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Asymmetric CMP (ACMP) 

 One or a few large, out-of-order cores, fast 

 Many small, in-order cores, power-efficient 
 

 Critical code segments run on large cores 

 The rest of the code runs on small cores 
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Bottlenecks 
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Accelerating Critical Sections (ACS), Suleman et al., ASPLOS’09 

Bottleneck Identification and Scheduling (BIS), Joao et al., ASPLOS’12 
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Lagging Threads 
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Barrier 2 t1 Barrier 2 

Previous work about progress of multithreaded applications: 

 Meeting points, Cai et al., PACT’08 

 Thread criticality predictors, Bhattacharjee and Martonosi, ISCA’09 

 Age-based scheduling (AGETS), Lakshminarayana at al., SC’09 

Lagging thread = potential future bottleneck 

4 

T2: Lagging thread 



Two problems 

 1) Do we accelerate bottlenecks or lagging threads? 

 2) Multiple applications: which application do we accelerate? 
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Two problems 

 1) Do we accelerate bottlenecks or lagging threads? 

 2) Multiple applications: which application do we accelerate? 
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Acceleration decisions need to consider both: 

 - the criticality of code segments 

 - how much speedup they get 

for lagging threads and bottlenecks 
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Utility-Based Acceleration (UBA) 

 Goal: identify performance-limiting bottlenecks or 
lagging threads from any running application  
and accelerate them on large cores of an ACMP 
 

 Key insight: a Utility of Acceleration metric that 
combines speedup and criticality of each code segment 
 

 Utility of accelerating code segment c of length t  
on an application of length T: 
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L: Local acceleration of c 

How much code segment c is accelerated 

 

 

 

 
 

 

 

 

 

 

 Estimate S = estimate performance on a large core  
while running on a small core 
 

 Performance Impact Estimation (PIE, Van Craeynest et al., 
ISCA’12) : considers both instruction-level parallelism (ILP) 
and memory-level parallelism (MLP) to estimate CPI 
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S: speedup of c 



R: Relevance of code segment c 

How relevant code segment c  is for the application 
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G: Global effect of accelerating c 

How much accelerating c reduces total execution time 
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 Acceleration of c 

 Acceleration of application 

Single thread 



G: Global effect of accelerating c 

How much accelerating c reduces total execution time 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Critical sections: classify into strongly-contended and  
weakly-contended and estimate G differently (in the paper) 

GRLUc 

ThreadsLaggingofNumber

1
G 

T1 

T2 

T3 

Barrier 

Idle 

G=0 

2 quanta to get the benefit of 1 

G=1/2 

11 

t

T
G




 Criticality of c 

 Acceleration of c 

 Acceleration of application 



Utility-Based Acceleration (UBA) 
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Lagging thread identification 

 Lagging threads are those that are making the least progress 

 How to define and measure progress?  Application-specific problem 

 We borrow from Age-Based Scheduling (SC’09) 

 Progress metric (committed instructions) 

 Assumption: same number of committed instructions between barriers 

 But we could easily use any other progress metric… 

 

 Minimum progress = minP 

 Set of lagging threads =  { any thread with progress < minP + ∆P } 

 Compute Utility for each lagging thread 
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Utility-Based Acceleration (UBA) 
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Bottleneck identification 

 Software: programmer, compiler or library  

 Delimit potential bottlenecks  with BottleneckCall and 

BottleneckReturn instructions 

 Replace code that waits with a BottleneckWait instruction 
 

 Hardware: Bottleneck Table 

 Keep track of threads executing or waiting for bottlenecks 

 Compute Utility for each bottleneck 

 Determine set of Highest-Utility Bottlenecks 
 

 Similar to our previous work BIS, ASPLOS’12 

 BIS uses thread waiting cycles instead of Utility 
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Acceleration coordination 
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Acceleration coordination 
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Acceleration coordination 
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Acceleration coordination 
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 Workloads 
 single-application: 9 multithreaded applications  

with different impact from bottlenecks 

 2-application: all 55 combinations of (9 MT + 1 ST) 

 4-application: 50 random combinations of (9 MT + 1 ST) 
 

 Processor configuration 
 x86 ISA 

 Area of large core = 4 x Area of small core 

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 4GHz, in-order, 2-wide, 5-stage 

 Private 32KB L1, private 256KB L2, shared 8MB L3 

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency 

Methodology 
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Comparison points 

 Single application 

 ACMP (Morad et al., Comp. Arch. Letters’06) 

 only accelerates Amdahl’s serial bottleneck 

 Age-based scheduling (AGETS, Lakshminarayana et al., SC’09)  

 only accelerates lagging threads 

 Bottleneck Identification and Scheduling (BIS, Joao et al., ASPLOS’12) 

 only accelerates bottlenecks 

 

 Multiple applications 

 AGETS+PIE: select most lagging thread with AGETS and  
use PIE across applications 

 only accelerates lagging threads 

 MA-BIS: BIS with shared large cores across applications 

 only accelerates bottlenecks 
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Single application, 1 large core 
Optimal number of threads, 28 small cores, 1 large core 
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Limiting critical sections: benefit from BIS and UBA 



Single application, 1 large core 
Optimal number of threads, 28 small cores, 1 large core 
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Lagging threads: benefit from AGETS and UBA 



Single application, 1 large core 
Optimal number of threads, 28 small cores, 1 large core 
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Neither bottlenecks 

nor lagging threads 



Single application, 1 large core 
Optimal number of threads, 28 small cores, 1 large core 

UBA outperforms both AGETS and BIS by 8% 

UBA’s benefit increases with area budget and number of large cores 
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Multiple applications 

2-application workloads, 60 small cores, 1 large core 

UBA improves Hspeedup over AGETS+PIE and MA-BIS by 2 to 9% 
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Summary 

 To effectively use ACMPs: 
 Accelerate both fine-grained bottlenecks and lagging threads 

 Accelerate single and multiple applications 
 

 Utility-Based Acceleration (UBA) is a  
cooperative software-hardware solution to both problems 
 

 Our Utility of Acceleration metric combines a measure of 
acceleration and a measure of criticality to allow meaningful 
comparisons between code segments 
 

 Utility is implemented for an ACMP but is general enough to be 
extended to other acceleration mechanisms 
 

 UBA outperforms previous proposals for single applications and 
their aggressive extensions for multiple-application workloads 
 

 UBA is a comprehensive fine-grained acceleration proposal for 
parallel applications without programmer effort 
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Thank You! 

Questions? 
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