going to return back from main memory soon.

In our mechanism, the processor keeps track of the num-
ber of cycles each L2 miss has spent after missing in the L2
cache. Each L2 Miss Status Holding Register (MSHR) [10]
contains a counter to accomplish this. When the request
for a cache line misses in the L2 cache, the counter in the
MSHR associated with the cache line is reset to zero. This
counter is incremented periodically until the L2 miss for the
cache line is complete. When a load instruction at the head
of the instruction window is an L2 miss, the counter value in
the associated L2 MSHR is compared to a threshold value T.
If the counter value in the MSHR is greater than T, the pro-
cessor does not initiate entry into runahead mode, predicting
that the L2 miss will return back soon from main memory.
We considered both statically and dynamically determined
thresholds. A static threshold is fixed for a processor and
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Figure 3. Increase in executed instructions and IPC after eliminating short runahead periods using thresholding.

can be set based on design-time estimations of main mem-
ory latency. As the memory latency in our baseline proces-
sor is 500 cycles, we examined thresholds between 250 to
500 cycles. A dynamic threshold can be set by computing
the average latency of the last N L2 misses and not entering
runahead execution if the current L2 miss has covered more
than the average L2 miss latency (N is varied from 4 to 64
in our experiments). The best dynamic threshold we looked
at did not perform as well as the best static threshold. Due
to the variability in the L2 miss latency, it is not feasible to
get an accurate prediction on the latency of the current miss
based on the average latency of the last few misses.

Figure 3 shows the increase in number of executed in-
structions and IPC over the baseline processor if we employ
the thresholding mechanisms. The best heuristic, in terms
of efficiency, prevents the processor from entering runahead
mode if the L2 miss has been in progress for more than 400
cycles. The increase in the number of executed instruc-
tions on the selected benchmarks is reduced from 45.6%
to 26.4% with the best static threshold and to 30.2% with
the best dynamic threshold, on average. Average IPC im-
provement is reduced slightly from 37.6% to 35.4% with
the best static threshold and to 36.3% with the best dynamic
threshold. Hence, eliminating short runahead periods using
a simple miss latency thresholding mechanism significantly
increases the efficiency of runahead execution.

Figure 4 shows the distribution of the runahead period
length and the useful L2 misses prefetched by runahead load
instructions for each period length in the baseline runahead
processor (left graph) and after applying the static threshold
400 mechanism (right graph). The data shown in this figure
are averaged over all benchmarks. A useful miss is defined
as an L2 load miss that is generated in runahead mode and
later used in normal mode and that could not be captured
by the processor’s instruction window if runahead execu-
tion was not employed. Without the efficiency optimization,
there are many short runahead periods that result in very few
useful prefetches. For example, the runahead processor en-
ters periods of shorter than 50 cycles 4981 times, but a total
of only 22 useful L2 misses are generated during these peri-
ods (leftmost points in the left graph in Figure 4). Using the

static threshold 400 mechanism eliminates all occurrences
of periods of shorter than 100 cycles, as shown in the right
graph. This mechanism also eliminates some of the very
long runahead periods (longer than 600 cycles), but we find
that the efficiency loss due to eliminating a smaller number
of long periods is more than offset by the efficiency gain
due to eliminating a larger number of short periods.
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Figure 4. Distribution of runahead period length (in cycles) and

useful misses generated for each period length.

5.2. Eliminating Overlapping Runahead Periods

Two runahead periods are defined to be overlapping if
some of the instructions the processor executes in both peri-
ods are the same dynamic instructions. Overlapping periods
occur due to two reasons:

1. Dependent L2 misses (Figure 5a): Load A causes en-
try into runahead period 1. During this period, load
B is executed and found to be dependent on load A;
therefore load B becomes INV. The processor executes
and pseudo-retires N instructions after load B and ex-
its runahead period 1 when the miss for load A returns
from main memory. The pipeline is flushed and fetch
is redirected to load A. In normal mode, load B is exe-
cuted and found to be an L2 miss. The processor enters
into runahead period 2 due to load B. In runahead pe-
riod 2, the processor executes the same N instructions
that were executed in period 1.

2. Independent L2 misses with different latencies (Fig-
ure 5b): This is similar to the previous case, except
load A and load C are independent. The L2 miss
caused by load C takes longer to service than the L2
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miss caused by load A. Note that runahead period 2
may or may not also be a short period, depending on
the latency of the L2 cache miss due to load C.
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Overlapping N instructions

A:  ld [r5 + 8] −> r1 A:  ld [r5 + 8] −> r1

ld [r5 + 12] −> r2

add r1, r2 −> r9

ld [r5 + 20] −> r8

add r9, r8 −> r9

(a) Due to dependent L2 misses (b) Due to independent L2 misses

C:  ld [r7 + 0] −> r6
add r9, r6 −> r9

B:  ld [r1 + 0] −> r6
add r9, r6 −> r8 add r9, r6 −> r8

B:  ld [r1 + 0] −> r6 C:  ld [r7 + 0] −> r6
add r9, r6 −> r9

Figure 5. Overlapping runahead periods.

Overlapping runahead periods may be beneficial for per-
formance, because the completion of load A may result in
the availability of data values for more instructions in runa-
head period 2, which may result in the generation of useful
prefetches that could not have been generated in runahead
period 1. On the other hand, if the availability of the result
of load A does not lead to the generation of new load ad-
dresses that generate prefetches, the processor will execute
the same N instructions twice in runahead mode without ob-
taining any benefit. In any case, overlapping runahead peri-
ods can be a major cause of inefficiency, because they result
in the execution of the same instruction multiple times in
runahead mode, especially if many L2 misses are clustered
together in the program.

Our solution to reducing the inefficiency due to over-
lapping periods involves not entering a runahead period if
the processor predicts it to be overlapping with a previous
runahead period. During a runahead period, the processor
counts the number of pseudo-retired instructions. During
normal mode, the processor counts the number of instruc-
tions fetched since the exit from the last runahead period.
When an L2 miss load at the head of the reorder buffer is
encountered during normal mode, the processor compares
these two counts. If the number of instructions fetched af-
ter the exit from runahead mode is less than the number of
instructions pseudo-retired in the previous runahead period,
the processor does not enter runahead mode (full threshold
policy). Note that this mechanism is predictive. The proces-
sor may pseudo-retire instructions on the wrong-path dur-
ing runahead mode due to the existence of an unresolvable
mispredicted INV branch (called divergence point in [13]).
Therefore, it is not guaranteed that a runahead period caused
before fetching the same number of pseudo-retired instruc-
tions in the previous runahead period overlaps with the pre-
vious runahead period. Hence, this mechanism may elimi-
nate some non-overlapping runahead periods. To reduce the
probability of eliminating non-overlapping periods, we ex-
amined a policy (half threshold policy) where the processor
does not enter runahead mode if it has not fetched more than
half of the number of instructions pseudo-retired during the

last runahead period.
Figure 6 shows the increase in number of executed in-

structions and IPC over the baseline processor if we employ
the half threshold and full threshold policies. Eliminating
overlapping runahead periods significantly reduces the in-
crease in the number of executed instructions from 45.6% to
28.7% with the half threshold policy and to 20.2% with the
full threshold policy, on average. This reduction comes with
a small impact on IPC improvement, which is reduced from
37.6% to 36.1% with the half threshold policy and to 35%
with the full threshold policy. Art, ammp, and swim are the
only benchmarks that see significant reductions in IPC im-
provement because overlapping periods due to independent
L2 misses sometimes provide useful prefetching benefits in
these benchmarks. It is possible to recover the performance
loss by predicting the usefulness of overlapping periods and
eliminating only those periods predicted to be useless, using
schemes similar to those described in the next section. We
do not discuss this option due to space limitations.

5.3. Eliminating Useless Runahead Periods

Useless runahead periods that do not result in prefetches
for normal mode instructions are another cause of ineffi-
ciency in a runahead processor. These periods exist due to
the lack of memory-level parallelism [6] in the application
program, i.e. due to the lack of independent cache misses
under the shadow of an L2 miss. Useless periods are ineffi-
cient because they increase the number of executed instruc-
tions without providing any performance benefit.

To eliminate a useless runahead period, the processor
needs to know whether or not the period will provide
prefetching benefits before initiating runahead execution on
an L2 miss. As this is not possible without knowledge of
the future, we use techniques to predict the usefulness of a
runahead period. We describe several of the most effective
techniques we examined.

5.3.1. Predicting Useless Periods Based on Past Useful-
ness of Runahead Periods Initiated by the Same Static
Load. The first technique makes use of past information
on the usefulness of previous runahead periods caused by a
load instruction to predict whether or not to enter runahead
mode on that static load instruction again. The usefulness
of a runahead period is approximated by whether or not the
period generated at least one L2 cache miss.2 The insight
behind this technique is that the usefulness of runahead pe-
riods caused by the same static load tend to be predictable
based on recent past behavior. The processor uses a table of
two-bit saturating counters called Runahead Cause Status
Table (RCST) to collect information on each L2-miss load.
The state diagram for an RCST entry is shown in Figure 7.

2Note that this is a heuristic and not necessarily an accurate metric for
the usefulness of a runahead period. The generated L2 cache miss may
actually be on the wrong path during runahead mode and may never be
used in normal mode.
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Figure 6. Increase in executed instructions and IPC after eliminating overlapping runahead periods.
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Figure 7. State diagram of the RCST counter.

When an L2-miss load is the oldest instruction in the in-
struction window, it accesses RCST using its instruction ad-
dress to check whether it should initiate entry into runahead
mode. If there is no counter associated with the load, runa-
head is not initiated, but a counter is allocated and reset.
During each runahead period, the processor keeps track of
the number of L2 load misses that are generated and cannot
be captured by the processor’s instruction window.3 Upon
exit from runahead mode, if there was at least one such
L2 load miss generated during runahead mode, the two-bit
counter associated with the runahead-causing load is incre-
mented. If there was no such L2 miss, the two-bit counter
is decremented. When the same static load instruction is
an L2-miss at the head of the instruction window later, the
processor accesses the counter associated with the load in
RCST. If the counter is in state 00 or 01, runahead is not
initiated, but the counter is incremented. We increment the
counter in this case, because we do not want to ban any load
from initiating entry into runahead. If we do not increment
the counter, the load will never cause entry into runahead
until its counter is evicted from RCST, which we found to
be detrimental for performance because it eliminates many
useful runahead periods along with useless ones. In our ex-
periments, we used a 4-way RCST containing 64 counters.

5.3.2. Predicting Useless Periods Based on INV De-
pendence Information. The second technique we propose
makes use of information that becomes available while
the processor is in runahead mode. The purpose of this
technique is to predict the available memory-level paral-
lelism during the existing runahead period. If there is not

3An L2 miss caused by a load that is pseudo-retired at least N instruc-
tions after the runahead-causing load, where N is the instruction window
(reorder buffer) size, cannot be captured by the instruction window. N=128
in our simulations.

enough memory-level parallelism, the processor exits runa-
head mode right away. To accomplish this, while in runa-
head mode, the processor keeps a count of the number of
load instructions executed and a count of how many of those
are INV (i.e., dependent on an L2 miss). After N cycles
of execution during runahead mode, the processor starts
checking what percentage of all executed loads are INV in
the current runahead mode. If the percentage of INV loads
is greater than some threshold T%, the processor initiates
exit from runahead mode (We found that good values for
N and T are 50 and 90, respectively. Waiting for 50 cycles
before deciding whether or not to exit runahead mode re-
duces the probability of prematurely incorrect predictions).
In other words, if too many of the loads executed during
runahead mode are INV, this is used as an indication that the
current runahead period will not generate useful prefetches,
therefore the processor is better off exiting runahead mode.
We call this the INV Load Count technique.

5.3.3. Coarse-Grain Uselessness Prediction Via Sam-
pling. The previous two approaches (RCST and INV Load
Count) aim to predict the usefulness of a runahead period
in a fine-grain fashion. Each possible runahead period is
predicted as useful or useless. In some benchmarks, espe-
cially in bzip2 and mcf, we find that usefulness of runa-
head periods exhibits more coarse-grain, phase-like behav-
ior. Runahead execution tends to consistently generate or
not generate L2 load misses in a large number of consecu-
tive periods. This behavior is due to: (1) the phase behavior
in benchmarks [4], where some phases show high memory-
level parallelism and others do not, (2) the clustering of L2
misses [2].

To capture the usefulness (or uselessness) of runahead
execution over a large number of periods, we propose the
use of sampling-based prediction. In this mechanism, the
processor periodically monitors the total number of L2 load
misses generated during N consecutive runahead periods. If
this number is less than a threshold T, the processor does not
enter runahead mode for the next M cases where an L2-miss
load is at the head of the instruction window. Otherwise, the
processor enters runahead mode for the next N periods and
monitors the number of misses generated in those periods.
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Figure 8. Increase in executed instructions and IPC after eliminating useless runahead periods.

This mechanism uses the number of misses generated in the
previous N runahead periods as a predictor for the useful-
ness of the next M runahead periods. In our simulations,
we set N to 100, T to 25, and M to 1000. We did not tune
the values of these parameters. It is possible to vary the val-
ues of the parameters dynamically to increase the efficiency
even more, but a detailed study of parameter tuning or phase
detection is out of the scope of this paper.

Figure 8 shows the effect of applying the three useless-
ness prediction techniques individually and together on the
increase in executed instructions and IPC. The RCST tech-
nique increases the efficiency in many INT and FP bench-
marks. In contrast, the INV Load Count technique increases
the efficiency significantly in only one INT benchmark,
mcf. In many other benchmarks, load instructions are usu-
ally not dependent on other loads and therefore the INV
Load Count technique does not affect these benchmarks.
We expect the INV Load Count technique to work better in
workloads with significant amount of pointer-chasing code,
such as database workloads. The Sampling technique re-
sults in significant reductions in executed instructions in es-
pecially bzip2 and parser, two benchmarks where runahead
is very inefficient. All three techniques together increase
the efficiency more than each individual technique, imply-
ing that the techniques identify different useless runahead
periods. On average, all techniques together reduce the in-
crease in executed instructions from 45.6% to 27.1%, while
reducing the IPC increase from 37.6% to 34.2%.

5.3.4. Compile-Time Techniques to Eliminate Useless
Runahead Periods Caused by a Static Load. Some static
load instructions rarely lead to the generation of indepen-
dent L2 cache misses when they cause entry into runahead
mode. For example, in bzip2, one load instruction causes
62,373 entries into runahead mode (57% of all runahead en-
tries), which result in only 561 L2 misses that cannot be cap-
tured by the processor’s instruction window. If the runahead
periods caused by such static loads are useless due to some
inherent reason in the program structure or behavior, these
load instructions can be designated as non-runahead loads
(loads which cannot cause entry into runahead) by the com-
piler after code analysis and/or profiling runs. This section

briefly examines improving efficiency using compile-time
profiling techniques to identify non-runahead loads.

We propose a technique in which the compiler profiles
the application program by simulating the execution of the
program on a runahead processor. During the profiling run,
the compiler keeps track of the number of runahead periods
initiated by each static load instruction and the total num-
ber of L2 misses generated in the runahead periods initiated
by each static load instruction. If the ratio of the number
of L2 misses generated divided by the number of runahead
periods initiated is less than some threshold T for a load in-
struction, the compiler marks that load as a non-runahead
load, using a single bit which is augmented in the load in-
struction format of the ISA. At run-time, if the processor
encounters a non-runahead load as an L2-miss instruction
at the head of the instruction window, it does not initiate en-
try into runahead mode. We examined threshold values of
0.1, 0.25, and 0.5, and found that 0.25 yields the best av-
erage efficiency value. In general, a larger threshold yields
a larger reduction in the number of executed instructions
by reducing the number of runahead periods, but it also re-
duces performance because it results in the elimination of
some useful periods.

Figure 9 shows the increase in executed instructions and
IPC after using profiling by itself (second and third bars
from the left for each benchmark) and in combination with
the previously discussed three uselessness prediction tech-
niques (fourth and fifth bars from the left). When profiling
is used in combination with the other uselessness predic-
tion techniques, the processor dynamically decides whether
or not to enter runahead on a load that is not marked as
non-runahead. This figure shows that profiling by itself can
significantly increase the efficiency of a runahead processor.
Also, the input set used for profiling does not significantly
affect the results.4 However, profiling is less effective than
the combination of the dynamic techniques. Combining
profiling with the three dynamic techniques reduces the in-
crease in executed instructions from 45.6% to 25.7%, while

4In Figure 9, “same input set” means that the same input set was used
for the profiling run and the simulation run. For the “different input set”
case, we used the train input set in the profiling run.
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Figure 9. Increase in executed instructions and IPC after using profiling to eliminate useless runahead periods.
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Figure 10. Increase in executed instructions and IPC after using the proposed techniques individually and together.

reducing the IPC increase from 37.6% to 34.3%. These
results are better than what can be achieved only with the
dynamic uselessness prediction techniques, indicating that
there is room for improvement if compile-time information
is utilized in combination with dynamic information.

5.4. Combining the Efficiency Techniques

The causes of inefficiency (short, overlapping, and use-
less runahead periods) are sometimes disjoint from each
other and sometimes they are not. To eliminate all causes,
we examine the impact of combining our techniques.

Figure 10 shows the increase in executed instructions
and IPC after applying the proposed techniques to eliminate
short, overlapping, and useless runahead periods individu-
ally and together on all SPEC 2000 benchmarks. The right-
most two bars for each benchmark show the effect of us-
ing the efficiency-increasing techniques together, with the
rightmost bar including the profiling technique. Average
increase in number of instructions is minimized when all
techniques are applied together rather than when each tech-
nique is applied in isolation. This is partly because differ-
ent benchmarks benefit from different efficiency-increasing
techniques and partly because different techniques some-
times eliminate disjoint causes of inefficiency. When all
techniques other than profiling are applied, the increase in
executed instructions is reduced from 26.5% to 7.3% (6.7%
with profiling), whereas the IPC improvement is only re-
duced from 22.6% to 20.0% (20.1% with profiling).

6. Performance Optimizations for Efficient
Runahead Execution

Techniques we have considered so far focused on in-
creasing the efficiency of runahead execution by reducing
the number of extra instructions executed, without signif-
icantly reducing the performance improvement. Another
way to increase efficiency, which is perhaps harder to ac-
complish, is to increase the performance improvement with-
out significantly increasing or while reducing the number
of executed instructions. As the performance improve-
ment of runahead execution is mainly due to the useful L2
misses prefetched during runahead mode [14, 2], it can be
increased with optimizations that lead to the discovery of
more L2 misses during runahead mode. This section exam-
ines optimizations that have the potential to increase effi-
ciency by increasing performance. The three techniques we
examine are: (1) turning off the floating point unit during
runahead mode, (2) early wake-up of INV instructions, and
(3) optimization of the hardware prefetcher update policy
during runahead mode.

6.1. Turning Off the Floating Point Unit

FP operate instructions do not contribute to the address
computation of load instructions. As runahead execution
targets the pre-computation of load addresses, FP operate
instructions do not need to be executed during runahead
mode. Not executing the FP instructions during runahead

8



mode has two advantages. First, it enables the turning off
of the FP unit, including the FP physical register file, dur-
ing runahead mode, which results in dynamic and static
energy savings. Second, it enables the processor to make
further progress in the instruction stream during runahead
mode, since FP instructions can be dropped before execu-
tion, which spares resources for potentially more useful in-
structions.5 On the other hand, turning off the FP unit dur-
ing runahead mode has one disadvantage that can reduce
performance. If a control-flow instruction that depends on
the result of an FP instruction is mispredicted during runa-
head mode, the processor would have no way of recovering
from that misprediction if the FP unit is turned off, since the
source operand of the branch would not be computed. This
case happens rarely in the benchmarks we examined.

Turning off the FP unit may increase the number of in-
structions executed by a runahead processor, since it allows
more instructions to be executed during a runahead period
by enabling the processor to make further progress in the
instruction stream. On the other hand, this optimization re-
duces the number of FP instructions executed during runa-
head mode, which may increase efficiency.

To examine the performance and efficiency impact of
turning off the FP unit during runahead mode, we simulate
a processor that does not execute the operate and control-
flow instructions that source FP registers during runahead
mode. An operate or control-flow instruction that sources
an FP register and that either has no destination register or
has an FP destination register is dropped after being de-
coded.6 With these optimizations, FP instructions do not
occupy any processor resources in runahead mode after they
are decoded. Note that FP loads and stores, whose ad-
dresses are generated using INT registers, are executed and
are treated as prefetch instructions. Their execution is ac-
complished in the load/store unit, just like in traditional out-
of-order processors. The impact of turning off the FP unit in
runahead mode on performance and efficiency is evaluated
in the next section.

6.2. Early Wake-up of INV Instructions

If one source operand of an instruction is INV, that in-
struction will produce an INV result. Therefore, the instruc-
tion can be scheduled right away once any source operand
is known to be INV, regardless of the readiness of its other
source operands. Previous proposals of runahead execution
did not take advantage of this property. In [13], an instruc-
tion waits until all its source operands become ready before
being scheduled, even if the first-arriving source operand

5In fact, FP instructions can be dropped immediately after fetch during
runahead mode, if extra decode information is stored in the instruction
cache indicating whether or not an instruction is an FP instruction.

6An FTOI instruction which moves the value in an FP register to an
INT register is not dropped. It is immediately made ready to be scheduled,
once it is placed into the instruction window. After it is scheduled, it marks
its destination register as INV and it is considered to be an INV instruction.

is INV. Alternatively, a runahead processor can keep track
of the INV status of each source operand of an instruc-
tion in the scheduler and wake up the instruction when any
of its source operands becomes INV. We call this scheme
early INV wake-up. This optimization has the potential to
improve performance, because an INV instruction can be
scheduled before its other source operands become ready.
Early wake-up and scheduling will result in the early re-
moval of the INV instruction from the scheduler. Hence,
scheduler entries will be spared for valid instructions that
can potentially generate prefetches. A disadvantage of this
scheme is that it increases the number of executed instruc-
tions, which may result in a degradation in efficiency, if the
performance improvement is not sufficient.

In previous proposals of runahead execution, INV bits
were only present in the physical register file. In contrast,
early INV wake-up requires INV bits to be present in the
wake-up logic, which is possibly on the critical path of the
processor. The wake-up logic is extended with one more
gate that takes the INV bit into account. Although we eval-
uate early INV wake-up as an optimization, whether or not
it is worthwhile to implement in a runahead processor needs
to be determined after critical path analysis, which depends
on the implementation of the processor.

Figure 11 shows the increase in executed instructions and
IPC over the baseline processor when we apply the FP turn-
off and early INV wake-up optimizations individually and
together to the runahead processor. Turning off the FP unit
increases the average IPC improvement of the runahead pro-
cessor from 22.6% to 24%. Early INV wakeup increases
the IPC improvement of the runahead processor to 23.4%.
Turning off the FP unit reduces the increase in executed in-
structions from 26.5% to 25.5%, on average. Both of the
optimizations are more effective on the FP benchmarks. In-
teger benchmarks do not have many FP instructions, there-
fore turning off the FP unit does not help their performance.
Early INV wake-up helps benchmarks where at least one
other source operand of an instruction is produced later than
the first INV source operand. FP benchmarks show this
characteristic more than the integer benchmarks since they
have more frequent data cache misses and long-latency FP
instructions. Data cache misses and FP instructions are fre-
quently the causes of the late-produced sources. Perform-
ing both optimizations together adds little gain to the per-
formance improvement obtained by only turning off the FP
unit. This is because turning off the FP unit reduces the la-
tency with which late-arriving operands of an instruction are
produced and therefore reduces the opportunities for early
INV wake-up. These results suggest that turning off the FP
unit during runahead mode is a valuable optimization that
both increases performance and saves energy in a runahead
processor. In contrast, early INV wake-up is not worth-
while to implement since its performance benefit is more
efficiently captured by turning off the FP unit and its imple-
mentation increases the complexity of the scheduling logic.
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Figure 11. Increase in executed instructions and IPC after turning off the FP unit and using early INV wake-up.
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Figure 12. Increase in executed instructions and IPC based on prefetcher training policy during runahead mode.

6.3. Optimizing the Prefetcher Update Policy

One of the potential benefits of runahead execution is
that the prefetcher can be updated during runahead mode.
If the updates are accurate, the prefetcher can generate
prefetches earlier than it would in the baseline proces-
sor. This can improve the timeliness of the accurate
prefetches and hence improve performance. Update of
the prefetcher during runahead mode may also create new
prefetch streams, which can result in performance improve-
ment. On the other hand, if the prefetches generated by
updates during runahead mode are not accurate, they will
waste memory bandwidth and may cause cache pollution.
We experiment with three different policies to determine the
impact of prefetcher update policy on the performance and
efficiency of a runahead processor.

Our baseline runahead implementation assumes no
change to the prefetcher hardware. Just like in normal
mode, L2 accesses during runahead mode train the existing
streams and L2 misses during runahead mode create new
streams (train and create policy). We also evaluate a policy
where the prefetcher is turned off during runahead mode;
i.e., runahead L2 accesses do not train the stream buffers
and runahead L2 misses do not create new streams (no train,
no create policy). The last policy we examine allows the
training of existing streams, but disables the creation of new
streams during runahead mode (only train policy).

Figure 12 shows the increase in executed instructions and

IPC over the baseline processor with the three update poli-
cies. On average, the only train policy performs best with
a 25% IPC improvement while also resulting in the small-
est (24.7%) increase in executed instructions. Hence, the
only train policy increases both the efficiency and the per-
formance of the runahead processor. This suggests that cre-
ation of new streams during runahead mode is detrimental
for performance and efficiency. In art and ammp, creating
new streams during runahead mode reduces performance
compared to only training the existing streams, due to the
low accuracy of the prefetcher in these two benchmarks. For
art and ammp, if new streams are created during runahead
mode, they usually generate useless prefetches which cause
cache pollution and resource contention with the more ac-
curate runahead memory requests. Cache pollution caused
by the new streams results in more L2 misses during normal
mode (hence, more entries into runahead mode), which do
not exist with the only train policy. That is why the increase
in executed instructions is smaller with the only train policy.

The no train, no create policy reduces the performance
improvement of runahead on applu, equake, facerec, lucas,
mgrid, and swim significantly. It also increases the num-
ber of instructions executed in these benchmarks, because
it increases the number of L2 cache misses, which results
in increased number of entries into runahead mode that are
not very beneficial. In these benchmarks, the main benefit
of useful runahead execution periods comes from increasing
the timeliness of the prefetches generated by the hardware
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Figure 13. Increase in executed instructions and IPC after all efficiency and performance optimizations.

prefetcher. If runahead mode does not update the prefetcher,
it results in little benefit and pipeline flushes at the end of
these useless runahead periods reduce the IPC significantly.

7. Putting It All Together

We examine the overall effect of the efficiency and per-
formance enhancement techniques proposed in Sections 5
and 6. We consider the following efficiency and perfor-
mance optimizations together: static threshold 400 (Sec-
tion 5.1), full threshold (Section 5.2), RCST, INV Load
Count, and Sampling (Section 5.3), turning off the FP unit
(Section 6.1), and the only train policy (Section 6.3). We
also evaluate the impact of using profiling (Section 5.3) in
addition to these dynamic techniques.

Figure 13 shows the increase in executed instructions and
IPC over the baseline processor. Applying the proposed
techniques significantly reduces the average increase in ex-
ecuted instructions in a runahead processor, from 26.5% to
6.7% (6.2% with profiling). The average IPC increase of a
runahead processor which uses the proposed techniques is
reduced slightly from 22.6% to 22.0% (22.1% with profil-
ing). Hence, a runahead processor employing the proposed
techniques is much more efficient than a traditional runa-
head processor, but it still increases performance almost as
much as a traditional runahead processor does.

7.1. Effect of Main Memory Latency

We examine the effectiveness of using the proposed dy-
namic techniques with different memory latencies. The left
graph in Figure 14 shows the increase in IPC over the base-
line processor if runahead execution is employed with or
without all the dynamic techniques. The data shown are av-
eraged over INT and FP benchmarks. The right graph in
Figure 14 shows the increase in executed instructions. We
used a static threshold of 50, 200, 400, 650, and 850 cycles
for main memory latencies of 100, 300, 500, 700, and 900
cycles respectively, in order to eliminate short runahead pe-
riods. Other parameters used in the techniques are the same
as described in the previous sections. As memory latency
increases, both the increase in IPC and the increase in exe-
cuted instructions due to runahead execution increase. For

almost all memory latencies, employing the proposed dy-
namic techniques increases the average IPC improvement
on the FP benchmarks while only slightly reducing the IPC
improvement on the INT benchmarks. For all memory la-
tencies, employing the proposed dynamic techniques sig-
nificantly reduces the increase in executed instructions. We
conclude that the proposed techniques are effective for a
wide range of memory latencies, even without tuning the
parameters used in the techniques.
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Figure 14. Increase in IPC and executed instructions with and

without the proposed techniques (no profiling).

8. Related Work

Several previous papers evaluated the use of runahead
execution for improving the latency tolerance of micropro-
cessors. None of the previous work we are aware of ad-
dressed the efficiency issues in runahead execution.

Dundas and Mudge [5] first proposed runahead execu-
tion as a means to improve the performance of an in-order
processor. They described the implementation details on an
in-order processor.

Mutlu et al. [13] proposed runahead execution as a means
to increase the main memory latency tolerance of an out-of-
order processor. They provided the implementation details
on an out-of-order processor and evaluated some perfor-
mance enhancements such as the “runahead cache.” A few
tradeoffs in runahead entry/exit policies and branch predic-
tor update policy during runahead were mentioned. Our pa-
per examines in detail the tradeoff between the performance
improvement and the number of extra instructions executed
in runahead execution.

11



Mutlu et al. [14] also found that the major benefit of
runahead execution is the prefetching of independent L2
data misses in parallel with the runahead-causing L2 miss.
We make use of this observation and utilize the number of
L2 misses generated in runahead mode as a predictor for the
usefulness of runahead execution.

Chou et al. [2] examined runahead execution as a tech-
nique to enhance memory-level parallelism. They demon-
strated that runahead execution is very effective in improv-
ing memory-level parallelism, because it prevents the in-
struction and scheduling windows, along with serializing
instructions from being bottlenecks. Our paper shows that
runahead execution can be made even more effective with
simple optimizations.

Iacobovici et al. [8] evaluated the prefetch accuracy and
coverage of runahead execution. They found that runa-
head execution interacts positively with their multi-stride
hardware data prefetcher. Positive interaction of runahead
execution and stream-based data prefetchers was also re-
ported in [13]. Neither of these papers analyzed the effect of
prefetcher update policy on the performance of a runahead
processor. We show that the positive interaction between
runahead and prefetchers can be increased by optimizing
the prefetcher update policy during runahead mode.

Manne et al. [11] proposed pipeline gating to reduce the
extra work performed in the processor due to branch mispre-
dictions. Their scheme gates the pipeline stages if the num-
ber of low-confidence branches fetched exceeds a threshold.
Our proposals have the same goal with Manne et al.’s, i.e.,
to reduce the speculatively executed instructions in order to
reduce the energy consumption of the processor while re-
taining the performance benefit of speculation. However,
the kind of speculation we target, runahead execution, is
different from and orthogonal to branch prediction.

The efficiency of runahead execution can potentially be
increased by eliminating the re-execution of instructions via
reuse [12]. However, even an ideal reuse mechanism does
not significantly improve performance [12] and it likely has
significant hardware cost and complexity, which may offset
the energy reduction due to improved efficiency.

9. Conclusion

This paper proposes simple techniques to increase the
efficiency of a runahead processor while retaining almost
all of its performance benefit. First, we show that a runa-
head processor executes significantly more instructions than
an out-of-order processor, sometimes without providing any
performance benefit. Hence, runahead execution is not effi-
cient for some benchmarks. We identify three causes of in-
efficiency in a runahead processor: short, overlapping, and
useless runahead periods. We propose simple techniques
that reduce these causes of inefficiency without significantly
reducing performance.

In an attempt to increase efficiency by increasing per-
formance and reducing or not significantly increasing the

number of executed instructions, this paper examines sev-
eral performance optimizations that can be employed dur-
ing runahead execution. We show that turning off the FP
unit is a simple optimization that increases the performance
of a runahead processor, while reducing the number of exe-
cuted instructions and saving energy during runahead mode.
We also show that optimizing the prefetcher update policy
during runahead mode significantly increases both perfor-
mance and efficiency.

The combination of all the effective techniques proposed
in this paper reduces the increase in the number of instruc-
tions executed due to runahead execution from 26.5% to
6.2%, on average, without significantly affecting the perfor-
mance improvement provided by runahead execution. We
believe many of our techniques are applicable to other meth-
ods of speculative pre-execution, e.g. [1, 3]. Future work
includes the extension of our techniques to other forms of
pre-execution.
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