LightTx: A Lightweight Transactional Design in
Flash-based SSDs to Support Flexible Transactions’

Youyou Lu T, Jiwu Shuf 8, Jia Guo f, Shuai Li T ¥ and Onur Mutlu *
TDepartment of Computer Science and Technology, Tsinghua University, Beijing, China
TTsinghua National Laboratory for Information Science and Technology, Beijing, China
iComputer Architecture Laboratory, Carnegie Mellon University, Pittsburgh, PA
luyy09 @mails.tsinghua.edu.cn, shujw@tsinghua.edu.cn, jguo.tshu@gmail.com, lishuai.ujs@163.com, onur@cmu.edu

Abstract—Flash memory has accelerated the architectural
evolution of storage systems with its unique characteristics
compared to magnetic disks. The no-overwrite property of flash
memory has been leveraged to efficiently support transactions,
a commonly used mechanism in systems to provide consistency.
However, existing transaction designs embedded in flash-based
Solid State Drives (SSDs) have limited support for transaction
flexibility, i.e., support for different isolation levels between
transactions, which is essential to enable different systems to
make tradeoffs between performance and consistency. Since they
provide support for only strict isolation between transactions,
existing designs lead to a reduced number of on-the-fly requests
and therefore cannot exploit the abundant internal parallelism of
an SSD. There are two design challenges that need to be overcome
to support flexible transactions: (1) enabling a transaction commit
protocol that supports parallel execution of transactions; and
(2) efficiently tracking the state of transactions that have pages
scattered over different locations due to parallel allocation of
pages.

In this paper, we propose LightTx to address these two
challenges. LightTx supports transaction flexibility using a
lightweight embedded transaction design. The design of LightTx
is based on two key techniques. First, LightTx uses a commit
protocol that determines the transaction state solely inside
each transaction (as opposed to having dependencies between
transactions that complicate state tracking) in order to support
parallel transaction execution. Second, LightTx periodically
retires the dead transactions to reduce transaction state tracking
cost. Experiments show that LightTx provides up to 20.6%
performance improvement due to transaction flexibility. LightTx
also achieves nearly the lowest overhead in garbage collection and
mapping persistence compared to existing embedded transaction
designs.

Keywords—solid state drive, flash memory, transaction support,
atomicity, durability.

I. INTRODUCTION

For decades, transactions have been widely used in
database management systems (DBMSs), file systems, and
applications to provide the ACID (Atomicity, Consistency,
Isolation, Durability) properties, but usually at the cost
of implementation complexity and degraded performance.
Transaction recovery, which ensures atomicity and durability,
is a fundamental part of transaction management [20]. In
transaction recovery, a write operation keeps the previous
version of its destination pages safe before the successful

gCorresponding author: Jiwu Shu (shujw @tsinghua.edu.cn).

Shuai Li joined this work as a research assistant at Tsinghua University,
and he was also a graduate student at Jiangsu University.

* This work is supported by the National Natural Science Foundation
of China (Grant No. 60925006, 61232003), the National High Technology
Research and Development Program of China (Grant No. 2013AA013201),
Shanghai Key Laboratory of Scalable Computing and Systems, Tsinghua-
Tencent Joint Laboratory for Internet Innovation Technology, Huawei
Technologies Co., Ltd., Intel Science and Technology Center for Cloud
Computing, and Tsinghua University Initiative Scientific Research Program.

update of the new version, to provide consistency in case
of update failure (e.g., due to a system crash). Write ahead
logging (WAL) [14] and shadow paging [10] are the two
dominant approaches to transaction recovery. In WAL, a write
updates the new version in the log and synchronizes it to the
disk before over-writing the old version in-place. Additional
log writes and the required synchronization make the approach
costly. In shadow paging, a write overwrites the index pointer
(the metadata to locate pages) to point to the new version after
updating the new version in a new location (as opposed to over-
writing the old version as done in WAL). This approach causes
scattering of data over the storage space, reducing locality of
read accesses, which is undesirable for high performance.

Flash memory properties of no-overwrite and high random
I/O performance (comparatively to hard disks) favor the
shadow paging approach. A page in flash memory has to be
erased before it is written to. To hide the erase latency, flash-
based SSDs redirect the write to a free page by invalidating
the old one and using a mapping table in the FTL (Flash
Translation Layer) to remap the page. So, a page is atomically
updated in SSDs by simply updating the mapping entry in
the FTL mapping table. Because of this simplicity provided
by the FTL mapping table, providing support inside SSDs
for transactions is attractive. However, two obstacles need
to be overcome. First is the lack of atomicity of multi-page
updates. A transaction usually updates multiple pages, and
the mapping entries of these pages in the FTL mapping table
may be distributed to different pages. Failure to atomically
update all of the mapping entries breaks the atomicity property
of transactions. Second is the narrow interface between the
system and the storage device. The simple read/write interface
does not communicate transaction semantics. This prevents the
device from supporting transactions inside the device. Also,
the system is unaware of page versions in SSDs and cannot
leverage them for transaction support.

Recent research [17], [19] proposes to support transactions
inside an SSD by introducing a new interface, WriteAtomic,
and providing multi-page update atomicity. Transaction
support in the SSD (i.e., embedded transaction support) frees
the system from transaction recovery, and thus nearly doubles
system performance due to the elimination of duplicated log
writes [17], [19]. Unfortunately, these proposals support a
limited set of isolation levels; mainly, strict isolation, which
requires all transactions to be serialized, i.e., executed one
after another. This hurts the usage of the storage device for
transactions for two reasons. First, different systems make
different tradeoffs between performance and consistency by
allowing different isolation levels among transactions [21]. Not
supporting a wide variety of isolation levels makes the system
inflexible as it does not give the software the ability to choose
the isolation level. Second, strict isolation limits the number

of concurrent requests in the SSD (as only one transaction
can execute at a time) and thus hurts internal parallelism, i.e.,
simultaneous updates of pages in different channels and planes,
of the SSD. The need to wait for the completion of previous
transactions due to the requirement of strict isolation between
transactions causes the SSD to be underutilized.

On the other hand, when supporting transaction recovery
inside an SSD, it is important to keep the overhead low (in
terms of both cost and performance). Unfortunately, flexible
transaction support, transaction aborts and the need for fast
recovery lead to high overhead. First, when transactions
are concurrently executed to provide support for flexible
transactions, determining the state of each transaction can
require page-level state tracking, which can be costly.' Second,
transaction aborts increase the garbage collection overhead,
i.e., the time to erase blocks and to move valid pages from the
erased blocks, because extra restrictions on garbage collection
are needed in order not to touch the pages used for the commit
protocol (as described in [19]). Third, the mapping persistence
overhead, i.e., the time taken to write the FTL mapping table
into the persistent flash device, is high if we would like fast
recovery. Fast recovery requires the FTL mapping table to be
made persistent at the commit time of each transaction, leading
to high overhead.?

Our goal in this paper is to support flexible isolation
levels in the system with atomicity and durability guarantees
provided inside the SSD, all the while achieving low hardware
overhead (in terms of garbage collection and mapping
persistence) for tracking transactions’ states.

Observations and Key Ideas: We make two major changes
to the Flash Translation Layer to achieve the above goal,
resulting in what we call LightTx:

1. Updates to the same pages can be performed
simultaneously for concurrent transactions, because updates
are written to new locations in flash memory instead of over-
writing the original location (This is due to the out-of-place
update property of SSDs that are designed to ensure an erase
operation is not on the critical path of a write). Different
versions of the page updates are not visible until the mapping
entry in the FTL mapping table is updated to point to the new
location. LightTx updates the FTL mapping table at transaction
commit time (instead of at the time a write happens) to support
concurrent updates of the same page. In addition, LightTx tags
each write with a transaction identifier (TxID) and determines
the committed/uncommitted state of transactions solely inside
each transaction, which ensures that the state determination
of transactions are not dependent on each other (i.e., can be
done in parallel). The commit protocol of LightTx is designed
to be page-independent, which supports concurrent transaction
execution even with updates to the same page (Section III-B).

2. Transactions have birth and death. A transaction is
dead when its pages and their mapping entries are updated
atomically and made persistent, in which case committed pages
can be accessed through the FTL mapping table while the
uncommitted pages cannot. In order to reduce the transaction
state tracking cost, LightTx identifies and retires the dead

IThis is because different transactions can update pages in the same block,
which is a consequence of the scattering of pages of each transaction to
different flash blocks to maximize internal SSD parallelism when executing a
transaction.

20therwise, the whole disk should be scanned, and all pages should be
checked for recovery, which is even higher overhead than making the FTL
mapping table persistent at each transaction commit.

transactions periodically and only tracks the live ones using
a new zone-based scheme. This is in contrast to previous
proposals where dead transactions are tracked for a long time
until they are erased. LightTx’s new zone-based transaction
state tracking scheme enables low-overhead state identification
of transactions (Section III-C).

Contributions: To our knowledge, this is the first paper
that allows a low-cost mechanism in SSDs to support flexible
isolation levels in transactions. To enable such a mechanism,
this paper makes the following specific contributions:

e We extend the SSD interface with transaction semantics
and introduce a page-independent commit protocol to
support simultaneous update of multiple versions of a page
concurrently written by different transactions. This protocol
provides flexible isolation level choices to the system.

e We design a new zone-based transaction state tracking
scheme that tracks the live transactions and periodically
identifies and retires the dead transactions. This reduces
transaction state tracking cost, making our proposal a
lightweight design.

e Our evaluation of LightTx using database traces shows
a transaction throughput increase of up to 20.6% with
relaxed isolation levels compared to strict isolation. The
overhead of LightTx is nearly the lowest in both garbage
collection and mapping persistence time compared to
existing embedded transaction designs [17], [19].

II. BACKGROUND AND RELATED WORK
A. Flash-based Solid State Drives

A flash-based SSD is composed of multiple flash packages
(chips) connected through different channels. In each chip,
there are multiple planes, and each plane has a number of
blocks.® A block is composed of pages, and a flash page is
the read/write unit. A typical flash page size is 4KB with
128B-page metadata, a.k.a. OOB (Out-of-Band) area, and the
block size is 256KB [3]. In SSDs, read/write requests are
distributed to different blocks in different channels and planes
in parallel or in a pipelined fashion [8], [11], providing internal
parallelism in access.

Programming of the flash memory is unidirectional. For
example, a bit value of 1 can be changed to 0 (via
programming), but the reverse directional programming is
forbidden (due to the nature of incremental step pulse
programming, which can only inject charge but cannot remove
it from the floating gate). An erase operation is needed before
the page can be reprogrammed. To avoid the long latency
of an erase operation before a write, the FTL redirects the
write to an already-erased page, leaving invalid the original
page the write is destined to (this page is to be erased later
during garbage collection). This property is known as the no-
overwrite property; i.e., a page is not overwritten by a write
operation. While the no-overwrite property keeps both the old
and new page versions and makes it attractive to support
transactions embedded inside the SSD, exploiting internal
parallelism requires enough concurrent requests to be serviced.
Note that concurrency is vital in embedded transaction design
to best make use of the internal SSD performance.

B. Transaction Variety and Lifetime

Transactional execution provides 1) consistent state
changes for concurrent executions and 2) recovery from
system failures. In transaction management, the concurrency

3In this paper, we refer to the flash block, the unit of erase operations in
flash memory, simply as the block.

BIFGIN COMMI'I"/ABORT CHECKPOII\‘IT ERASFD
\ \ \ |
| Active f Completed——»|
I Live «Dead—»

Fig. 1: Transaction Lifetime

control method provides different isolation levels between
transactions and determines the consistency level. The
transaction recovery module ensures atomicity and durability.
The isolation level determines the parallelism degree of
concurrent transactions — for example, strict isolation requires
the serial execution of transactions. An application chooses
the proper isolation level of transactions to make tradeoffs
between performance and consistency [21]. Both traditional
DBMSs (database management systems) and modern data-
intensive applications have significantly varied transaction
isolation requirements [21]. As a result, it is important to
design SSD mechanisms that are flexible enough to enable
different isolation level choices at the system level. In this
paper, we aim to provide such flexible isolation level support.

A transaction goes through different periods in its
lifetime, which we will exploit in this paper to provide
lightweight support for embedded transactions. The mission
of a transaction is to provide a consistent state change. A
transaction is born when the system begins the state change
and dies after the checkpointing of the system. Checkpointing
makes the state of the system persistent and unambiguous. That
is, the committed pages can be accessed in the FTL mapping
table while the uncommitted cannot after checkpointing. Thus,
information about dead transactions need not be kept in
the SSD. The death of a transaction is different from the
completion (commit/abort) of a transaction. A transaction is
alive when the transaction state is ambiguous before the
checkpointing. As shown in Figure 1, we call the transactions
that have not committed or aborted active transactions, and
those that have not yet been checkpointed live transactions. In
a system that uses write-ahead logging, a transaction completes
on commit or abort and dies after the data is checkpointed in-
place from the logs. In this paper, we will exploit the death
of transactions to reduce transaction state tracking cost in the
FTL.

C. Related Work

There has been significant recent research on the archi-
tectural evolution of the storage system with flash memory,
including interface extensions for intelligent flash management
[15], [16], [17], [19], [22] and system optimizations to exploit
the flash memory advantages [6], [7], [12], [13]. In this section,
we mainly focus on transaction support with flash memory.

Flash memory has been exploited to provide atomicity for
file systems. Atomic-Write [17] is a typical protocol of this
kind. It leverages the log-based FTL and sequentially appends
the mappings of transactions to it. The last block in each
atomic group is tagged with flag ”1” while leaving the others
”0” to determine boundaries of each group. Atomic-Write
requires strict isolation from the system: the system should
not interleave any two transactions in the log-based FTL. Also,
mapping persistence is conducted for each transaction commit
to provide durability; i.e., the FTL mapping table is written
back to the flash device after each transaction commit. Atomic
Write FTL [18] takes a similar approach but directly appends
pages in the log-blocks sequentially. Transactional Flash File
System [9] provides transaction support for file systems in
micro-controllers in SSDs, but is designed for NOR flash

memory and does not support transactions in DBMSs and other
applications.

Recent work [13] has employed a single updating window
to track the recently allocated flash blocks for parallel
allocation while providing transaction support. Although these
approaches work well for file systems in which transactions are
strictly isolated and serially executed, they are not sufficient
for DBMSs and other applications with flexible transaction
requirements, i.e. requirements for different isolation levels.

TxFlash [19] and Flag Commit [16] extend atomicity
to general transactions for different applications including
DBMSs. TxFlash [19] proposes two cyclic commit protocols,
SCC and BPCC, and links all pages in each transaction in
one cyclic list by keeping pointers in the page metadata.
The existence of the cyclic list is used to determine the
committed/uncommitted state of each transaction. But the
pointer-based protocol has two limitations. First, garbage
collection should be carefully performed to avoid the
ambiguity between the aborted transactions and the partially
erased committed transactions, because neither of them has a
cyclic list. SCC forces the uncommitted pages to be erased
before updating the new version. BPCC uses a backpointer
which points to the last committed version to straddle the
uncommitted, but requires the page with the backpointer to
be erased after all the uncommitted pages are erased. Both
of them incur extra cost on garbage collection. Second, the
dependency between versions of each page prevents concurrent
execution of transactions that have accesses to the same page
and thus limits the exploitation of internal parallelism. In
contrast, LightTx tracks only the live transactions and prevents
garbage collection in the recently updated blocks, which have
low probability to be chosen as victims for erasing, and uses
a page-independent commit protocol to support concurrent
transaction execution. Flag Commit [16] tries to reduce the
garbage collection overhead associated with the transaction
state tracking in SCC and BPCC, and proposes AFC and CFC
commit protocols by rewriting the page metadata to reset the
pointer. Because MLC NAND flash does not support rewrite
operations, AFC and CFC do not apply to MLC NAND flash,
which is increasingly widespread as flash technology scales.
In contrast, LightTx is designed to function in both SLC and
MLC NAND flashes.

ITII. LIGHTTX DESIGN
To support flexible transactions with a lightweight
implementation, LightTx has the following design components
and goals:

e Page-independent commit protocol to support simultaneous
updates of multiple page versions, so as to enable flexible
isolation level choices in the system.

e Zone-based transaction state tracking scheme to only track
the blocks that have live transactions and retire the dead
ones to lower the cost of transaction state tracking.

This section describes the design of LightTx, including the
interface, the commit protocol, the zone-based transaction state
tracking scheme, and the recovery mechanisms.

A. Design Overview

LightTx extends the FTL functions in SSDs to support
transaction atomicity and durability. As shown in Figure 2,
in addition to the common modules (i.e., the FTL mapping
table, the read/write cache, garbage collection, and wear
leveling), LightTx introduces three new modules (the active
TxTable, commit logic, and recovery logic) and revises the

Applications

Database Systems
File Systems ‘

READ, WRITE,| BEE}IN, COMMIT, ABORT
|

FTL Mapping Table Read/Write

Cache FTL

Active TxTable

Commit || Recovery | | Garbage Wear Free Blocks and
Logic Logic Collection Levelling Zone Mgmt.

Persistent | Flash

Mapping | Media
Table

Data Area

Fig. 2: The LigthTx Architecture
TABLE I: Device Interfaces

Operations
READ(LBA, len...)

Description

read data from LBA (logical
block address)
write data to the transaction TxID

WRITE(LBA, len, TxID...)

BEGIN(7xID) check the availability of the TxID
and start the transaction

COMMIT(TxID) commit the transaction TxID

ABORT(TxID) abort the transaction TxID

free block management using a zone-based scheme. The
commit logic extracts the transaction information from the
extended transactional interface shown in Table I and tracks
the active transactions using the active TxTable. The active
TxTable is a list of active transaction lists, and each active
transaction list links the page metadata of all pages of the
transaction. Each entry in the active TxTable records the
mapping from a page’s logical address to its physical address.
The recovery logic differentiates the committed transactions
from the uncommitted and redoes the committed ones during
recovery.

Interface Design. In order to support the transaction
information exchange between the system and the device, we
add the BEGIN, COMMIT, and ABORT commands, which
are similar to the transaction primitives used in the system,
and extend the WRITE command. The BEGIN command
checks the availability of a given transaction identifier (TxID).
If the TxID is currently used, an error is returned to the
system, asking the system to allocate a new TxID. On a
commit or abort operation, the system issues the COMMIT
or ABORT command to the device requesting termination of
the transaction of a given TxID. The TxID parameter is also
attached to each write operation in the WRITE command. The
TxID in each write request identifies the transaction that the
page belongs to. The READ command does not need to carry
the TxID parameter because isolation between transaction read
sets is provided in software, and read requests do not affect
the persistent values in the storage. LightTx only provides
transaction recovery function in the SSD for the atomicity and
durability of the persistent data, and does not aim to provide
read isolation.

B. Page Independent Commit Protocol

Commit Protocol. In the commit protocol design, LightTx
aims to minimize dependences between different pages and
different versions of the same page. To achieve this goal,
LightTx limits the operation of commit logic within each
transaction, as each page can be identified to belong to some
transaction by storing the transaction identifier (TxID) in

‘ LPN ‘ TxID ‘Tant

TxVer

ECC ‘

Page Metadata

‘ Page Data (00B)

Fig. 3: Page Metadata Format of a Physical Flash Page

the page metadata. Also, LightTx delays the FTL mapping
table updates until the commit/abort of each transaction
instead of doing updates on a page-by-page basis to reduce
conflicts. Transaction versions (TxVer), as opposed to page
versions, are used to determine the update sequence of the
FTL mapping table. These allow concurrent execution of
different transactions even with overlapped updates (i.e., a page
accessed by multiple transactions).

As shown in Figure 3, the commit protocol in LightTx uses
12 bytes for transaction information, including the transaction
identifier (TxID), the number of pages in the transaction
(TxCnt), and the transaction version (TxVer, the commit
sequence), each of 4 bytes. TxID is passed from the system
through the interface. TxCnt and TxVer are set to zero for
all pages belonging to the transaction except the last-written
one, where TxCnt is set to the total number of pages in
the transaction and indicates the end of the transaction, and
TxVer is set to the latest transaction version to identify the
transaction commit sequence and to determine the transaction
redo sequence during recovery. To determine the state of a
transaction TxID, LightTx counts the number of its pages and
checks these pages to see if there exists a page whose TxCnt
equals the page count. If so, the transaction is committed.
Otherwise, it is not committed.
Operation. LightTx operations defer the mapping table update
to the transaction commit time. Instead of directly updating the
FLT mapping table, the write operation updates the mapping
entries in the active TxTable. If the transaction is committed,
its mapping entries in the active TxTable are stored into
the mapping table. If not, these mapping entries are simply
discarded. For transactional writes, the latest updated page is
cached in the SSD DRAM to wait for the next command. If
the next command is a commit, the cached page’s TxCnt and
TxVer are set to non-zero values; if abort, the cached page
is discarded; otherwise, the cached page’s TxCnt and TxVer
are set to zero. For non-transactional writes, the TxID is not
set and the TxCnt is set to one, while the TxVer is set to the
committed version the same as transactional writes.

C. Zone-based Transaction State Tracking Scheme
Transaction state tracking identifies the committed and the
uncommitted transactions so as to redo the committed and
undo the uncommitted during recovery to ensure atomicity.
Since pages of each transaction may be scattered across many
different flash blocks, state tracking can become costly, if we
would like to support flexibility in isolation levels (which
requires potentially many transactions’ states to be tracked
concurrently). To improve efficiency, we use a lightweight
design to reduce the tracking overhead in two aspects. First,
we track transaction states by tracking the states of flash
blocks instead of flash pages. Second, we reduce the number
of transactions to be tracked by keeping the live transactions
separate from the dead, which is achieved with classifying
flash blocks into different zones and tracking them separately
in these zones (which we discuss next).
Block Zones. In flash-based storage, a new write causes an
out-of-place update: the data is written to a new physical
page in a free flash block (i.e., one that has free pages) and

6
Tx3, 0
Tx0, 0 Tx4,0

Tx4,0

Checkpointed Zone Unavailable Zone
Committed: Tx0, Tx2, Tx3, Tx4, Tx7, Tx8, Tx11.

vec: [N NN

Live:

12 14 16 18 20
Tx10, 0

13 15 17 19 21

Tx11,0
Tx11,3

Available Zone Free Zone
Aborted: Tx1, Tx5. Active: Tx6, Tx9, Tx10
. FreePage [|

Fig. 4: Zone-based Transaction State Tracking

the page containing the old block is invalidated in the FTL
mapping table. This makes it possible to track the recently
updated data by tracking the recently allocated flash blocks.
Since transactions have birth and death as shown in Figure 1,
live transactions (see Figure 1) are more likely to reside in
recently allocated flash blocks. We use this observation to keep
the states of flash blocks in the FTL in a way that assists the
identification of the states of transactions.

A challenge is that one flash block may contain transactions
of different states because different transactions may update
pages in the same flash block (this is a consequence of
designing the system so that we can maximize the internal
parallelism of the SSD). As a result of this, there is not a one-
to-one correspondence between the state of a block and the
state of its transactions. In order to differentiate blocks, we
divide blocks into different zones based on each block’s state.
The flash blocks in our system can be in one of the four states
(zones):

e Free Block, whose pages are all free;

e Available Block, whose pages are available for allocation
(i.e., available to be written to);

e Unavailable Block, whose pages all have been written to
but some pages belong to (1) a live transaction or (2) a dead
transaction that also has at least one page in an Available
Block;

e Checkpointed Block, whose pages all have been written to
and all pages belong to dead transactions.

As shown in Figure 4, the four kinds of blocks are

tracked in four different zones: Free Zone, Available Zone,
Unavailable Zone, Checkpointed Zone. Conventional FTLs
already distinguish between the free, available, and other
(i.e., unavailable + checkpointed) blocks. LightTx requires
the differentiation of the unavailable and checkpointed blocks,
in addition. To enable this differentiation, the addresses of
flash blocks in the Unavailable Zone are added to a zone
metadata page at each checkpoint. The checkpoint operation
is periodically performed to move each flash block to its
appropriate zone (if the block’s zone has changed). We call
this zone sliding.
Zone Sliding. During the interval between two checkpoints,
only the Available and Unavailable Zones have blocks whose
states are potentially modified. This is because new pages can
only be updated in the Available Zone and only the Available
and Unavailable Zones have active transactions that can be
committed or aborted. Thus, only the states of transactions in
these two zones need to be checked after a system crash.

Once the flash device runs short of free blocks, the garbage
collection process is triggered to erase blocks. Only blocks

in the Checkpointed Zone serve as candidates for garbage
collection in LightTx, because the transaction information
in both the Available and Unavailable Zones is protected
for transaction state identification during recovery. Since the
blocks in Available and Unavailable Zones, which are used
for recent allocation, are unlikely to be chosen for garbage
collection, the garbage collection overhead of LightTx is nearly
the same as that of conventional FTLs. LightTx’s overhead is
rather low compared to previous embedded transaction designs
because the previous designs have extra restrictions on garbage
collection (e.g., forced garbage collection of aborted pages in
SCC, prevented garbage collection in BPCC on blocks that
have experienced aborts since the last commited version).
Example: Figure 4 illustrates a snapshot view of an SSD
with 22 flash blocks, where each block has four pages.
Tag <Txi, 7 > denotes the TxID i and TxCnt j (TxVer is
not illustrated in this figure). Using the zone-based tracking
scheme, the Available Zone tracks the blocks used for page
allocation (blocks 10-15), including the pre-allocated free
blocks (blocks 14 and 15). On a checkpointing operation, page
mappings in committed transactions are made persistent, and
these committed transactions become dead. As a consequence,
blocks 2-5 are tracked in the Checkpointed Zone. Blocks 8
and 9, which have pages from Tx7 and Tx8 (which are dead
but have pages in the Available Zone), are tracked in the
Unavailable Zone as well as blocks 6 and 7, which have active
transactions.

During recovery after an unexpected system crash, LightTx
follows the steps shown in Section III-D. The Available Zone
is first scanned, and Txl11 is identified as committed since its
number of pages matches the non-zero TxCnt according to
the commit protocol. Next, the Unavailable Zone is scanned
to check the states of Tx7, TxS, Tx9, and Tx10. Tx7 and Tx8
are committed according to the commit protocol, while Tx9
and Tx10 are not. The other transactions are not checked
because their states can be determined by accessing the FTL
mapping table (the the mapping entries of pages in committed
transactions are stored in the FTL mapping table, while those
in the aborted transactions are not).

D. Recovery

With the zone-based transaction state tracking scheme, live
transactions are separated from the dead. Only the Available
and Unavailable Zones have live transactions. All transactions
in the Checkpointed Zone are dead. Therefore, to identify
the transaction state, LightTx only needs to read the page
metadata from the pages in the Available and Unavailable
Zones. Recovery steps are as follows:

1) First, page metadata of all flash pages except the free
ones in the Available Zone is read to check the states

TABLE II: Evaluated SSD Parameters

Parameter Default Value
Flash page size 4KB

Pages per block 64

Planes per package 8

Packages 8

SSD size 32GB

Garbage collection lower watermark 5%

Page read latency 0.025ms
Page write latency 0.200ms
Block erase latency 1.5ms

using commit protocol. A transaction that has the number

of read pages matching its non-zero TxCnt is marked

as committed, while other transactions need further
identification using page metadata in the Unavailable

Zone, because some pages in those transactions may

reside in the Unavailable Zone.

Second, page metadata of pages in the Unavailable Zone

is read to identify the transactions from the Available Zone

whose states have not been identified. Once the number of
read pages matches the non-zero TxCnt, the transaction
is marked as committed. The others are uncommitted.

3) Third, the committed transactions identified from the
above steps are redone to update the FTL mapping table in
the sequence of transaction commit version, TxVer. Since
the data pages are already persistent, only the metadata
needs to be updated. Following the sequence of TxVer,
the persistent mapping table (see Figure 1) is updated
to reflect the updates of the committed transactions.
Afterwards, the aborted transactions are simply discarded
from the TxTable, and the recovery process ends.

2

~

IV. EVALUATION
In this section, we quantitatively evaluate the benefits of
transaction flexibility with different isolation levels and the
protocol overhead, including garbage collection overhead and
mapping persistence overhead, of LightTx over the existing
transaction protocols, Atomic-Write [17] and cyclic commit
protocols (SCC/BPCC) [19].

A. Experimental Setup

We implement LightTx on a trace-driven SSD simulator [4]
based on DiskSim [5]. We configure the SSD simulator
using the parameters listed in Table II, which are taken
from the Samsung K9F8GOSUXM NAND flash datasheet [3].
We collect the transactional I/O trace from the TPC-C
benchmark DBT-2 [1] on PostgreSQL [2] by instrumenting the
PostgreSQL source code and recording the XLog operations
in the format (timestamp, TxID, blkno, blkcnt, flags). For trace
collection, the number of client connections is set to 7 and the
number of warehouses is set to 28. The collected trace consists
of 1,328,700 requests in total where each transaction updates
27.2 pages on average and 142 pages at maximum.

B. Effect of Transaction Flexibility

To simulate different isolation levels, we use the BARRIER
interface to isolate the execution between transactions. We
use traces with three isolation levels: strict isolation, no-page-
conflict isolation, and serializable isolation. The strict isolation
trace requires the transactions to be executed serially with a
barrier following each commit/abort operation. The no-page-
conflict isolation trace divides the transactions into segments,
and in each segment no two transactions conflict on the same

700+

b2 Strict
XYY No-Page-Conflict
B8R Serializable

[o2]

o

o
1

500 ,
400
300
200

100

0 4& 4&

Atomic-Write SCC BPCC
Transaction Protocol

Transaction Throughput (txs/s)

\
%
.

LightTx

Fig. 5: Effect of Different Isolation Levels on Transaction Throughput
page (i.e., multiple transactions cannot write to the same
page). The serializable isolation trace allows parallel execution
of transactions whose execution sequence is equivalent to a
certain serial transaction ordering [20]. All the three isolation
levels yield the same functional results.

Figure 5 shows the transaction throughput obtained with
different isolation levels. Atomic-Write supports only strict
isolation because it uses a log-structured FTL (as described
in Section II-C). SCC and BPCC do not support serializable
isolation because their commit protocols require the states of
pages in previous versions to be determined. LightTx supports
all three isolation levels. Two conclusions are in order from
Figure 5. First, for a given isolation level, LightTx provides
as good or better transaction throughput than all previous
approaches, due to its commit protocol’s better exploitation
of internal parallelism. Second, no-page-conflict isolation
and serializable isolation respectively improve throughput by
19.6% and 20.6% with LightTx over strict isolation. This
improvement comes from the fact that less strict isolation
levels can better exploit the internal SSD parallelism.* We
conclude that LightTx is effective at enabling different
isolation levels.

C. Garbage Collection Overhead

In this section, we first show the performance of the four
protocols under different abort ratios and then analyze the
garbage collection overhead. To provide a fair comparison, we
evaluate all the four protocols with the strict isolation level.
Transaction Throughput. Figure 6 compares the transaction
throughput of Atomic-Write, SCC, BPCC and LightTx
under different abort ratios. In general, LightTx significantly
outperforms SCC and BPCC when abort ratio is not zero,
while having slightly better performance than Atomic-Write.
We make two observations:

1. The abort ratio has no impact on Atomic-Write and
LightTx but has a significant impact on SCC and BPCC.
This is because more aborted transactions incur higher garbage
collection overhead in SCC and BPCC, which will be
discussed in the following section. In contrast, LightTx is not
sensitive to the abort ratio, as the aborted transactions are
simply discarded without any penalty.’

2. LightTx outperforms Atomic-Write by 1.6% and is
comparable to SCC and BPCC when abort ratio is zero.
For the no-abort case, none of the four protocols have

4Note that transactions are executed serially in strict isolation and as a result
the parallelism of the SSD is not fully utilized especially when the transactions
are small with few I/Os.

5 Atomic-Write is also not sensitive to the abort ratio because transactions
in Atomic-Write are executed one by one and the identification of transaction
state is done independently for each transaction.

Abort Ratio (0%)
600 Abort Ratio (10%)

[XXX] Abort Ratio (20%)
= =1 Abort Ratio (50%)
B 500+ — 7 7 —
3 — —
5 400 { = N =
< = =
8 300 = N g
= — —
[= = =
5200+ = =
© — —
& 100 = =
o — —
= = =

0 —
Atomic-Write SCC BPCC LightTx

Transaction Protocol

Fig. 6: Transaction Throughput under Different Abort Ratios

extra erase operations caused by aborted transactions. But
Atomic-Write and LightTx have more writes due to mapping
persistence (write-back of the FTL mapping table into the
Flash device), which leads to a higher garbage collection
frequency. Comparatively, SCC and BPCC do not keep a
persistent mapping table and as a result need to perform
additional writes to the flash device. Atomic-Write has to flush
the FTL mapping table to the flash memory on each commit
operation to make the transaction durable, while LightTx
delays the persistence of the FTL mapping table. This is
because only mapping entries for pages in the Available and
Unavailable Zones are updated as mentioned in Section III-C,
and the FTL mapping table can be updated by scanning the
two zones when the system crashes. Fewer writes are incurred
due to less frequent mapping persistence updates, leading to a
negligible impact on transaction throughput.

Garbage Collection Overhead. To provide more insight into
the performance differences shown in Figure 6, we show
the normalized garbage collection (GC) overhead (in other
words, time used for moving the valid pages from each block
to be erased and erasing the invalid blocks) in Figure 7
with different abort ratios. Atomic-Write has 6.1% higher
GC overhead than LightTx. This is because the mapping
persistence operations needed to make transactions durable in
Atomic-Write are frequent, and the free pages are consumed
quickly, which incurs more garbage collection operations. For
SCC, GC overhead increases proportionally with the abort
ratio. When the abort ratio increases, the previous version
of a page to be updated has a higher probability to be not
committed, and the whole block where the uncommitted page
resides has to be erased before the new page is written. Since
the forced erase operation has to erase the dedicated block
without considering the block utilization, i.e. the percentage
of valid pages in the block, garbage collection efficiency is
extremely low: the overhead reaches 41.8 times as much as
that of LightTx at an abort ratio of 50%. BPCC employs the
idea of straddle responsibility set (SRS), which delays the erase
of uncommitted pages by attaching the uncommitted pages
to some committed page, to avoid a forced erase operation.
However, a page whose SRS is not null, even if it is invalid,
cannot be erased and has to be moved to the same new
location as the valid pages. Such moves cause the overhead of
garbage collection to be 4.8 times as much as that of LightTx
when the abort ratio is 50%. The main issue that impacts
garbage collection in LightTx is that the blocks in the Available
and Unavailable Zones cannot be erased. However, these are
also the blocks that are updated the latest and have a high
block utilization. As a result, they are seldom selected as the

st

N

(&
1

22 Abort Ratio (0%)
Abort Ratio (10%)
(
(

C
N
o

&4 Abort Ratio (20%)
E— Abort Ratio (50%)

w
o
1

w
o
1

25

Normalized Garbage Collection Co:
N
o

0 +ZZESRT— W‘“@\NW\

Atomic-Write SCC BPCC LightTx
Transaction Protocol

Fig. 7: Garbage Collection Overhead under Different Abort Ratios

victim blocks during garbage collection, leading to small GC
overhead.

We conclude that LightTx has lower garbage collection
overhead than the previous approaches mainly because 1) it
ensures page versions are independent by using a new page-
independent commit protocol, 2) it does not require forced
garbage collection, and 3) it keeps block utilization (i.e., the
percentage of valid pages in a block, which need to be moved
before the block is erased during garbage collection) low.

D. Mapping Persistence Overhead

The goal of mapping persistence is to reduce the recovery
time. In this section, we will evaluate the recovery time as well
as the mapping persistence overhead.
Recovery Time. As shown in Figure 8, the recovery time in
SCC and BPCC is 6.957 seconds, while that in LightTx is
less than 0.194 seconds for all zone size settings, which is
close to the recovery time in Atomic-Write, 0.126 seconds. The
recovery time has two components: page scanning and state
checking. During page scanning, the metadata of the pages
in the Available and Unavailable Zones are read. During state
checking, the read metadata is processed to determine the state
of the pages’ corresponding transactions. As processing in the
CPU (required by state checking) is much faster than flash
accesses (required by page scanning), the page scanning time
dominates the recovery time. Atomic-Write has the smallest
recovery time because the mappings are persistent for each
transaction and only the mapping table needs to be read at
recovery. Comparatively, SCC and BPCC require a whole
device scan because all the pages of the latest version should
be found to determine the transaction states [19]. To reduce
the scan cost, page metadata in all pages of one block is
stored in the last page of the block (called the summary page).
This optimization is used in both SCC/BPCC and LightTx.
However, the need to scan the whole device leads to large
overhead (not to mention it increases linearly with device
capacity). LightTx tracks the pages whose mappings have not
been persistent in the Available and Unavailable Zones, so that
only pages in the two zones need to be read for recovery in
addition to the persistent mapping table read. As a result, the
recovery time overhead of LightTx depends on the number of
pages in the Available and Unavailable Zones, which is much
smaller than that in the entire device, leading to significantly
lower recovery time than SCC and BPCC.
Mapping Persistence Overhead. We measure the mapping
persistence overhead using the metric of mapping persistence
write ratio, which is the number of writes to ensure mapping
persistence divided by the total number of writes in the trace.
Figure 9 shows that mapping persistence overhead in Atomic-

84
74

64 —o— Atomic-Write
—o— SCC/BPCC
0.307 —— LightTx
0.254

0.20
0.15
0.104
0.054

0.00 T T T T T
4M 16M 64M 256M 1G
Size of the Available Zone (byte)

Recovery Time (seconds)

Fig. 8: Recovery Time

Write is 3.70%, while that in LightTx is less than 0.75%
for all zone size settings. SCC and BPCC trade recovery
time for mapping persistence overhead and have no persistent
mapping table, which leads to zero overhead for mapping
persistence. Write-Atomic uses the other extreme approach,
which makes mappings persistent for each transaction, leading
to the highest overhead. As stated above, LightTx relaxes
the mapping persistence of pages by tracking them in zones
and requires writes to maintain persistence only during zone
sliding that happens at the end of a checkpoint (as described
in Section III-C), leading to low overhead.

Based on these evaluations, we conclude that LightTx
achieves fast recovery with low mapping persistence overhead.

V. CONCLUSION

Transactional SSDs have leveraged the no-overwrite
property of flash memory to free the system from costly
transaction management, i.e., duplicated writes in logs.
Limited support for transaction flexibility in existing embedded
transaction designs not only fail to meet various requirements
of emerging applications and DBMSs in the tradeoffs between
consistency and performance, but also cannot effectively
exploit the internal parallelism present in SSDs. In this
paper, we propose LightTx to support flexible isolation levels
by increasing the concurrency of writes and reducing the
transaction state tracking cost in the Flash Translation Layer.
To increase the write concurrency, LightTx extends the system-
device interface to enable different transaction semantics and
minimizes the dependencies between pages and page versions
using a page-independent commit protocol. To reduce the cost
of transaction state tracking, LightTx tracks only the live
transactions using the new notion of Available and Unavailable
Zones and periodically checkpoints the transactions to identify
dead transactions. The tracking of live transactions in the
Available and Unavailable Zones also reduces the frequency
of mapping persistence while providing fast recovery. Our
evaluations using a real database workload show that LightTx
achieves the highest transaction throughput and nearly the
lowest Flash Translation Layer operation overhead compared
to the state-of-the-art embedded transaction designs, while
enabling more isolation levels than past approaches. We
conclude that LightTx provides a lightweight and high-
performance substrate that enables the system to flexibly make
tradeoffs between consistency and performance.

ACKNOWLEDGMENTS
The authors would like to thank Song Jiang of Wayne State
University, Justin Meza of Carnegie Mellon University and
Jishen Zhao of Pennsylvania State University for discussion

9
B
@ 41
< [u} ul
g 3 —o— Atomic-Write
Py —o— SCC/BPCC
2 —— LightTx
L 2]
R
4
)
[
o
c
S
< 04 Py
=
4M 16M 64M 256M 1G

Size of the Available Zone (byte)

Fig. 9: Mapping Persistence Overhead

and feedback. The authors would also like to thank Ying Liang
of storage research group in Tsinghua University for her help
with the experimental setup.

REFERENCES

[1] OSDL database test 2. http://sourceforge.net/apps/mediawiki/osdldbt/,
2012.

[2] PostgreSQL. http://www.postgresql.org/, 2012.

[3] Samsung K9F8GO8UXM flash memory datasheet.
datasheetarchive.com/K9F8G08UOM-datasheet.html, 2012.

[4] N. Agrawal et al. Design tradeoffs for SSD performance. In USENIX
ATC, 2008.

[5] J. Bucy et al. The DiskSim simulation environment version 3.0.
Technical Report No. CMU-CS-03-102, Carnegie Mellon University,
2003.

[6] A. Caulfield et al. Understanding the impact of emerging non-volatile
memories on high-performance, 10-intensive computing. In SC, 2010.

[71 E Chen et al. Understanding intrinsic characteristics and system
implications of flash memory based solid state drives. In SIGMETRICS,
20009.

[8] FE. Chen et al. Essential roles of exploiting internal parallelism of flash
memory based solid state drives in high-speed data processing. In
HPCA, 2011.

[9] E. Gal et al. A transactional flash file system for microcontrollers. In

USENIX ATC, 2005.

[10] J. Gray et al. The recovery manager of the system r database manager.
ACM Computing Surveys, 1981.

[11] Y. Hu et al. Performance impact and interplay of SSD parallelism
through advanced commands, allocation strategy and data granularity.
In ICS, 2011.

[12] W. K. Josephson et al. DFS: a file system for virtualized flash storage.
In FAST, 2010.

[13] Y. Lu et al. Extending the lifetime of flash-based storage through
reducing write amplification from file systems. In FAST, 2013.

http://www.

[14] C. Mohan et al. ARIES: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead logging.
TODS, 1992.

[15] D. Nellans et al. ptrim ()+ exists (): Exposing new FTL primitives to
applications. In NVMW, 2011.

[16] S. On et al. Flag Commit: Supporting efficient transaction recovery on
flash-based DBMSs. TKDE, 2011.

[17] X. Ouyang et al. Beyond block I/O: Rethinking traditional storage
primitives. In HPCA, 2011.

[18] S. Park et al. Atomic write FTL for robust flash file system. In
International Symposium on Consumer Electronics, 2005.

[19] V. Prabhakaran et al. Transactional flash. In OSDI, 2008.

[20] R. Ramakrishnan et al.
Osborne/McGraw-Hill, 2000.

[21] R. Sears et al. Stasis: flexible transactional storage. In OSDI, 2006.

[22] Y. Zhang et al. De-indirection for flash-based ssds with nameless writes.
In FAST, 2012.

Database management systems.

