A Lightweight Transactional Design
in Flash-based SSDs
to Support Flexible Transactions

LightTx:

Youyou Lu?, Jiwu Shu?, Jia Guo?,
Shuai Lit, Onur Mutlu?

ITsinghua University
’Carnegie Mellon University

Carnegie Mellon

Executive Summary

Problem: Flash-based SSDs support transactions naturally
(with out-of-place updates) but inefficiently:

— Only a limited set of isolation levels are supported (inflexible)
— ldentifying transaction status is costly (heavyweight)

Goal: a lightweight design to support flexible transactions

Observations and Key ldeas:

— Simultaneous updates can be written to different physical
pages, and the FTL mapping table determines the ordering

=> (Flexibility) make commit protocol page-independent

— Transactions have birth and death, and the near-logged
update way enables efficient tracking

=> (Lightweight) track recently updated flash blocks, and
retire the dead transactions

Results: up to 20.6% performance improvement, stable GC
overhead, fast recovery with negligible persistence overhead

2

SSD Basics

FTL (Flash Translation Layer)
 Address mapping, garbage collection, wear leveling
Out-of-place Update (address mapping)
* Pages are updated to new physical pages instead of overwriting
original pages
Internal Parallelism
* New pages are allocated from different pkgs/planes

Page metadata (OOB): (4096 + 224)Bytes

A
TN \J
Flash Flash N /7 N YN YN
Memory Memory
Pkg #0 Pkg #1
o ~ o ~
(0] (0] (0] (0]
ot || HIW i $ EIIE|Il&] 8
» Inter o o o o
Interconnect
face v v
Flash Flash NN I NG N
Memory Memory . i
Pkg #2 Pkg #3 Die 0 Die 1
Flash Memory Pk
-/ L)t ry Fkg

(Ordering in mapping table) Only when the mapping
table is updated, the write is visible to the external

Two Observations

* Simultaneous updates and FTL ordering

(Out-of-place update) pages for the same LBA can be
updated simultaneously

 Near-logged update way

i

Pages are allocated from blocks over different parallel

units

Pages are sequentially allocated from each block A

R

H/W
Inter
face

Host
g
Interconnect

Flash
Memory
Pkg #1

*

\/

Flash
Memory
Pkg #3

Block

\/

Plane 0
Plane 1
Plane 0

N N I N

Die 0 Die 1

Flash Memory Pkg

Outline

Executive Summary

Background

* Traditional Software Transactions
* Existing Hardware Transactions
LightTx Design

Evaluation

Conclusions

Traditional S/W Transaction

* Transaction: Atomicity and Durability

e Software Transaction
— Duplicate writes
— Synchronization for ordering Logical View

Logical View

- Mapping Table

HDD SSD ’

We have both old and new versions in the SSD
(out-of-place update).

Why shall we write the log?
Why not support transactions inside the SSD?

Existing H/W Approaches
e Atomic-Write [HPCA'11]
— Log-structured FTL
— Commit protocol: Tag the last page “1”, while the others “0”
— Limited Parallelism: one tx at a time
— High mapping persistence overhead: persistence on each commit

e SCC/BPCC (Cyclic commit protocols) [OSDI’08]

— Commit Protocol: Link all flash pages in a cyclic list by keeping
pointers in page metadata

— High overhead in differentiate broken cyclic lists for partial erased
committed txs and aborted txs

— SCC forces aborted pages erased before writing the new one

— BPCC delays the erase of pages to its previous aborted pages
are erased

— Limited Parallelism: txs without overlapped accesses are allowed

[HPCA’11] Beyond block i/o: Rethinking traditional storage primitives g
[OSDI’08] Transactional flash

Problems:

* Tx support is inflexible (limited parallelism)
— Cannot meet the flexible demands from software
— Cannot fully exploit the internal parallelism of SSDs

* Tx state tracking causes high overhead in the device

Our Goal:
A lightweight design
to support flexible transactions

Outline

Executive Summary
Background

LightTx Design

* Design Overview

* Page Independent Commit Protocol

e Zone-based Transaction State Tracking
Evaluation

Conclusions

10

Goal

A lightweight design
to support flexible transactions

Flexible

e Page-independent commit protocol: support
simultaneous updates, to enable flexible isolation
level choices in the system

Lightweight

* Zone-based transaction state tracking scheme: track
only blocks that have live txs and retire the dead

ones, to reduce lower the cost

Page-independent Commit Protocol

* Observations: Page
— Simultaneous Updates A B C D E ,
(Out-of-place update)
— Version order (FTL 1
mapping table)
. 2
* How to support this?
— Extend the storage 3
interface v .
Version

— Make commit protocol nymber
page-independent

Design Overview

Applications

Database Systems

File Systems

A

:

FTL Mapping Table

Active TxTable

Read/Write
Cache

Commit | | Recovery || Garbage Wear Free Blocks and
Logic Logic Collection | | Levelling Zone Mgmt.

— e . o — — — — — — — — — —— — —— —— — — — — — — — — — — — — — — — —)

Data Area

Mapping
Table

FTL

Flash
Media

e Transaction
Primitive
— BEGIN(7xID)

COMMIT(TxID

)
— ABORT(7xID)

— WRITE(7xID,
LBA, len ...)

Page-independent Commit Protocol

LPN TxID TxCnt TxVer ECC

* Transactional metadata: | e
<TxID, TxCnt, TxVer> Page
— TxID A B C D E
— TxCnt: (00...0N) 10 10
— TxVer: commit sequence 1 L [][][]
 Keepitinthe page 5
metadata of each flash <
page 3
Vervsion T

number

/one-based Transaction State Tracking

e Transaction Lifetime

BIFGIN COMMIT/ABORT CHECKPOINT ERASED
| | | |
- Active - Completed >
- Live »<Dead >

— Retire the dead: write back the mapping table, and
remove the dead from tx state maintenance

Can we write back the mapping back for each commit?
- Ordering cost (waiting for mapping table persistence)

- Mapping persistent is not atomic

* Writes appended in the free flash blocks
— Track the recently updated flash blocks

* Block Zones
— Free block: all pages are free
— Available block: pages are available for allocation

— Unavailable block: all pages have been written to but
some pages belong to (1) a live tx, or (2) a dead tx but
has at least one page in some available block

— Checkpointed block: all pages have been written to
and all pages belong to dead txs

* Respectively, we have Free, Available,
Unavailable and Checkpointed Zones.

* Checkpoint

— Periodically write back the mapping table (making the txs
dead)

— And, sliding the zones (available + unavailable)

* Zone Sliding

— Check all blocks in available and unavailable zones

* Move the block to the checkpointed zone if the block is
checkpointed

* Move the block to the unavailable zone if the block is unavailable
— Pre-allocate free blocks to the available zone

— Garbage collection is only performed on the checkpointed
zone

(1) Available Zone Updating

™20 40| 61| 62
455 T 70 | 23 | a1
133 50 | 51

Tx4, 0

x4, 0

TX5, 0
Tx5, 0

(2) Zone Sliding

Tx7

31120 [40 [61 | 62
X422 17023 4173
|£I 55 | 5o | oq | Abort Tx5

6-3 | 80
™8| ™77 [72 | 90
DI 52 [o1

h\

(3) Zone Sliding

™7 ™63 | 80
™8| ™77 [72 | 90
DI 52 [o1

4-2

4-3

™10 [20| 61 | 62
52 | 70 | 23 | 41 | 73
|
33 | 50 | 51 Abort Tx5

) .0 1.0}

o]

Tx4

‘ Tx5

‘ Tx6
(

)\ /

(4) System Failure -
63 | 80
Tx8
31 [50 [a0 | 61 | 62 1 7.2 172 T 90
22 [70 [23 [41 [73 DO | M55 91 | 92
|
3 <\ DA Te1 (110111
a/ N
\

x4
‘ Tx5
‘ Tx6

4-2 4

Recovery ™7 | 5T
 Scan the available ™8| =157 155
z0Nne Tx9

9-1 9-2 5-2

* Scan the unavailable ™10 | o=

zone

DA e 110 [111
~

../

* Recovery

— Scan the available zone
* If TXCnt matches, completed tx
* |f not, add the tx to the pending list

— Scan the unavailable zone

* |f TxID in the pending list, check TxCnt again. If TxCnt
matches, completed tx

* |f txID not in the pending list, discard it
 |f TxCnt still doesn’t match, uncompleted tx

— Replay with the sequence of TxVer

23

Outline

Executive Summary
Background

LightTx Design
Evaluation

Conclusions

Experimental Setup

e SSD simulator

— SSD add-on from
Microsoft on DiskSim

— Parameters from Samsung
K9FS8GOS8UXM NAND flash
* Trace

— TPC-C benchmark: DBT2
on PostgreSQL 8.4.10

Parameter

Default Value

Flash page size

Pages per block

Planes per package
Packages

SSD size

Garbage collection low-
er water mark

Page read latency

Page write latency
Block erase latency

1KB
64

8

8
32GB

u(f,/

2 /0

0.025ms
0.200ms
1.5ms

Flexibility

I Strict
I No-Page-Conflict
I Scrializable

700

— 600 -+

XS/s

= 500 -

N

(@]

o
|

w

o

o
]

200

100

Transaction Throughpu

Atomic-Write SCC BPCC LightTx
Transaction Protocol

(1) For a given isolation level, LightTx provides as good or better
tx throughput than other protocols.

(2) In LightTx, no-page-conflict and serialization isolation
improve throughput by 19.6% and 20.6% over strict isolation.

26

Garbage Collection Cost

B A bortR atio (0%)
600 ~ I Abort R atio (10%)
I AbortRatio (20%)
I Abort R atio (50%)

Transaction Throughput (txs/s)

Atomic-W rite SCC BPCC LightTx
Transaction Protocol

Normalized Garbage Collection Cost

45 -
40 -
35 -
30 -
25 1
20 1
15 -

10 -

B /A bortRatio (0%)
B AbortRatio (10%)
B /A bortRatio (20%)
B Abort Ratio (50%)

Atomic-W rite SCC BPCC LightTx
Transaction Protocol

(1) LightTx significantly outperforms SCC/BPCC when abort ratio is
not zero.
(2)Garbage collection overhead in SCC/BPCC goes extremely high
when abort ratio goes up.

Recovery Time
and Persistence Overhead

8_
7 ° ° ® °® °®
:g 6 - —&— Atomic-Write
5030;: —e8—SCC/BPCC
o] —A— LightTx
< 0.25 4
()]
£ 0.20-
— |
Z 0.15
g] e = u
© 0.10 A
(@]
prt |
e 0.05 A
0.00 T T T T T T T T
4AM 16M 64M 256M 1G

Size of the Available Zone (byte)

Mapping Persistence Overhead (%)

5 S

4 4

3 4

—=&— Atomic-Write
—e—SCC/BPCC
—A— LightT x

e L

T T T T T T T T T
aM 16M 64M 256 M 1G
Size of the Available Zone (byte)

LightTx achieves fast recovery
with low mapping persistence overhead.

28

Outline

Executive Summary
Background

LightTx Design
Evaluation
Conclusions

29

Conclusion

Problem: Flash-based SSDs support transactions naturally
(with out-of-place updates) but inefficiently:

— Only a limited set of isolation levels are supported (inflexible)
— ldentifying transaction status is costly (heavyweight)

Goal: a lightweight design to support flexible transactions

Observations and Key ldeas:

— Simultaneous updates can be written to different physical
pages, and the FTL mapping table determines the ordering

=> (Flexibility) make commit protocol page-independent

— Transactions have birth and death, and the near-logged
update way enables efficient tracking

=> (Lightweight) track recently updated flash blocks, and
retire the dead transactions

Results: up to 20.6% performance improvement, stable GC
overhead, fast recovery with negligible persistence overhead

30

Thanks

A Lightweight Transactional Design
in Flash-based SSDs
to Support Flexible Transactions

LightTx:

Youyou Lu?, Jiwu Shul, Jia Guo?,
Shuai Lit, Onur Mutlu?

ITsinghua University
’Carnegie Mellon University

Carnegie Mellon

31

Backup Slides

Existing Approaches (1)

+ No logging, no commit record

e Atomic Writes

Flag bit

Llog 34 [5(6 | 78

— Log-structured FTL
— Transaction state: <00...1>

(1) Before Atomic-Write

A1]1[1[1]1

1]&

LY

' ~-Append Point

4011 1213 1415

PBA

Mapping LBA -> PBA
L 46 8 |

Incoming Atomic-
Write Group

.Beginning/MiddIe of an Atomic-Write
.Last block of an Atomic-Write

+ No tx state maintenance cost
- Poor parallelism

- Mapping persistence overhead

(2) During Atomic-Write
Append Point

TTITI]I]1]1 g
Log[37456 7]8

10 11 12 13 14 15 16 17

Incoming Atomic-
Write Group

Mapping LBA -> PBA
L4 6 8 |

y 4 i

Free blocks

.Invalid blocks

(3) After Atomic-Write

Log PR T T

Append Point

110 11 1213 14 15 16 17.18

Mapping LBA -> PBA
[46 8]

5 7

[HPCA’11] Beyond block i/o: Rethinking traditional storage primitives

Write Group

33

Existing Approaches (2)

Page
* SCC/BPCC (Cyclic A B C D E
commit
protocol) 1
— Use pointers in —
the page 2
metadata to put — —
all pagesin a 3
cycle for each tx —
[OSDI’08] Transactional flash 4
Version

number 34

* SCC

— Block erase
forced for
aborted pages

- Low garbage

collection efficiency:

lots of data moves
due to forced block
erase

A

Version
number

* BPCC

— SRS: Straddle
Responsibility Set

— Erasable only after

SRS is empty

- Complex and costly
SRS updates

- Low garbage
collection efficiency:
wait until SRS is empty

v

Version
number

A

7 TY‘
—

A

SRS(D3) = {C2, D2}
SRS(E3) = {D2}
SRS(D4) = {C2, D2, D3}

36

/AtomicWrites \

+ No logging, no commit
record

+ No tx state
maintenance overhead

- Poor parallelism

- Mapping persistence

\%erhead

Problems:

/ SCC/BPCC \

+ No logging, no commit
record

+ Improved parallelism
- Limited parallelism

- High tx state

@intenance overhead/

* Tx support is inflexible (limited parallelism)
— Cannot meet the flexible demands from software
— Cannot fully exploit the internal parallelism of SSDs
e Tx state tracking causes high overhead in the device

A lightweight design
to support flexible transactions

