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Memory in Transition

I Charge Memory
B Write data by capturing charge Q
B Read data by detecting voltage V
B Examples: Flash, DRAM

I Resistive Memory
B Write data by driving current dQ/dt
B Read data by detecting resistance R
B Examples: PCM, MRAM, memristor
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Limits of Charge Memory

B Unscalable charge placement and control

B Flash: floating gate charge

B DRAM: capacitor charge, transistor leakage
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Towards Resistive Memory

I Scalable
B Program with current ∝ cell size
B Map resistance to logical state

I Non-Volatile
B Set atomic structure in cell
B Incur activation cost

I Competitive
B Achieve viable delay, energy, endurance
B Scale to further improve metrics
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PCM Deployment

B Deploy PCM on the memory bus

B Begin by co-locating PCM, DRAM

B Begin by deploying in low-power platforms

Benjamin C. Lee et al. 5 :: ISCA :: 22 June 09



Motivation
Technology

Architecture

Phase Change Memory
Technology Parameters
Price of Scalability

Outline

I Motivation
B Memory Scaling
B Charge Memory
B Resistive Memory

I Technology
B Phase Change Memory
B Technology Parameters
B Price of Scalability

I Architecture
B Design Objectives
B Buffer Organization
B Partial Writes

Benjamin C. Lee et al. 6 :: ISCA :: 22 June 09



Motivation
Technology

Architecture

Phase Change Memory
Technology Parameters
Price of Scalability

Phase Change Memory

B Store data within phase change material [Ovshinsky68]

B Set phase via current pulse

B Detect phase via resistance (amorphous/crystalline)
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PCM Scalability

B Program with current pulses, which scale linearly

B PCM roadmap to 30nm [Raoux+08]

B Flash/DRAM roadmap to 40nm [ITRS07]
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PCM Non-Volatility

I Atomic Structure
B Program with current pulses
B Melt material at 650 ◦C
B Cool material to desired phase

I Activation Cost
B Crystallize with high activation energy
B Isolate thermal effects to target cell
B Retain data for >10 years at 85 ◦C
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Technology Parameters
B Survey prototypes from 2003-2008 [ISSCC][VLSI][IEDM][ITRS]

B Derive parameters for F=90nm

Density
B 9 - 12F2 using BJT

B 1.5× DRAM

Endurance
B 1E+08 writes

B 1E-08× DRAM

Latency
B 50ns Rd, 150ns Wr

B 4×, 12× DRAM

Energy
B 40µA Rd, 150µA Wr

B 2×, 43× DRAM
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Price of Scalability
B 1.6× delay, 2.2× energy, 500-hour lifetime

B Implement PCM in typical DRAM architecture
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Design Objectives

I DRAM-Competitive
B Reorganize row buffer to mitigate delay, energy
B Implement partial writes to mitigate wear mechanism

I Area-Efficient
B Minimize disruption to density trends
B Impacts row buffer organization

I Complexity-Effective
B Encourage adoption with modest mechanisms
B Impacts partial writes
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Buffer Organization

I On-Chip Buffers
B Use DRAM-like buffer and interface
B Evict modified rows into array

I Narrow Rows
B Reduce write energy ∝ buffer width
B Reduce peripheral circuitry, associated area

I Multiple Rows
B Reduce eviction frequency
B Improve locality, write coalescing
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Buffer Area Strategy
B Narrow rows :: fewer expensive S/A’s (44T)

B Multiple rows :: more inexpensive latches (8T)
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Buffer Design Space
B Explore area-neutral buffer designs

B Identify DRAM-competitive buffer design
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Wear Reduction

I Wear Mechanism
B Writes induce phase change at 650 ◦C
B Contacts degrade from thermal expansion/contraction
B Current injection is less reliable after 1E+08 writes

I Partial Writes
B Reduce writes to PCM array
B Write only stored lines (64B), words (4B)
B Add cache line state with 0.2%, 3.1% overhead
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Partial Writes
B Derive PCM lifetime model

B Quantify eliminated writes during buffer eviction
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Scalable Performance
B 1.2× delay, 1.0× energy, >5-year lifetime

B Scaling improves energy, endurance
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Also in the paper...

I Technology Survey
B Survey of circuit/device prototypes
B PCM architectural timing, energy models
B Scaling analysis, implications

I Buffer Organization
B Transistor-level area model
B Buffer sensitivity analysis

I Partial Writes
B Endurance model
B Bus activity analysis
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Conclusion & Future Directions

I Memory Scaling
B Fundamental limits in charge memory
B Transition towards resistive memory

I Phase Change Memory
B Scalability and non-volatility
B Competitive delay, energy, endurance
B DRAM alternative on the memory bus

I Applied Non-Volatility
B Instant start, hibernate
B Inexpensive checkpointing
B Safe file systems
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PCM File System (PFS)

J.Condit et al. “Better I/O through byte-addressable, persistent
memory.” SOSP-22: Symposium on Operating System Principles,
October 2009. (To Appear)

I File System Properties
B Consistency :: COW with atomicity, ordering
B Safety :: Reflect writes to PCM in O(ms), not O(s)
B Performance :: Outperform NTFS on RAM disk

I Architectural Support
B Atomic 8B writes with capacitive support
B Ordered writes with barrier-delimited epochs
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