Design and Evaluation of Hierarchical Rings with Deflection Routing

Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg Nazario, Reetuparna Das, Gabriel H. Loh, Onur Mutlu

Carnegie Mellon

Executive Summary

- Rings do not scale well as core count increases
- Traditional hierarchical ring designs are complex and energy inefficient
 - Complicated buffering and flow control
- Solution: Hierarchical Rings with Deflection (HiRD)
 - Guarantees livelock freedom and delivery
 - Eliminates all buffers at local routers and most buffers at bridge routers
- HiRD provides higher performance and energy-efficiency than hierarchical rings
- HiRD is simpler than hierarchical rings

Outline

- Background and Motivation
- Key Idea: Deflection Routing
- End-to-end Delivery Guarantees
- Our Solution: HiRD
- Results
- Conclusion

Scaling Problems in a Ring NoC

- As the number of cores grows:
 - Lower performance
 - More power

Alternative: Hierarchical Designs

Packets can reach far destination in fewer hops

Single Ring vs. Hierarchical Rings

A hierarchical design provides better performance as the network scales

Complexity in Hierarchical Designs

Complex buffering and flow control

Single Ring vs. Hierarchical Rings

Design complexity increases power consumption

Our Goal

 Design a hierarchical ring that has lower complexity without sacrificing performance

Outline

- Background and Motivation
- Key Idea: Deflection Routing
- End-to-end Delivery Guarantees
- Our Solution: HiRD
- Results
- Conclusion

Key Idea

Eliminate buffers

- Use deflection routing
 - Simpler flow control

Local Router

- Key functionality:
 - Accept new flits
 - Pass flits around the ring

Eliminating Buffers in Local Routers

Eliminating Buffers in Local Routers

Flits can enter the ring if the output is available

Deflection Routing

Bridge Router

Eliminating Buffers in Bridge Routers

Eliminating Buffers in Bridge Routers

Simpler Buffering

Fewer Buffers

Simpler Crossbar

Outline

- Background and Motivation
- Key Idea: Deflection Routing
- End-to-end Delivery Guarantees
- Our Solution: HiRD
- Results
- Conclusion

Livelock in Deflection Routing

Injection starvation

HiRD: Injection Guarantee

• Throttling provides injection guarantee

Livelock in Deflection Routing

Transfer starvation

HiRD: Transfer Guarantee

Reservation provides transfer guarantee

Ejection Guarantee

Provided by a prior work

- Re-transmit once [Fallin et al., HPCA'11]
 - Drop a flit if there is no available slot
 - Reserve a buffer slot at the destination if a flit was dropped

End-to-end Delivery Guarantees

Outline

- Background and Motivation
- Key Idea: Deflection Routing
- End-to-end Delivery Guarantees
- Our Solution: HiRD
- Results
- Conclusion

An Overview of HiRD

Deflection routing

- No buffers in the local rings
- Simpler bridge routers

- Provides end-to-end delivery guarantees
 - Injection guarantee by throttling
 - Transfer guarantee by reservation

Putting It All Together

- Deflection routing
 - Simpler flow control
 - Simpler crossbars and control logic
- No buffers in the local rings
 - Simpler and faster local routers
- Simpler bridge routers
 - Lower power, less area and simpler to design
- Provides end-to-end delivery guarantees
 - Injection guarantee by throttling
 - Transfer guarantee by reservation

Outline

- Background and Motivation
- Key Idea: Deflection Routing
- End-to-end Delivery Guarantees
- Our Solution: HiRD
- Results
- Conclusion

Methodology

Cores

- 16 and 64 OoO CPU cores
- 64 KB 4-way private L1
- Distributed L2

Network

- 1 flit local-to-global buffer
- 4 flits global-to-local buffers
- 2-cycle per hop latency for local routers
- 3-cycle per hop latency for global routers
- 60 workloads consisting of SPEC2006 apps

Comparison to Previous Designs

- Single ring design
 - Kim and Kim, NoCArc'09
 - 64-bit links
 - 128-bit links
 - 256-bit links
- Buffered hierarchical ring design
 - Ravindran and Stumm, HPCA'97
 - Identical topology
 - Identical bisection bandwidth
 - 4-flit buffers in both local and global routers

Results: System Performance

- 1) Hierarchical designs provide better performance than a single ring on a larger network
- 2) HiRD performs better compared to buffered hierarchical rings due to lower latency in local routers

Results: Network Power

- Hierarchical designs consume much less power than the highest-performance single ring
- Routers and flow control in HiRD are simpler than routers in buffered hierarchical rings

Router Area and Critical Path

- 16-node network with 8 bridge routers
- Verilog RTL design using 45nm Technology

- HiRD reduces NoC area by 50.3% compared to a buffered hierarchical ring design
- HiRD reduces local router critical path by 29.9% compared to a buffered hierarchical ring design

Additional Results

- Detailed power breakdown
- Synthetic evaluations
- Energy efficiency results
- Worst case analysis
- Techical Report:
 - Multithreaded evaluation
 - Average, 90th percentile and max latency
 - Comparison against other topologies
 - Sensitivity analysis on different link bandwidths and number of buffers

Outline

- Background and Motivation
- Key Idea: Deflection Routing
- End-to-end Delivery Guarantees
- Our Solution: HiRD
- Results
- Conclusion

Conclusion

- Rings do not scale well as core count increases
- Traditional hierarchical ring designs are complex and energy inefficient
 - Complicated buffering and flow control
- Solution: Hierarchical Rings with Deflection (HiRD)
 - Guarantees livelock freedom and delivery
 - Eliminates all buffers at local routers and most buffers at bridge routers
- HiRD provides higher performance and energy-efficiency than hierarchical rings
- HiRD is simpler than hierarchical rings

Design and Evaluation of Hierarchical Rings with Deflection Routing

Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg Nazario, Reetuparna Das, Gabriel H. Loh, Onur Mutlu

Carnegie Mellon

Backup Slides

Network Intensive Workloads

• 15 network intensive workloads

System Performance

Deflections balance out the network load Thorttling reduces congestion

Network Power

More deflections happen when the network is congested

Detailed Results

Multithreaded Applications

Network Latency

Synthetic Traffic Evaluations

Topology Comparison

Topologies	4x4		8x8	
	Norm. WS	Power (mWatts)	Norm. WS	Power (mWatts)
Single Ring	0.904	7.696	0.782	13.603
Buffered HRing	1	12.433	1	16.188
Buffered Mesh	1.025	11.947	1.091	13.454
CHIPPER	0.986	4.631	1.013	7.275
Flattened Butterfly	1.037	10.760	1.211	30.434
HiRD	1.020	4.746	1.066	12.480

Sweep over Different Bandwidth

Packet Reassembly

- Borrowed from CHIPPER [Fallin et al. HPCA'10]
 - Retransmit-Once Destination node
 reserves a buffer slot for a dropped packet
 - Provides ejection guarantee

Other Optimizations

- Map cores that communicate with each other a lot on the same local ring
 - Takes advantage of the faster local ring routers

Related Concurrent Works

- Clumsy Flow Control [Kim et al., IEEE CAL'13]
 - Requires coordination between cores and memory controllers

- Transportation inspired NoCs [Kim et al., HPCA'14]
 - tNoCs require an additional credit network
 - tNoCs have more complex flow control
 - HiRD is more lightweight

Some Related Previous Works

- Hierarchical Bus [Udipi et al., HPCA'10]
 - HiRD provides more scalability
- Concentrated Meshe [Das et al., HPCA'09]
 - Several nodes share one router
 - Used on meshed network
 - Less power efficient than HiRD
- Low-cost Mesh Router [J. Kim, MICRO'09]
 - Specifically designed for meshes
 - Does not solve issues in deflection-based flow control (HiRD does)