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Abstract—Flash memory has accelerated the architectural evolution of storage systems with its unique characteristics compared to

magnetic disks. The no-overwrite property of flash memory naturally supports transactions, a commonly used mechanism in systems

to provide consistency. However, existing embedded transaction designs in flash-based Solid State Drives (SSDs) either limit the

transaction concurrency or introduce high overhead in tracking transaction states. This leads to low or unstable SSD performance.

In this paper, we propose a transactional SSD (TxSSD) architecture, LightTx, to enable better concurrency and low overhead. First,

LightTx improves transaction concurrency arbitrarily by using a page-independent commit protocol. Second, LightTx tracks the recent

updates by leveraging the near-log-structured update property of SSDs and periodically retires dead transactions to reduce the

transaction state tracking cost. Experiments show that LightTx achieves nearly the lowest overhead in garbage collection, memory

consumption and mapping persistence compared to existing embedded transaction designs. LightTx also provides up to 20.6 percent

performance improvement due to improved transaction concurrency.

Index Terms—Solid state drives, flash memory, transaction recovery, transactional SSD, atomicity, durability
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1 INTRODUCTION

FOR decades, transactions have been widely used in data-
base management systems (DBMSs), file systems, and

applications to provide the ACID (Atomicity, Consis-
tency, Isolation, Durability) properties, but usually at the
cost of implementation complexity and degraded perfor-
mance. Transaction recovery, which ensures atomicity
and durability, is a fundamental part of transaction man-
agement [1]. In transaction recovery, a write operation
keeps the previous version of its destination pages safe
before the successful update of the new version, to pro-
vide consistency in case of update failure (e.g., due to a
system crash). Write ahead logging (WAL) [2] and
shadow paging [3] are the two dominant approaches to
transaction recovery. In WAL, a write updates the new
version in the log and synchronizes it to the disk before
over-writing the old version in-place. Additional log
writes and the required synchronization make this
approach costly. In shadow paging, a write overwrites
the index pointer (the metadata to locate pages) to point
to the new version after updating the new version in a
new location (as opposed to over-writing the old version
as done in WAL). This approach causes scattering of data
over the storage space, reducing locality of read accesses,
which is undesirable for high performance.

Flash memory properties of no-overwrite and high random
I/O performance (comparatively to hard disks) favor the
shadow paging approach. A page in flash memory has to be
erased before it is written to. To hide the erase latency,
flash-based SSDs1 redirect the write to a free page by inva-
lidating the old one and using a mapping table in the FTL
(Flash Translation Layer) to remap the page. So, a page is
atomically updated in SSDs by simply updating the map-
ping entry in the FTL mapping table. Because of this sim-
plicity provided by the FTL mapping table, providing
support inside SSDs for transactions is attractive.

Recent research [4], [5], [6] proposes to support trans-
actions inside an SSD by introducing a new interface,
WriteAtomic, and providing multi-page update atomicity.
Transaction support in the SSD (i.e., embedded transac-
tion support) frees the system from high-overhead trans-
action recovery support, and thus nearly doubles system
performance due to the elimination of duplicated log
writes [4], [5]. Unfortunately, these proposals support a
limited set of isolation levels; mainly, strict isolation, which
requires all transactions to be serialized, i.e., executed one
after another. This limits transaction concurrency and
hurts the usage of the storage device for transactions for
two reasons. First, different systems make different trade-
offs between performance and consistency by allowing
different isolation levels among transactions [7]. Not sup-
porting a wide variety of isolation levels makes the sys-
tem inflexible as it does not give the software the ability
to choose the isolation level. Second, strict isolation limits
the number of concurrent requests in the SSD (as only
one transaction can execute at a time) and thus hurts
internal parallelism, i.e., simultaneous updates of pages in
different channels and planes, of the SSD. The need to
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wait for the completion of previous transactions due to
the requirement of strict isolation between transactions
causes the SSD to be underutilized.

On the other hand, when supporting transaction recov-
ery inside an SSD, it is important to keep the overhead low
(in terms of both cost and performance). Unfortunately,
flexible transaction support, transaction aborts and the need
for fast recovery lead to high overhead. First, when transac-
tions are concurrently executed to provide support for flexi-
ble transactions, determining the state of each transaction
requires page-level state tracking, which can be costly and
increases memory overhead.2 Second, transaction aborts
increase the garbage collection overhead, i.e., the time to erase
blocks and to move valid pages from the erased blocks,
because extra restrictions on garbage collection (GC) are
needed in order not to touch the pages used for the commit
protocol (as described in [4]). Third, the mapping persistence
overhead, i.e., the time taken to write the FTL mapping table
into the persistent flash device, is high if we would like fast
recovery. Fast recovery requires the FTL mapping table to
be made persistent at the commit time of each transaction,
leading to high overhead.3

Our goal in this paper is to design a transactional SSD
(TxSSD) to support flexible isolation levels in the system
with atomicity and durability guaranteed inside the SSD,
while achieving low hardware overhead (in terms of mem-
ory consumption, garbage collection and mapping persis-
tence) for tracking transactions’ states.

Observations and key ideas. We make two major changes to
the Flash Translation Layer to achieve the above goal,
resulting in what we call LightTx:

1) While the no-overwrite property of SSDs allows dif-
ferent versions of a page to be simultaneously
updated in different locations, the FTL mapping
table determines the correct order by controlling the
sequence of mapping table updates. LightTx sup-
ports arbitrary transaction concurrency by allowing
pages to be updated independently. A version of the
page update is not visible until the mapping entry in
the FTL mapping table is updated to point to the
new location. LightTx updates the FTL mapping
table at transaction commit time (instead of at the
time a write happens, as done in conventional sys-
tems) to support concurrent updates of the same
page. In addition, LightTx tags each write with a
transaction identifier (TxID) and determines the
committed/uncommitted state of transactions solely
inside each transaction, which ensures that states of
transactions are determined independently. The
commit protocol of LightTx is designed to be page-
independent, which supports concurrent transaction
execution even with updates to the same page
(Section 3.2).

2) The near-log-structured update characteristic of an SSD
makes it possible to track recent transactional writes
and retire the dead transactions with low overhead.
During page allocation, pages are allocated from each
clean block in sequential order. This enables page
updates to be performed in a log-structured manner.
But as multiple clean blocks from different parallel
units (i.e., channels) are used for allocation concur-
rently, page allocation is performed in multiple heads
and each headmaintains the log-structuredmanner of
updates. We refer to this as the near-log-structured
update property of an SSD. Leveraging this property,
LightTx tracks those blocks that are used for allocation
to track recent writes. In addition, a transaction has
birth and death. A transaction is dead when its pages
and their mapping entries are updated atomically and
made persistent. In this case, committed pages can be
accessed through the FTL mapping table while the
uncommitted pages cannot. With the consideration of
the transaction lifetime, LightTx identifies and retires
the dead transactions periodically and only tracks the
live ones using a new zone-based scheme. This is in
contrast to previous proposals where dead transac-
tions are tracked unnecessarily for a long time until
they are erased. LightTx’s new zone-based transaction
state tracking scheme enables low-overhead state identi-
fication of transactions (Section 3.3).

Contributions. To our knowledge, this is the first paper
that allows a low-cost mechanism in SSDs to support flexi-
ble isolation levels in transactions. To enable such a mecha-
nism, this paper makes the following specific contributions:

1) We decouple concurrency control and transaction
recovery in single transactions. We manage these
two properties respectively in software and hard-
ware, with an extended transactional interface to
SSDs. Doing so enables this work to support flexible
concurrency controls while leveraging SSD advan-
tages in transaction recovery.

2) We propose LightTx, which uses a novel page-inde-
pendent commit protocol, to improve transaction
concurrency by controlling the update order in the
FTL mapping table.

3) We design a new zone-based transaction state track-
ing scheme for LightTx to only track the live transac-
tions and periodically identify and retire the dead
ones. This reduces transaction state tracking cost,
making LightTx a lightweight design.

4) We evaluate LightTx using database traces in terms
of both performance and overhead (including the
overhead of garbage collection, memory consump-
tion and mapping persistence). Results show that
LightTx achieves nearly the lowest overhead while
maintaining high performance compared to existing
embedded transaction designs [4], [5].

2 BACKGROUND AND RELATED WORK

2.1 Flash-Based Solid State Drives

A flash-based SSD is composed of multiple flash packages
(chips) connected through different channels. In each chip,

2. This is because different transactions can update pages in the
same block, which is a consequence of the scattering of pages of each
transaction to different flash blocks to maximize internal SSD parallel-
ism when executing a transaction.

3. Otherwise, the whole disk should be scanned, and all pages
should be checked for recovery, which is even higher overhead than
making the FTL mapping table persistent at each transaction commit.
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there are multiple planes, and each plane has a number of
blocks.4 A block is composed of pages, and a flash page is
the read/write unit. A typical flash page size is 4 KB with
128B-page metadata, a.k.a. OOB (Out-of-Band) area, and
the block size is 256 KB [8]. In SSDs, read/write requests are
distributed to different blocks in different channels and
planes in parallel or in a pipelined fashion [9], [10], provid-
ing internal parallelism in access.

Programming of flash memory is unidirectional. For
example, a bit value of 1 can be changed to 0 (via program-
ming), but the reverse directional programming is
forbidden (due to the nature of incremental step pulse pro-
gramming, which can only inject charge but cannot remove
it from the floating gate [11], [12], [13]). An erase operation
is needed before the page can be reprogrammed. To avoid
the long latency of an erase operation before a write, the
FTL redirects the write to an already-erased page, leaving
invalid the original page the write is destined to (this page
is to be erased later during garbage collection). This prop-
erty is known as the no-overwrite property; i.e., a page is not
overwritten by a write operation. While the no-overwrite
property keeps both the old and new page versions and
makes it attractive to support transactions embedded inside
the SSD, exploiting internal parallelism requires enough
concurrent requests to be serviced. Note that concurrency is
vital in embedded transaction design to make the best use
of the internal SSD performance.

2.2 Transaction Variety and Lifetime

Transactional execution provides 1) consistent state
changes for concurrent executions and 2) recovery from
system failures. In transaction management, the concur-
rency control method provides different isolation levels
between transactions. The transaction recovery module
ensures atomicity and durability. The isolation level
determines the parallelism degree of concurrent transac-
tions—for example, strict isolation requires the serial exe-
cution of transactions. An application chooses the proper
isolation level of transactions to make tradeoffs between
performance and consistency [7]. Both traditional data-
base management systems and modern data-intensive
applications have significantly different transaction isola-
tion requirements [7]. As a result, it is important to design
SSD mechanisms that are flexible enough to enable different
isolation level choices at the system level. In this paper, we
aim to provide such flexible isolation level support.

A transaction goes through different periods in its life-
time, which we will exploit in this paper to provide light-
weight support for embedded transactions. Generally, a
transaction has four operations: BEGIN, COMMIT/ABORT,
CHECKPOINT and ERASE, as shown in Fig. 1. The BEGIN

and COMMIT/ABORT operations are used by programs to
start and complete a transaction. When a transaction is com-
mitted or aborted, its state has been determined and can be
recovered after system crash, but this requires extra transac-
tion metadata to be kept, e.g., the log data. The CHECK-
POINT operation writes data to its home location and make
the state persistent, so as to make the transactions recover-
able without keeping transaction metadata. For instance,
the CHECKPOINT operation in WAL is the in-place update
of the new-version data in a transaction. The ERASE opera-
tion is an operation that overwrites or erases the transaction
data when the data is obsolete. Therefore, a transaction is
born when it is started and dies after the checkpoint opera-
tion. The death of a transaction is different from the comple-
tion (commit/abort) of the transaction. A transaction is
alive when the transaction metadata needs to be kept before
the checkpoint. As shown in Fig. 1, we call the transactions
that have not committed or aborted active transactions, and
those that have not yet been checkpointed live transactions.
In a system that uses write-ahead logging, a transaction
completes on commit or abort, and dies after the data is
checkpointed in-place from the logs. In this paper, we will
exploit the death of transactions to reduce transaction state
tracking cost in the FTL.

2.3 Related Work

There has been significant recent research on the architec-
tural evolution of the storage system with flash memory,
including interface extensions for intelligent flash manage-
ment [4], [5], [14], [15], [16] and system optimizations to
exploit the flash memory advantages [6], [17], [18], [19],
[20]. In this section, we mainly focus on transaction support
with flash memory.

Different from atomicity support in HDDs [21], [22],
the no-overwrite property of SSDs is leveraged to effi-
ciently keep versions of data for transaction recovery.
Atomic-Write (AW) [5] is a typical protocol of this kind.
It leverages the log-based FTL and sequentially appends
the mappings of transactions to it. The last block in each
atomic group is tagged with flag ”1” while leaving
the others ”0” to determine boundaries of each group.
Atomic-Write requires strict isolation from the system:
the system should not interleave any two transactions in
the log-based FTL. Also, mapping persistence is conducted
for each transaction commit to provide durability; i.e., the
FTL mapping table is written back to the flash device
after each transaction commits. Atomic Write FTL [23]
takes a similar approach but directly appends pages in
the log-blocks sequentially. Transactional Flash File
System [24] provides transaction support for file systems
in micro-controllers in SSDs, but is designed for NOR
flash memory and does not support transactions in
DBMSs and other applications.

Recent work [19] has employed a single updating
window to track the recently allocated flash blocks for
parallel allocation while providing transaction support.
Although this approach works well for file systems in which
transactions are strictly isolated and serially executed, they
are not sufficient for DBMSs and other applications with
flexible transaction requirements, i.e., the need for different
isolation levels.

Fig. 1. Transaction lifetime.

4. In this paper, we refer to the flash block, the unit of erase opera-
tions in flash memory, simply as the block.
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TxFlash [4] and Flag Commit [15] extend atomicity to
general transactions for different applications including
DBMSs. TxFlash [4] proposes two cyclic commit protocols,
SCC and BPCC, and links all pages in each transaction in
one cyclic list by keeping pointers in the page metadata.
The existence of the cyclic list is used to determine the com-
mitted/uncommitted state of each transaction. But the
pointer-based protocol has two limitations. First, garbage
collection should be carefully performed to avoid the ambi-
guity between the aborted transactions and the partially
erased committed transactions, because neither of them has
a cyclic list. SCC forces the uncommitted pages to be
erased before updating the new version. BPCC uses a
backpointer which points to the last committed version.
Only when the uncommitted pages between the two
committed versions are erased, the page with the back-
pointer can be erased. Both of them incur extra cost on
garbage collection. Second, the dependency between ver-
sions of each page prevents concurrent execution of trans-
actions that have accesses to the same page and thus
limits the exploitation of internal parallelism. In contrast,
LightTx aims to support better transaction concurrency
and reduce transaction overhead by avoiding the pointer
dependency check and maintenance. Flag Commit [15]
tries to reduce the garbage collection overhead associated
with the transaction state tracking in SCC and BPCC, and
proposes AFC and CFC commit protocols by rewriting
the page metadata to reset the pointer. Because MLC
NAND flash does not support rewrite operations, AFC
and CFC do not apply to MLC NAND flash, which
is increasingly widespread as flash technology scales.
TxCache [25] employs byte-addressable non-volatile
memories (NVMs) as disk cache to reduce the transaction
overhead. In contrast, LightTx is designed to function in
both SLC and MLC NAND flash memory without requir-
ing byte-addressable NVMs.

MARS [26] also exports flexible interfaces to the software
from NVM-based SSDs. Since it is designed for byte-
addressable non-volatile memory, MARS uses WAL and
requires two copies for each update, one to the log and one
to its home location. In contrast, LightTx is designed for
flash memory and leverages the page-level no-overwrite
property of flash memory to support transactional writes
with only one copy.

3 LIGHTTX DESIGN

To support flexible transactions with a lightweight imple-
mentation, LightTx, our transactional SSD (TxSSD) design,
has the following design components and goals:

� Page-independent commit protocolto improve transac-
tion flexibility by allowing arbitrary transaction
concurrency.

� Zone-based transaction state tracking schemeto lower the
cost of LightTx by leveraging the near-log-structured
update characteristic of SSDs in combination with
the lifetime of transactions.

This section describes the design of LightTx, including its
transactional SSD (TxSSD) framework, the commit protocol,
the zone-based transaction state tracking scheme, and the
recovery mechanism.

3.1 TxSSD Framework

Our TxSSD framework decouples concurrency control and
transaction recovery in transaction support. The two func-
tions are separately provided in software and hardware.
Hardware transaction recovery can better leverage the no-
overwrite property of flash memory for efficient versioning
of data, while software concurrency control enables flexible
isolation levels.

TxSSD extends the FTL functions in SSDs to support
transaction recovery (i.e., atomicity and durability). As
shown in Fig. 2, in addition to the modules common to most
SSDs (i.e., the FTL mapping table, the read/write cache, gar-
bage collection, and wear leveling), TxSSD introduces three
new modules (the Active TxTable, the Commit Logic, and
the Recovery Logic) and revises the free block management
using a zone-based scheme. The Commit Logic extracts the
transaction information from the extended transactional
interface shown in Table 1 and tracks the active transactions
using the Active TxTable. The Active TxTable keeps the
mapping entry from LPN (Logical Page Number) to PPN
(Physical Page Number) for each page in active transactions
(as shown in the top half of Fig. 4). The Recovery Logic
differentiates the committed transactions from the uncom-
mitted and redoes the committed ones during recovery.

Interface design. In order to support the transaction infor-
mation exchange between the system and the device, we
add the BEGIN, COMMIT, and ABORT commands, which
are similar to the transaction primitives used in the system,
and extend the WRITE command. The BEGIN command
checks the availability of a given transaction identifier. If
the TxID is currently used, an error is returned to the sys-
tem, asking the system to allocate a new TxID. For efficiency
reasons, the BEGIN command could also be carried with the
first WRITE command, instead of being sent explicitly. On a
commit or abort operation, the system issues the COMMIT
or ABORT command to the device, requesting termination
of the transaction of a given TxID. The TxID parameter is
also attached to each write operation in the WRITE com-
mand. The TxID in each write request identifies the transac-
tion that the page belongs to. The READ command does not
need to carry the TxID parameter because isolation between
transaction read sets is provided in software, and read
requests do not affect the persistent values in storage.
Similar to past designs [4], [5], TxSSD only provides transac-
tion recovery function in the SSD for the atomicity and
durability of persistent data, and does not aim to provide
read isolation.

Fig. 2. The TxSSD framework.
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3.2 Page-Independent Commit Protocol

LightTx is designed to support arbitrary transaction concur-
rency and keep the transaction overhead low. Arbitrary
transaction concurrency is supported in LighTx by using a
page-independent commit protocol (described next), and
low overhead is achieved using a zone-based transaction
state tracking scheme discussed in Section 3.3.

Commit protocol. In the commit protocol design, LightTx
aims to minimize dependencies between different pages
and different versions of the same page. To achieve this
goal, LightTx limits the operation of commit logic within
each transaction, as each page can be identified to belong to
some transaction by storing the transaction identifier in the
page metadata, as shown in Fig. 3. Also, LightTx delays the
FTL mapping table updates until the commit/abort of each
transaction instead of performing updates on a page-by-
page basis to reduce conflicts, by introducing the Active
TxTable. Transaction versions (TxVer), as opposed to page
versions, are used to determine the update sequence of
the FTL mapping table. These allow concurrent execution of
different transactions even with overlapped updates (i.e., a
page accessed by multiple transactions).

In the example shown in Fig. 4, page A is concurrently
updated by Tx0, Tx1 and Tx3. The three versions are
updated to different flash pages (as shown in the bottom
half of Fig. 4), while their mapping entries are kept in the
Active TxTable, which keeps track of active transactions
and their updated pages (as shown in the top half of Fig. 4).
Since the Active TxTable ensures the pages it tracks are not
erased, the three versions of page A are kept in flash mem-
ory. The use of the Active TxTable allows overlapped pages
in different transactions to be updated concurrently.

The commit protocol in LightTx uses page metadata to
store transaction metadata. As shown in Fig. 3, the com-
mit protocol uses 12 bytes for transaction metadata,
including the transaction identifier, the number of pages
in the transaction (TxCnt), and the transaction version
(TxVer, the commit sequence), each of 4 bytes. TxID is
passed from the system through the interface. TxCnt and
TxVer are set to zero for all pages belonging to the trans-
action except the last-written one, where TxCnt is set to
the total number of pages in the transaction and indicates
the end of the transaction, and TxVer is set to the latest

transaction version to identify the transaction commit
sequence and to determine the transaction redo sequence
during recovery. To determine the state of a transaction,
LightTx counts the number of its pages and checks these
pages to see if there exists a page whose TxCnt equals the
page count. If so, the transaction is committed. Otherwise,
it is not committed.

In the example shown in Fig. 4, all pages store the TxID
in their page metadata, but only one page in each transac-
tion has non-zero TxCnt (TxVer is not illustrated in this
figure). In Tx0, the page at PPN 7 has the TxCnt set to 3.
Similarly, pages at PPN 5, 6, 9 have TxCnt set to the number
of pages in Tx1, Tx2 and Tx3. During recovery after a sys-
tem crash or power loss, the TxCnt is read to verify the
number of pages that are written successfully in each trans-
action. In the example, Tx0 and Tx1 are determined to be
committed, as each of them has the non-zero TxCnt equal to
the number of written pages (indicating all their updated
pages are written to persistent flash memory). In contrast,
Tx2 and Tx3 are determined to be not-committed. Tx2 is not
committed because it has no pages with non-zero TxCnt
value. Tx3 is not committed because the number of written
pages in persistent flash memory does not equal the non-
zero TxCnt value. The mismatch of non-zero TxCnt value
indicates not all pages in the transactions are written to
persistent flash memory.

Operation. LightTx operations defer the mapping
table update to the transaction commit time. Instead of
directly updating the FTL mapping table, the write oper-
ation updates the mapping entries in the Active TxTable.
If the transaction is committed, its mapping entries in the
Active TxTable are stored into the mapping table. If not,
these mapping entries are simply discarded. For transac-
tional writes, the latest updated page is cached in the
SSD DRAM to wait for the next command. If the next
command is a commit, the cached page’s TxCnt and
TxVer are set to non-zero values; if abort, the cached
page is discarded; otherwise, the cached page’s TxCnt
and TxVer are set to zero. For non-transactional writes,
the TxID is not set and the TxCnt is set to one, while the
TxVer is set to the committed version the same as trans-
actional writes.

TABLE 1
The TxSSD Transactional Interface

Operations Description

READ(addr, len. . .) read data
WRITE(addr, len, TxID. . .) write data to the transaction TxID
BEGIN(TxID) check the availability of the TxID

and start the transaction
COMMIT(TxID) commit the transaction TxID
ABORT(TxID) abort the transaction TxID

Fig. 3. Transaction metadata in the page metadata.

Fig. 4. Illustration of the page-independent commit protocol: Four trans-
actions Tx0 (A, B, C), Tx1 (A, D), Tx2 (E, F) and Tx3 (A, B, D) are exe-
cuted concurrently. (LPN: Logical Page Number, PPN: Physical Page
Number.).
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3.3 Zone-Based Transaction State Tracking Scheme

Transaction state tracking identifies the committed and
the uncommitted transactions so as to redo the committed
and undo the uncommitted during recovery to ensure
atomicity. Since pages of each transaction may be scat-
tered across many different flash blocks, state tracking
can become costly, if we would like to support flexibility
in isolation levels (which requires potentially many trans-
actions’ states to be tracked concurrently). To improve
efficiency, we use a lightweight design to reduce the
tracking overhead in two aspects. First, we track transac-
tion states by tracking the states of flash blocks instead of
flash pages. Second, we reduce the number of transac-
tions to be tracked by keeping the live transactions sepa-
rate from the dead, which is achieved by classifying flash
blocks into different zones and tracking them separately
in these zones (which we discuss next).

3.3.1 Relationship Between Transaction State,

Page State and Block State

As shown in Fig. 1, a transaction can be in one of the follow-
ing three states: active, checkpointing (i.e., live but completed)
and dead. The state of each flash page is inherited from the
transaction it belongs to. So, a flash page can also be in one
of the above mentioned three states. Conversely, the state of
a transaction can be determined by checking the states of all
pages updated by the transaction. But, it is costly to track
the state of each page because it requires the tracking meta-
data to be updated when the page is updated.

Instead of using such costly page-level tracking,
LightTx tracks the transaction state at the block-level.
LightTx tracks the states of blocks, and then identifies the
state of each page to determine the state of a transaction.
In traditional flash-based SSDs, flash blocks have three
different states: free, available and used. A free block has all
pages clean. An available block is currently used for allo-
cation. A used block has all pages written and cannot be
used for allocation before it is erased. To differentiate
the transactional states of pages, the used blocks are fur-
ther divided into unavailable and checkpointed blocks in
LightTx. All pages in a checkpointed block belong to dead
transactions. The pages in an unavailable block belong to
dead, checkpointing or active transactions. States of these
pages are further identified using the commit protocol. In
this way, the states of transactions can be determined by

tracking the states of blocks and identifying the states of
pages using the block states.

3.3.2 Block Zones and Zone Sliding

To further reduce the tracking cost, LightTx tracks different
flash blocks using different zones. A zone is a logical group
that indicates the addresses of its flash blocks.

Block zones. The observation that motivates us to use block
zones to reduce the tracking cost is the out-of-place update
property of flash-based storage. In flash-based storage, a
new write causes an out-of-place update: the data is written
to a new physical page in a free flash block (i.e., one that has
free pages), and the page containing the old block is invali-
dated in the FTL mapping table. Since new pages are
sequentially allocated from free blocks, it is possible to track
the recently updated data by tracking the recently allocated
flash blocks. Since transactions have birth and death as
shown in Fig. 1, live transactions (see Fig. 1) are more likely
to reside in recently allocated flash blocks. We use this obser-
vation to keep the states of flash blocks in the FTL in a way
that assists the identification of the states of transactions.

A challenge is that one flash block may contain transac-
tions of different states because different transactions may
update pages in the same flash block (this is a consequence
of designing the system so that we can maximize the inter-
nal parallelism of the SSD). As a result of this, there is not a
one-to-one correspondence between the state of a block and
the state of its transactions. In order to differentiate blocks,
we divide blocks into different zones based on each block’s
state. The flash blocks in our system can be in one of the
four states (zones):

� Free block, whose pages are all free;
� Available Block, whose pages are available for alloca-

tion (i.e., available to be written to);
� Unavailable Block, whose pages all have been written

to but some pages belong to (1) a live transaction or
(2) a dead transaction that also has at least one page
in an Available Block;

� Checkpointed Block, whose pages all have been written
to and all pages belong to dead transactions.

As shown in Fig. 5, the four kinds of blocks are tracked
in four different zones: Free Zone, Available Zone,
Unavailable Zone, Checkpointed Zone. Conventional FTLs
already distinguish between the free, available, and other (i.e.,

Fig. 5. Zone-based transaction state tracking.

2824 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 10, OCTOBER 2015



unavailable + checkpointed) blocks. LightTx requires the dif-
ferentiation of the unavailable and checkpointed blocks, in
addition. To enable this differentiation, the addresses of flash
blocks in the Unavailable Zone are added to a zone metadata
page at each checkpoint. The checkpoint operation is periodi-
cally performed to move each flash block to its appropriate
zone (if the block’s zone has changed).We call this zone sliding.

Zone sliding. Zone sliding moves those flash blocks that
have their states changed to new appropriate zones. Among
the four zones, only the Available and Unavailable Zones have
blocks whose states are potentially modified during the
interval between two checkpoints. This is because new
pages can only be updated in the Available Zone and only
the Available and Unavailable Zones have active transactions
that can be committed or aborted. Thus, only the states of
transactions in these two zones need to be checked during
zone sliding.

Zone sliding is triggered when the Available Zone runs
short of free space. When it is triggered, the flash blocks in
the Available and Unavailable Zones are checked and moved
if their states have been changed. Then, free flash blocks are
allocated to the Available Zone. To reduce the frequency of
zone sliding, LightTx preallocates a dedicated number of
free blocks from the Free Zone to the Available Zone. Move-
ment of flash blocks from the Checkpointed Zone to the Free
Zone is performed during garbage collection of the FTL,
using conventional garbage collection strategy. As such,
with both zone sliding and garbage collection, the flash
blocks are moved between the four zones.

Example. Fig. 5 illustrates a snapshot view of an SSD with
20 flash blocks, where each block has four pages. Tag
<Txi, j > denotes the TxID i and TxCnt j (TxVer is not
illustrated in this figure). Using the zone-based tracking
scheme, the Available Zone tracks the blocks used for
page allocation (blocks 10-15), including the pre-allocated
free blocks (blocks 14 and 15). On a checkpointing opera-
tion, page mappings in committed transactions are made
persistent, and these committed transactions become
dead. As a consequence, blocks 2-5 are tracked in the
Checkpointed Zone. Blocks 8 and 9, which have pages
from Tx7 and Tx8 (which are dead but have pages in the
Available Zone), are tracked in the Unavailable Zone as
well as blocks 6 and 7, which have active transactions.

During recovery after an unexpected system crash,
LightTx follows the steps shown in Section 3.4. The
Available Zone is first scanned, and Tx11 is identified as
committed since its number of pages matches the non-
zero TxCnt according to the commit protocol. Next, the
Unavailable Zone is scanned to check the states of Tx7,
Tx8, Tx9, and Tx10. Tx7 and Tx8 are committed accord-
ing to the commit protocol, while Tx9 and Tx10 are not.
The other transactions are not checked because their
states can be determined by accessing the FTL mapping
table (the mapping entries of pages in committed trans-
actions are stored in the FTL mapping table, while those
in the aborted transactions are not).

3.3.3 Discussion

With the use of block zones, overheads of mapping persis-
tence and garbage collection are kept low.

Mapping persistence. For durability, the FTL mapping
table needs to be written to persistent media when a trans-
action commits. But this leads to extra flash writes for the
FTL mapping table. Instead of persisting the FTL mapping
table on each transaction commit, LightTx delays the persis-
tence until the zone sliding.

The delayed mapping persistence does not affect transac-
tion durability. Since mapping persistence are performed on
each zone sliding, only the mappings of committed transac-
tions since the last zone sliding are volatile. Fortunately,
these transactions can only be active transactions or newly
created transactions since last zone sliding, and thus can
only be in the Available and Unavailable Zones. Therefore,
even after an unexpected system failure, only the two zones
need to be scanned to recover the mappings.

Garbage collection. Once the flash device runs short of
free blocks, the garbage collection process is triggered to
erase blocks. Only blocks in the Checkpointed Zone serve
as candidates for garbage collection in LightTx, because
the transaction information in both the Available and
Unavailable Zones is protected for transaction state identi-
fication during recovery. Since the blocks in Available and
Unavailable Zones, which are used for recent allocation,
are unlikely to be chosen for garbage collection, the
garbage collection overhead of LightTx is nearly the same
as that of conventional FTLs. LightTx’s overhead is rather
low compared to previous embedded transaction designs
[4], [5] because the previous designs have extra restric-
tions on garbage collection (e.g., forced garbage collection
of aborted pages in SCC [4], prevented garbage collection
in BPCC [4] on blocks that have experienced aborts since
the last committed version).

In addition to garbage collection, LightTx puts few
restrictions on wear leveling. For dynamic wear leveling,
LightTx has no restrictions. For static wear leveling, no flash
blocks in the Available and Unavailable Zones are selected for
wear leveling.

3.4 Recovery

Before discussing the recovery steps, we first present the
transitions and properties of block states.

3.4.1 Block State Transition

As discussed above, each block can be in one of the four
states (free, available, unavailable and checkpointed), and there
are three kinds of transition operations (allocation, checkpoint
and erase). The block state transition diagram is shown in
Fig. 6. The allocation and erase operations are the same as in
traditional SSDs. The only difference between LightTx and
traditional SSDs is that LightTx further divides used blocks
into unavailable and checkpointed blocks using the checkpoint

Fig. 6. Block state transition.
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operation. The checkpoint operation causes negligible over-
head as it only checks the page states and keeps the zone
metadata (i.e., the physical addresses of blocks in the zones).
As such, the zone-based transaction state tracking scheme is
lightweight.

In this scheme, states of pages (and thus transactions) are
identified as follows:

� The free blocks have no data, and thus no committed
or uncommitted pages.

� The pages in the checkpointed blocks are committed if
they are indexed in the persistent mapping table.
Otherwise, they are uncommitted.

� Among pages in the unavailable blocks, the pages that
are indexed in the persistent mapping table belong to
the committed transactions. Pages that are not indexed
in the persistent mapping table belong to either com-
mitted or uncommitted transactions, because some
transactions may have pages scattered over the avail-
able and unavailable blocks. Thus, these pages need to
be further checked using the commit protocol, with
moremetadata in the pages of the available blocks.

� The states of the transactions in the available blocks
are identified by comparing the total number of
pages in each transaction and the non-zero TxCnt
value in some page. If the values match, the pages
are committed. Otherwise, the pages from the
unavailable blocks with the same TxID are read for
further check. Only the pages that fail the second
check are marked as uncommitted.

3.4.2 Recovery Steps

With the zone-based transaction state tracking scheme, live
transactions are separated from dead ones. Only the Avail-
able and Unavailable Zones have live transactions. All trans-
actions in the Checkpointed Zone are dead. Therefore, to
identify the transaction state, LightTx only needs to read the
page metadata in the Available and Unavailable Zones. Recov-
ery steps are as follows:

1) First, page metadata in the Available Zone except
those in free pages is read to check the states using
the commit protocol. A transaction that has the num-
ber of read pages matching its non-zero TxCnt is
marked as committed, while other transactions need
further identification using page metadata in the
Unavailable Zone, because some pages in those trans-
actions may reside in the Unavailable Zone.

2) Second, page metadata in theUnavailable Zone is read
to identify the transactions from the Available Zone-
whose states have not been identified. Once the
number of read pages matches the non-zero TxCnt,
the transaction is marked as committed. The others
are uncommitted.

3) Third, committed transactions identified from the
above steps are redone to update the FTL mapping
table in the sequence of transaction commit version,
TxVer. Since their data pages are already persistent,
only the metadata need to be updated. Following the
sequence of TxVer, the persistent mapping table (see
Fig. 2) is updated to reflect the updates of the

committed transactions. Afterwards, aborted trans-
actions are simply discarded from the TxTable, and
the recovery process ends.

4 EVALUATION

In this section, we compare LightTx with existing commit
protocols, Atomic-Write [5], SCC/BPCC [4] and Multi-
Head Logging (MHL) Commit Protocols (as discussed
next), in two aspects: (1) performance benefits from transac-
tion flexibility; and (2) protocol overhead, including the
overhead of garbage collection, memory consumption and
mapping persistence.

4.1 Experimental Setup

We first present two baseline commit protocols using the
multi-head logging technique, which exploit the internal
parallelism of SSDs. We then describe our simulator and
workload configurations.

Multi-head logging (MHL) commit protocols. The multi-
head logging technique keeps multiple logs. Updates to
multiple transactions are appended to different logs. Each
log clusters all updates of one transaction. This allows mul-
tiple transactions to be executed concurrently. MHL-D
(MHL with Data Clustering) clusters the data of each trans-
action to each log. Flash space is divided into multiple logs.
Pages in the same transaction are written to consecutive
physical addresses in one log. MHL-M (MHL with Meta-
data Clustering) clusters the metadata (i.e., the mappings)
of each transaction to each log. MHL-M is an extension to
Atomic-Write [5] with multi-head logging. In MHL-M, mul-
tiple transactions are allowed to be executed concurrently,
and their mappings are appended to different logs. The
MHL technique enables better concurrency and keeps trans-
action tracking cost low using logs. We compare LightTx to
both MHL-D and MHL-M.

Simulator. We implement LightTx on a trace-driven SSD
simulator [27] based on DiskSim [28]. The SSD simulator
uses a page-level FTL and keeps the whole mapping table
in memory. I/O requests are distributed to different pack-
ages (elements), providing package-level parallelism. Each
package contains multiple planes (parallel units), provid-
ing plane-level parallelism. We configure the SSD simula-
tor using the parameters listed in Table 2, which are taken
from the Samsung K9F8G08UXM NAND flash datasheet
[8]. The SSD simulator is configured using page-level FTL.
We use the default garbage collection and wear leveling
policies of the SSD simulator [27]. In the evaluation of

TABLE 2
Evaluated SSD Parameters

Parameter Default Value

Flash page size 4 KB
Pages per block 64
Planes per package 8
Packages 8
SSD size 32 GB
Garbage collection threshold 5%
Page read latency 0.025 ms
Page write latency 0.200 ms
Block erase latency 1.5 ms
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MHL-D/MHL-M, the number of log heads are set to 8,
which equals the number of packages.

Workloads.We collect the transactional I/O trace from the
TPC-C benchmark DBT-2 [29] on PostgreSQL [30] by instru-
menting the PostgreSQL source code and recording the
XLog operations in the format (timestamp, TxID, blkno, blkcnt,
flags). For trace collection, the number of client connections
is set to 7 and the number of warehouses is set to 28. The col-
lected trace consists of 1,328,700 requests in total where each
transaction updates 27.2 pages on average and 142 pages at
maximum. The trace is collected on a 160 GB 7200 rpm hard
disk in a server with a 1.60 GHz dual-core processor. In
order to saturate the I/O speed of SSDs, the trace is acceler-
ated by 70 times when replayed on the simulator.

4.2 Effect of Transaction Flexibility

To simulate different isolation levels, we use the BAR-
RIER interface to isolate the execution between transac-
tions. We use traces with three isolation levels: strict
isolation, no-page-conflict isolation, and serializable isola-
tion. The strict isolation trace requires the transactions to
be executed serially with a barrier following each com-
mit/abort operation. The no-page-conflict isolation trace
divides the transactions into segments, and in each seg-
ment no two transactions conflict on the same page (i.e.,
multiple transactions cannot write to the same page).
The serializable isolation trace allows parallel execution of
transactions whose execution sequence is equivalent to a
certain serial transaction ordering [1]. All the three isola-
tion levels yield the same functional results.

Fig. 7 shows the transaction throughput obtained with
different isolation levels. Atomic-Write supports only strict
isolation because it uses a log-structured FTL (as described
in Section 2.3). SCC and BPCC do not support serializable
isolation because their commit protocols require the states
of pages in previous versions to be determined. MHL-D/
MHL-M and LightTx support all three isolation levels. Two
conclusions are in order from Fig. 7.

1) For a given isolation level, LightTx provides as
good or better transaction throughput than all previ-
ous approaches, due to its commit protocols better
exploitation of internal parallelism. Even though
MHL-D and MHL-M can benefit from the multi-
head logging technique, the concurrency degree in
them are limited by the number of log heads (e.g., 8
in the evaluation).

2) With LightTx, no-page-conflict isolation and serializ-
able isolation respectively improve throughput by
19.6 and 20.6 percent over strict isolation. This
improvement comes from the fact that less strict iso-
lation levels can better exploit the internal SSD paral-
lelism.5 We conclude that LightTx is effective at
enabling the benefits of different isolation levels.

Sensitivity to internal parallelism. To understand the sensi-
tivity to internal parallelism of different isolation levels, we
vary the number of channels. Fig. 8 shows transaction
throughput of the three isolation levels using different num-
ber of channels with LightTx. Generally, transaction
throughputs of all the three isolation levels increase or stay
the same as the number of channels increases. This means
all isolation levels can benefit from better internal parallel-
ism. Second, relaxed isolation levels can better exploit the
internal parallelism when the number of channels is small.
This reinforces the benefit of flexible isolation levels.

4.3 Garbage Collection Overhead

In this section, we first show the performance of the four
protocols under different transaction abort ratios and then
analyze the garbage collection overhead.

Transaction throughput. Figs. 9 and 10 show the transaction
throughput of all the commit protocols under different abort
ratios with strict and no-page-conflict isolation levels, respec-
tively. From the two figures, wemake two observations:

1) LightTx and AW have stable performance under dif-
ferent abort ratios, while SCC and BPCC have unsta-
ble performance. This is because more aborted
transactions incur higher garbage collection over-
head in SCC/BPCC, which will be discussed in the
following section. In contrast, LightTx and MHL-D
simply discard the aborted pages, and AW and
MHL-M discard the dirty volatile mapping table on
aborts. As a result, these four protocols are not sensi-
tive to the abort ratio.

2) LightTx outperforms all other commit protocols
when abort ratio is non-zero and has performance
comparable to SCC/BPCC when abort ratio is zero.
In Fig. 9, LightTx outperforms AW and MHL-M by
1.5 and 7.4 percent, respectively. The performance
cost of AW and MHL-M mainly comes from map-
ping persistence (write-back of the FTL mapping

Fig. 7. Effect of different isolation levels on transaction throughput.

Fig. 8. Sensitivity of internal parallelism to different isolation levels.

5. Note that transactions are executed serially in strict isolation and
as a result the parallelism of the SSD is not fully utilized especially
when the transactions are small with few I/Os.
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table into the flash device). MHL-D has poor perfor-
mance with strict isolation. This is because all pages
in one transaction are appended in the same block,
but only one transaction is executed at one time in
strict isolation, which does not exploit the internal
parallelism. The performance overhead of SCC/
BPCC comes from the garbage collection, which will
be discussed next. Fig. 10 shows similar results.

Garbage collection overhead. To provide more insight into
the performance differences shown in Figs. 9 and 10, we
show the normalized garbage collection overhead (in other
words, time used for moving the valid pages from each
block to be erased and erasing the invalid blocks) in

Figs. 11 and 12 with different abort ratios. LightTx and
MHL-D have the lowest garbage collection overheads
among all the protocols. AW and MHL-M have 6.1 percent
higher GC overhead than LightTx. This is because the map-
ping persistence operations needed to make transactions
durable in AW and MHL-M are frequent, and the free
pages are consumed quickly, which incurs more garbage
collection operations. SCC and BPCC have much higher
GC overhead than LightTx when abort ratio increases, and
the GC overhead in SCC and BPCC is as high as 41.8x and
4.8x of that in LightTx when abort ratio is 50 percent. This
is because of the complex pointer maintenance of SCC/
BPCC commit protocols. In SCC, an uncommitted page
needs to be erased before the new version is written. This
forces a new block that contains an uncommitted page to
be erased even when the percentage of valid pages (i.e.,
pages that are indexed in either the FTL mapping table or
the Active TxTable) is high. BPCC employs the idea of
straddle responsibility set (SRS), which avoids forced erase
operations by attaching the uncommitted pages to some
committed page. However, a page whose SRS is not null,
even if it is invalid, cannot be erased and has to be moved
to the same new location as the valid pages. These con-
straints incur high GC overhead in SCC/BPCC when the
abort ratio is high.

Sensitivity to garbage collection. To further understand the
garbage collection cost in LightTx versus SCC/BPCC, we
measure transaction throughput and garbage collection
time of both LightTx and SCC/BPCC under varied garbage
collection thresholds.6 Figs. 13 and 14 show transaction

Fig. 9. Transaction throughput under different abort ratios (strict
isolation).

Fig. 10. Transaction throughput under different abort ratios (no-page-
conflict isolation).

Fig. 11. Garbage collection overhead under different abort ratios (strict
isolation).

Fig. 12. Garbage collection overhead under different abort ratios
(no-page-conflict isolation).

Fig. 13. Transaction throughput versus different garbage collection
thresholds (abort ratio ¼ 0%).

6. Garbage collection threshold is the predefined value of free page
percentage, below which the garbage collection process is triggered.
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throughput and average GC time for LightTx and SCC/
BPCC with varied GC thresholds when abort ratio is zero.
From the two figures, LightTx has transaction throughput
close to that of SCC/BPCC, and the garbage collection time
is almost as same as that of SCC/BPCC. Figs. 15 and 16
show the case when abort ratio is 10 percent. In this case,
LightTx has better transaction throughput and lower gar-
bage collection time than SCC/BPCC. When GC threshold
increases, GC time in SCC/BPCC becomes worse. GC time
in LightTx increases very slowly. This is because the restric-
tions on GC in SCC/BPCC causes inefficiency in garbage
collection, either by moving valid pages due to forced erase
in SCC or by unnecessary keeping of invalid pages for
straddle dependencies in BPCC. The inefficiency causes the
free pages to be consumed much faster, and thus leads to
poorer GC performance when GC threshold is high. Com-
paratively, LightTx has few restrictions on GC and is there-
fore not affected by GC threshold much.

We conclude that LightTx has lower garbage collection
overhead than other approaches mainly because 1) it avoids
frequent mapping persistence by tracking recent updates in
the Available Zone, 2) it also avoids extra constraints on gar-
bage collection caused by pointer-based commit protocols

in SCC/BPCC, and instead, uses a page-independent com-
mit protocol with a zone-based state tracking scheme.

4.4 Memory Consumption Overhead

We measure the FTL memory consumption for main data
structures of each protocol and show the composition of the
memory overhead in Fig. 17. Except for the FTL mapping
table and block management data shared in all protocols,
the specific memory breakdown of each protocol varies.
SCC and BPCC have higher memory overhead, and the
others have low memory overhead. Active TxTable is a
shared data structure to keep the metadata of active transac-
tions in all protocols except AW. It consumes 0.31 MB of
memory. In addition, SCC keeps the uncommitted pages in
memory, which consumes 3.60 MB of memory. BPCC main-
tains the straddle responsibility set, consuming 5.51 MB of
memory. In contrast, MHL-D/MHL-M and LightTx keep
only the live transaction IDs, which consumes only several
kilobytes.

Specific memory consumption of each protocol
becomes more significant when the demand-based FTL
(DFTL) technique [31] is used to reduce the memory con-
sumption of the mapping table. DFTL leverages the phe-
nomenon of mapping locality. A small portion of the
mapping table can be cached in DRAM with little perfor-
mance loss while a large portion is kept in the flash
media. LightTx and MHL-D can use this kind of mapping
table, and SCC and BPCC can also be easily extended
with such a page mapping table. In contrast, the log-
based FTL used by AW and MHL-M can hardly leverage
the mapping locality to reduce the memory usage of
mapping table. Block management can be optimized in a
similar way. Therefore, we conclude that the memory
consumption of previous protocols (AW, SCC and BPCC)
and MHL-M can be significant while LightTx and MHL-
D achieve low memory overhead.

4.5 Mapping Persistence Overhead

The goal of mapping persistence is to reduce the recovery
time. In this section, we will evaluate the recovery time as
well as the mapping persistence overhead.

Recovery time. As shown in Fig. 18, the recovery time in
SCC/BPCC is 6.957 seconds, while that in LightTx and
MHL-D is less than 0.194 seconds for all zone size settings,
which is close to the recovery time in AW/MHL-M, 0.126

Fig. 14. Garbage collection overhead versus different garbage collection
thresholds (abort ratio ¼ 0%).

Fig. 15. Transaction throughput versus different garbage collection
thresholds (abort ratio ¼ 10%).

Fig. 16. Garbage collection overhead vs. different garbage collection
thresholds (abort ratio ¼ 10%).

Fig. 17. Memory consumption overhead.
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seconds. The recovery time has two components: page scan-
ning and state checking. As processing in the CPU (required
by state checking) is much faster than flash accesses
(required by page scanning), the page scanning time domi-
nates the recovery time. AW/MHL-M have the smallest
recovery time because the mappings are persistent for each
transaction and only the mapping table needs to be read at
recovery. Comparatively, SCC and BPCC require a whole
device scan because all the pages of the latest version should
be found to determine the transaction states [4].7 However,
the need to scan the whole device leads to a large overhead
(not to mention it increases linearly with device capacity).
LightTx tracks the pages whose mappings have not been
persistent in the Available and Unavailable Zones, so that
only pages in the two zones need to be read for recovery in
addition to the persistent mapping table read. As a result,
the recovery time overhead of LightTx/MHL-D depends on
the number of pages in the Available and Unavailable Zones,
which is much smaller than that in the entire device, leading
to significantly lower recovery time than SCC and BPCC.

Mapping persistence overhead. We measure the mapping
persistence overhead using the metric of mapping persis-
tence write ratio, which is the number of writes to ensure
mapping persistence divided by the total number of writes
in the trace. Fig. 19 shows that mapping persistence over-
head in AW/MHL-M is 3.70 percent, while that in LightTx
is less than 0.75 percent for all zone size settings. SCC and
BPCC trade recovery time for mapping persistence over-
head and have no persistent mapping table, which leads to
zero overhead for mapping persistence. AW/MHL-M uses

the other extreme approach, which makes mappings persis-
tent for each transaction, leading to the highest overhead.
As stated above, LightTx relaxes the mapping persistence of
pages by tracking them in zones and requires writes to
maintain persistence only during zone sliding that happens
at the end of a checkpoint (as described in Section 3.3), lead-
ing to low overhead.

Based on these evaluations, we conclude that LightTx
achieves fast recovery with low mapping persistence
overhead.

4.6 Evaluation Summary

Table 3 shows the evaluation summary of MHL-D, MHL-M
and LightTx compared with existing protocols (AW, SCC
and BPCC).WhileMHL-D andMHL-M support better trans-
action concurrency, they are still bounded by the number of
log heads. Also, MHL-D has poor performance because the
pages in one transaction need to be consecutively written to
the same block, which hurts the internal parallelism. MHL-
M has high mapping persistence overhead because it has to
make the mapping table persistent on each transaction com-
mit. Comparatively, LightTx supports arbitrary transaction
concurrency and achieves the highest performance and
nearly the lowest overhead in all evaluated aspects.

5 CONCLUSION

Providing flexible support for transactions at low overhead is
a key challenge in transactional SSD (TxSSD) design. In this
paper, we propose a novel TxSSD design, called LightTx,
to achieve high transaction flexibility at low overhead. To
improve transaction flexibility, LightTx decouples concur-
rency control and transaction recovery of transactions and
manages them respectively in software and hardware, by
extending the transactional interface of SSDs. Inside the SSD,
LightTx reduces page dependencies to improve concurrency
using a page-independent commit protocol. To reduce trans-
actional overhead, LightTx introduces a zone-based transac-
tion state tracking scheme to track the recent updates, so as to
reduce the mapping persistence overhead while providing
fast recovery. The zone-based scheme also retires the dead
transactions to reduce the transaction tracking overhead,

Fig. 19. Mapping persistence overhead.
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Fig. 18. Recovery time.

7. To reduce the scan cost, page metadata in all pages of one block is
stored in the last page of the block (called the summary page). This
optimization is used in both SCC/BPCC and LightTx/MHL-D.
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including the overhead of garbage collection and memory
consumption. Evaluations show that LightTx is an effective,
efficient and flexible transactional SSD design that achieves
high performance at low overhead.
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