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Executive Summary

Problem: Flash-based SSDs support transactions naturally
(with out-of-place updates) but inefficiently:

— Only a limited set of isolation levels are supported (inflexible)
— ldentifying transaction status is costly (heavyweight)

Goal: a lightweight design to support flexible transactions

Observations and Key ldeas:

— Simultaneous updates can be written to different physical
pages, and the FTL mapping table determines the ordering

=> (Flexibility) make commit protocol page-independent

— Transactions have birth and death, and the near-logged
update way enables efficient tracking

=> (Lightweight) track recently updated flash blocks, and
retire the dead transactions

Results: up to 20.6% performance improvement, stable GC
overhead, fast recovery with negligible persistence overhead
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SSD Basics

FTL (Flash Translation Layer)
 Address mapping, garbage collection, wear leveling
Out-of-place Update (address mapping)
* Pages are updated to new physical pages instead of overwriting
original pages
Internal Parallelism
* New pages are allocated from different pkgs/planes

Page metadata (OOB): (4096 + 224)Bytes
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(Ordering in mapping table) Only when the mapping
table is updated, the write is visible to the external

Two Observations

* Simultaneous updates and FTL ordering

(Out-of-place update) pages for the same LBA can be
updated simultaneously

 Near-logged update way
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Pages are allocated from blocks over different parallel

units
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Traditional S/W Transaction

* Transaction: Atomicity and Durability

e Software Transaction
— Duplicate writes
— Synchronization for ordering Logical View

Logical View

- Mapping Table

HDD SSD ’



We have both old and new versions in the SSD
(out-of-place update).

Why shall we write the log?
Why not support transactions inside the SSD?



Existing H/W Approaches
e Atomic-Write [HPCA'11]
— Log-structured FTL
— Commit protocol: Tag the last page “1”, while the others “0”
— Limited Parallelism: one tx at a time
— High mapping persistence overhead: persistence on each commit

e SCC/BPCC (Cyclic commit protocols) [OSDI’08]

— Commit Protocol: Link all flash pages in a cyclic list by keeping
pointers in page metadata

— High overhead in differentiate broken cyclic lists for partial erased
committed txs and aborted txs

— SCC forces aborted pages erased before writing the new one

— BPCC delays the erase of pages to its previous aborted pages
are erased

— Limited Parallelism: txs without overlapped accesses are allowed

[HPCA’11] Beyond block i/o: Rethinking traditional storage primitives g
[OSDI’08] Transactional flash



Problems:

* Tx support is inflexible (limited parallelism)
— Cannot meet the flexible demands from software
— Cannot fully exploit the internal parallelism of SSDs

* Tx state tracking causes high overhead in the device

Our Goal:
A lightweight design
to support flexible transactions
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Goal

A lightweight design
to support flexible transactions

Flexible

e Page-independent commit protocol: support
simultaneous updates, to enable flexible isolation
level choices in the system

Lightweight

* Zone-based transaction state tracking scheme: track
only blocks that have live txs and retire the dead

ones, to reduce lower the cost



Page-independent Commit Protocol

* Observations: Page
— Simultaneous Updates A B C D E ,
(Out-of-place update)
— Version order (FTL 1
mapping table)
. 2
* How to support this?
— Extend the storage 3
interface v .
Version

— Make commit protocol nymber
page-independent



Design Overview

Applications

Database Systems

File Systems
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e Transaction
Primitive
— BEGIN(7xID)

COMMIT(TxID

)
— ABORT(7xID)

— WRITE(7xID,
LBA, len ...)



Page-independent Commit Protocol

LPN TxID TxCnt TxVer ECC

* Transactional metadata: | e
<TxID, TxCnt, TxVer> Page
— TxID A B C D E
— TxCnt: (00...0N) 10 10
— TxVer: commit sequence 1 L [ ][ ][ ]
 Keepitinthe page 5
metadata of each flash <
page 3
Vervsion T

number



/one-based Transaction State Tracking

e Transaction Lifetime

BIFGIN COMMIT/ABORT CHECKPOINT ERASED
| | | |
- Active - Completed >
- Live »<Dead >

— Retire the dead: write back the mapping table, and
remove the dead from tx state maintenance

Can we write back the mapping back for each commit?
- Ordering cost (waiting for mapping table persistence)

- Mapping persistent is not atomic

* Writes appended in the free flash blocks
— Track the recently updated flash blocks



* Block Zones
— Free block: all pages are free
— Available block: pages are available for allocation

— Unavailable block: all pages have been written to but
some pages belong to (1) a live tx, or (2) a dead tx but
has at least one page in some available block

— Checkpointed block: all pages have been written to
and all pages belong to dead txs

* Respectively, we have Free, Available,
Unavailable and Checkpointed Zones.



* Checkpoint

— Periodically write back the mapping table (making the txs
dead)

— And, sliding the zones (available + unavailable)

* Zone Sliding

— Check all blocks in available and unavailable zones

* Move the block to the checkpointed zone if the block is
checkpointed

* Move the block to the unavailable zone if the block is unavailable
— Pre-allocate free blocks to the available zone

— Garbage collection is only performed on the checkpointed
zone



(1) Available Zone Updating

™20 40| 61| 62
455 T 70 | 23 | a1
133 50 | 51

Tx4, 0

x4, 0

TX5, 0
Tx5, 0




(2) Zone Sliding
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(3) Zone Sliding
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(4) System Failure -
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* Recovery

— Scan the available zone
* If TXCnt matches, completed tx
* |f not, add the tx to the pending list

— Scan the unavailable zone

* |f TxID in the pending list, check TxCnt again. If TxCnt
matches, completed tx

* |f txID not in the pending list, discard it
 |f TxCnt still doesn’t match, uncompleted tx

— Replay with the sequence of TxVer
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Experimental Setup

e SSD simulator

— SSD add-on from
Microsoft on DiskSim

— Parameters from Samsung
K9FS8GOS8UXM NAND flash
* Trace

— TPC-C benchmark: DBT2
on PostgreSQL 8.4.10

Parameter

Default Value

Flash page size

Pages per block

Planes per package
Packages

SSD size

Garbage collection low-
er water mark

Page read latency

Page write latency
Block erase latency
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Flexibility
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Transaction Throughpu

Atomic-Write SCC BPCC LightTx
Transaction Protocol

(1) For a given isolation level, LightTx provides as good or better
tx throughput than other protocols.

(2) In LightTx, no-page-conflict and serialization isolation
improve throughput by 19.6% and 20.6% over strict isolation.
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Garbage Collection Cost

B A bortR atio (0%)
600 ~ I Abort R atio (10%)
I AbortRatio (20% )
I Abort R atio (50% )

Transaction Throughput (txs/s)

Atomic-W rite SCC BPCC LightTx
Transaction Protocol

Normalized Garbage Collection Cost
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B /A bortRatio (20%)
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Atomic-W rite SCC BPCC LightTx
Transaction Protocol

(1) LightTx significantly outperforms SCC/BPCC when abort ratio is
not zero.
(2)Garbage collection overhead in SCC/BPCC goes extremely high
when abort ratio goes up.



Recovery Time
and Persistence Overhead
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LightTx achieves fast recovery
with low mapping persistence overhead.
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Conclusion

Problem: Flash-based SSDs support transactions naturally
(with out-of-place updates) but inefficiently:

— Only a limited set of isolation levels are supported (inflexible)
— ldentifying transaction status is costly (heavyweight)

Goal: a lightweight design to support flexible transactions

Observations and Key ldeas:

— Simultaneous updates can be written to different physical
pages, and the FTL mapping table determines the ordering

=> (Flexibility) make commit protocol page-independent

— Transactions have birth and death, and the near-logged
update way enables efficient tracking

=> (Lightweight) track recently updated flash blocks, and
retire the dead transactions

Results: up to 20.6% performance improvement, stable GC
overhead, fast recovery with negligible persistence overhead
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Existing Approaches (1)

+ No logging, no commit record

e Atomic Writes

Flag bit

Llog 34 [5(6 | 78

— Log-structured FTL
— Transaction state: <00...1>

(1) Before Atomic-Write

A1]1[1[1]1

1]&

LY

' ~-Append Point

4011 1213 1415

PBA

Mapping LBA -> PBA
L 46 8 |

Incoming Atomic-
Write Group

.Beginning/MiddIe of an Atomic-Write
.Last block of an Atomic-Write

+ No tx state maintenance cost
- Poor parallelism

- Mapping persistence overhead

(2) During Atomic-Write
Append Point

TTITI]I]1]1 g
Log[ 37456 7]8

10 11 12 13 14 15 16 17

Incoming Atomic-
Write Group

Mapping LBA -> PBA
L4 6 8 |

y 4 i

Free blocks

.Invalid blocks

(3) After Atomic-Write

Log PR T T

Append Point

110 11 1213 14 15 16 17.18

Mapping LBA -> PBA
[ 46 8]

5 7

[HPCA’11] Beyond block i/o: Rethinking traditional storage primitives

Write Group
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Existing Approaches (2)

Page
* SCC/BPCC (Cyclic A B C D E
commit
protocol) 1
— Use pointers in —
the page 2
metadata to put — —
all pagesin a 3
cycle for each tx —
[OSDI’08] Transactional flash 4
Version

number 34



* SCC

— Block erase
forced for
aborted pages

- Low garbage

collection efficiency:

lots of data moves
due to forced block
erase

A

Version
number




* BPCC

— SRS: Straddle
Responsibility Set

— Erasable only after

SRS is empty

- Complex and costly
SRS updates

- Low garbage
collection efficiency:
wait until SRS is empty

v

Version
number

A

7 TY‘
—

A

SRS(D3) = {C2, D2}
SRS(E3) = {D2}
SRS(D4) = {C2, D2, D3}
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/AtomicWrites \

+ No logging, no commit
record

+ No tx state
maintenance overhead

- Poor parallelism

- Mapping persistence

\%erhead

Problems:

/ SCC/BPCC \

+ No logging, no commit
record

+ Improved parallelism
- Limited parallelism

- High tx state

@intenance overhead/

* Tx support is inflexible (limited parallelism)
— Cannot meet the flexible demands from software
— Cannot fully exploit the internal parallelism of SSDs
e Tx state tracking causes high overhead in the device

A lightweight design
to support flexible transactions



