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Executive Summary

* Rings do not scale well as core count increases

* Traditional hierarchical ring designs are complex
and energy inefficient
— Complicated buffering and flow control

 Solution: Hierarchical Rings with Deflection (HiRD)
— Guarantees livelock freedom and delivery

— Eliminates all buffers at local routers and most buffers
at bridge routers

* HiRD provides higher performance and

energy-efficiency than hierarchical rings
* HiRD is simpler than hierarchical rings
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Scaling Problems in a Ring NoC

H@D

* As the number of cores grows:
— Lower performance
— More power
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Alternative: Hierarchical Designs

Local Ring (Level 0)

Packets can reach far destination in fewer hops
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Single Ring vs. Hierarchical Rings
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Complexity in Hierarchical Designs

Complex buffering and flow control
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Single Ring vs. Hierarchical Rings
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Our Goal

* Design a hierarchical ring that
has lower complexity
without sacrificing performance
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Key ldea

e Eliminate buffers

* Use deflection routing
— Simpler flow control
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Local Router

Local
East

Local
West

] 1

Core

e Key functionality:
— Accept new flits

— Pass flits around the ring
SAFARI 12



Eliminating Buffers in Local Routers
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Eliminating Buffers in Local Routers

* Flits can enter the ring if the output is
available
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Deflection Routing
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Bridge Router
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Eliminating Bufters in Bridge

Routers
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Eliminating Buffers in Bridge Routers
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Livelock in Deflection Routing

* |[njection starvation

Unable to inject

- Starved Flit

Src
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HIRD: Injection Guarantee

After 150 cycles: All nodes stop
injecting flits

Unable to inject

- Starved Flit
. Throttled Router

Src

* Throttling provides injection guarantee
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Livelock in Deflection Routing

* Transfer starvation

Unable to Transfer

- Starved Flit

Transfer FIFO
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HiRD: Transfer Guarantee

After 10 looparounds

- Starved Flit

Reserved Slot

Transfer FIFO

* Reservation provides transfer guarantee
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Ejection Guarantee

* Provided by a prior work

 Re-transmit once [Fallin et al., HPCA'11]
— Drop a flit if there is no available slot
— Reserve a buffer slot at the destination if
a flit was dropped



End-to-end Delivery Guarantees

Ejection Guarantee dest

Global Ring

o Injection Guarantee
shgjection Guarantee
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An Overview of HiRD

* Deflection routing

* No buffers in the local rings

e Simpler bridge routers

* Provides end-to-end delivery guarantees
— Injection guarantee by throttling
— Transfer guarantee by reservation
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Putting It All Together

* Deflection routing
— Simpler flow control
— Simpler crossbars and control logic

* No buffers in the local rings
— Simpler and faster local routers

e Simpler bridge routers
— Lower power, less area and simpler to design

* Provides end-to-end delivery guarantees

— Injection guarantee by throttling
— Transfer guarantee by reservation

SAFARI
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Methodology

* Cores
— 16 and 64 Oo0O CPU cores
— 64 KB 4-way private L1
— Distributed L2

* Network
— 1 flit local-to-global buffer
— 4 flits global-to-local buffers
— 2-cycle per hop latency for local routers
— 3-cycle per hop latency for global routers

* 60 workloads consisting of SPEC2006 apps
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Comparison to Previous Designs

* Single ring design
— Kim and Kim, NoCArc’09
— 64-bit links
— 128-bit links
— 256-bit links

e Buffered hierarchical ring design
— Ravindran and Stumm, HPCA'97
— |dentical topology

— |dentical bisection bandwidth
— 4-flit buffers in both local and global routers
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Results: System Performance

=

2.9%

© o oo
O N & O 0O P N
\

Normalized
System Performance

Network Slze

Ring 64-bit
Ring 128-bit
Ring 256-bit
Hring

B HiRD

sara@nd throttling



Results: Network Power
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Router Area and Critical Path

e 16-node network with 8 bridge routers
* Verilog RTL design using 45nm Technology

* HiRD reduces NoC area by 50.3%
compared to a buffered hierarchical ring

design

* HiRD reduces local router critical path by
29.9% compared to a buffered hierarchical
ring design
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Additional Results

* Detailed power breakdown
e Synthetic evaluations

* Energy efficiency results
* Worst case analysis

* Techical Report:
— Multithreaded evaluation
— Average, 90t percentile and max latency
— Comparison against other topologies

— Sensitivity analysis on different link bandwidths

and number of buffers
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Conclusion

* Rings do not scale well as core count increases

* Traditional hierarchical ring designs are complex
and energy inefficient
— Complicated buffering and flow control

 Solution: Hierarchical Rings with Deflection (HiRD)
— Guarantees livelock freedom and delivery

— Eliminates all buffers at local routers and most buffers
at bridge routers

* HiRD provides higher performance and
energy-efficiency than hierarchical rings

* HiRD is simpler than hierarchical rings
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Backup Slides



Network Intensive Workloads
e 15 network intensive workloads
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System Performance
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Network Power
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Detailed Results
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Network Power per Node (mW) Norm. Weighted Speedup

Multithreaded Applications
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Network Latency

Average Network Latency

Maximum Network Latency

95th Percentile Latency
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Latency

Latency

Synthetic Traffic Evaluations
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Topology Comparison

Topologies 4x4 8x8
Norm. WS | Power (mWatts) || Norm. WS | Power (mWatts)

Single Ring 0.904 7.696 0.782 13.603

Buffered HRing | 12.433 | 16.188

Buffered Mesh 1.025 11.947 1.091 13.454
CHIPPER 0.986 4.631 1.013 7.275

Flattened Butterfly || 1.037 10.760 1.211 30.434

HiRD 1.020 4.746 1.066 12.480
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Sweep over Different Bandwidth
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Packet Reassembly

 Borrowed from CHIPPER [Fallin et al. HPCA’10]

— Retransmit-Once = Destination node
reserves a buffer slot for a dropped packet

— Provides ejection guarantee



Other Optimizations

* Map cores that communicate with each
other a lot on the same local ring

— Takes advantage of the faster local ring
routers



Related Concurrent Works

* Clumsy Flow Control
[Kim et al., IEEE CAL'13]

— Requires coordination between cores and
memory controllers

* Transportation inspired NoCs
[Kim et al.,, HPCA’14]

—1
—1

NoCs require an additional credit network
NoCs have more complex flow control

—F

IRD is more lightweight



Some Related Previous Works

* Hierarchical Bus [Udipi et al., HPCA'10]
— HiRD provides more scalability

 Concentrated Meshe [Das et al., HPCA’09]

— Several nodes share one router
— Used on meshed network
— Less power efficient than HiRD

e | ow-cost Mesh Router [J. Kim, MICRO’09]
— Specifically designed for meshes

— Does not solve issues in deflection-based flow
control (HiRD does)



