
A Heterogeneous Multiple Network-On-Chip Design:

An Application-Aware Approach

Asit K. Mishra
Intel Corporation

Hillsboro, OR 97124, USA
asit.k.mishra@intel.com

Onur Mutlu
Carnegie Mellon University
Pittsburgh, PA 15213, USA

onur@cmu.edu

Chita R. Das
The Pennsylvania State University
University Park, PA 16802, USA

das@cse.psu.edu

ABSTRACT

Current network-on-chip designs in chip-multiprocessors are agnostic to
application requirements and hence are provisioned for the general case,
leading to wasted energy and performance. We observe that applica-
tions can generally be classified as either network bandwidth-sensitive or
latency-sensitive. We propose the use of two separate networks on chip,
where one network is optimized for bandwidth and the other for latency,
and the steering of applications to the appropriate network. We further
observe that not all bandwidth (latency) sensitive applications are equally
sensitive to network bandwidth (latency). Hence, within each network, we
prioritize packets based on the relative sensitivity of the applications they
belong to. We introduce two metrics, network episode height and length,
as proxies to estimate bandwidth and latency sensitivity, to classify and
rank applications. Our evaluations show that the resulting heterogeneous
two-network design can provide significant energy savings and perfor-
mance improvements across a variety of workloads compared to a single
one-size-fits-all single network and homogeneous multiple networks.

Categories and Subject Descriptors

C.1.2 [Computer Systems Organization]: Multiprocessors; Intercon-
nection architectures

Keywords

Heterogeneity, On-chip Networks, QoS, Packet Scheduling

1. INTRODUCTION
Network-on-Chips (NoCs) are envisioned to be a scalable communica-

tion substrate for building multicore systems, which are expected to exe-
cute a large number of different applications and threads concurrently to
maximize system performance. A NoC is a critical shared resource among
these concurrently-executing applications, significantly affecting each ap-
plication’s performance, system performance, and energy efficiency. Tra-
ditionally, NoCs have been designed in a monolithic, one-size-fits-all man-
ner, agnostic to the needs of different access patterns and application char-
acteristics. Two common solutions are to design a single NoC for (1)
the common-case, or average-case, application behavior or (2) the near-
worst case application behavior, by over-provisioning the design as much
as possible to maximize network bandwidth and to minimize network la-
tency. However, applications have widely different demands from the net-
work, e.g., some require low latency, some high bandwidth, some both,
and some neither. As a result, both design choices are suboptimal in ei-
ther performance or energy efficiency. The “average-case” network design
cannot provide good performance for applications that require more than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

the supported bandwidth or that benefit from lower latency. Both net-
work designs, especially the “over-provisioned” design, are power- and
energy-inefficient for applications that do not need high bandwidth or low
latency. Hence, monolithic, one-size-fits-all NoC designs are suboptimal
from performance and energy standpoints.

Ideally, we would like a NoC design that can provide just the right
amount of bandwidth and latency for an application such that the appli-
cation’s performance requirements are satisfied (or its performance maxi-
mized), while the system’s energy consumption is minimized. This can be
achieved by dedicating each application its own NoC that is dynamically
customized for the application’s bandwidth and latency requirements. Un-
fortunately, such a design would not only be very costly in terms of die
area, but also requires innovations to dynamically change the network
bandwidth and latency across a wide range. Instead, if we can categorize
applications into a small number of classes based on similarity in resource
requirements, and design multiple networks that can efficiently execute
each class of applications, then we can potentially have a cost-efficient
network design that can adapt itself to application requirements.

Building upon this insight and drawing inspiration from the embedded
and ASIC designs where a single network is customized for a single appli-
cation, this paper proposes a new approach to designing an on-chip inter-
connect that can satisfy the diverse performance requirements of general-
purpose applications in an energy-efficient manner. We observe that ap-
plications can be divided into two general classes in terms of their require-
ments from the network: bandwidth-sensitive and latency-sensitive. Two
different NoC designs, each of which is customized for high bandwidth or
low latency, can, respectively, satisfy requirements of the two classes in a
more power-efficient manner than a monolithic single network. We, there-
fore, propose designing two separate heterogeneous networks on a chip,
dynamically monitoring executing applications’ bandwidth and latency
sensitivity, and steering/injecting network packets of each application to
the appropriate network based on whether the application is deemed to be
bandwidth-sensitive or latency-sensitive. We show that such a heteroge-
neous design can achieve better performance and energy efficiency than
current average-case one-size-fits-all NoC designs.

To this end, based on extensive application profiling, we first show that
a high-bandwidth, low-frequency network is best suited for bandwidth-
sensitive applications and a low-latency, high-frequency network is best
for latency-sensitive applications. Next, to steer packets into a particular
network, we identify a packet’s sensitivity to network latency or band-
width. For this, we propose a new packet classification scheme that is
based on an application’s intrinsic network requirements. We introduce
two new metrics, network episode length and height, to dynamically iden-
tify the communication requirements (latency and bandwidth sensitivity)
of applications. Observing that not all applications are equally sensitive to
latency or bandwidth, we propose a fine-grained prioritization mechanism
for applications within the bandwidth and latency optimized networks.
Thus, our mechanism consists of first dynamically classifying an applica-
tion as latency or bandwidth sensitive, then steering it into the appropriate
network and, finally within each network prioritizing each application’s
packets based on its relative potential to improve overall system perfor-
mance and reduce energy.

Our evaluations on a 64-core 2D mesh architecture, considering 9 de-
sign alternatives with 36 diverse applications, show that our heteroge-
neous two-network NoC design consisting of a 64b link-width latency-

1

!"

#"

$"

%"

&"

'"

("

)"

*+
+,
-"

.
/0" */
1"

23
*,
"

453
67
"

8*
/6
34
"

7/
9
:4
"

6*
9
2"

;$
(&

"

7:
:"

+<
/*
="

1>
61
>"

,?8
@"

7>
89

A"

*4
1*
/"

9
?,:
"

;9
9
3/
"

4.
?9

"

458
8"

4*
+"

B*
,*
6"

4+
;6

B"

8C
?+
"

,8
9
"

45*
4"

4>
+,
B"

:*
:1
4"

>9
63

1"

73
9
4"

9
:0
"

DE
""F
6>

/9
G"1
>"
(&

8"
,?6
A4
H"

(&8",?6A4" #$I8",?6A4" $'(8",?6A4" '#$8",?6A4"

J>.341"

J#KLMD"

N?7;341"

J#KLMD"

Figure 1: Instruction throughput (IT) scaling of applications with increase in network bandwidth.

!"#$

!"%$

!"&$

!"'$

("!$

("($

)*
*+
,$

-
./$).
0$

12
)+
$

342
56
$

7)
.5
23
$

6.
8
93
$

5)
8
1$

:;
#<

$

69
9$

*=
.)
>$

0?
50
?$

+@7
A$

6?
78

B$

)3
0)
.$

8
@+9
$

:8
8
2.
$

3-
@8

$

347
7$

3)
*$

C)
+)
5$

3*
:5

C$

7D
@*
$

+7
8
$

34)
3$

3?
*+
C$

9)
90
3$

?8
52

0$

62
8
3$

8
9/
$EF
$G5

?.
8
"$0
?$
;H
9>
9+2

$.?
,0
2.
I$

;H9>9+2$.?,02.$ <H9>9+2$.?,02.$ #H9>9+2$.?,02.$

Figure 2: Instruction throughput (IT) scaling of applications with increase in router latency.

optimized network and a 256b link-width bandwidth-optimized network,
provides 5%/3% weighted/instruction throughput improvement and 31%
energy reduction over an iso-resource (320b link-width) monolithic net-
work design. When compared to a baseline 256b link-width monolithic
network, our proposed design provides 18%/12% weighted/ instruction
throughput improvement and 16% energy reduction.

2. COMMUNICATION CHARACTERIZATION
We provide observations that highlight the intrinsic heterogeneity in

network demand across applications. These observations form the moti-
vation for an application-aware NoC design. We start by looking at two
fundamental parameters: network channel bandwidth and latency.
Impact of channel bandwidth on performance scaling: Channel or
link bandwidth is a critical design parameter that affects network latency,
throughput and energy/power. To study the sensitivity of an application to
variation in link bandwidth, we use a 64-core chip-multiprocessor (CMP)
on an 8x8 mesh network, where both cores and network clocked at the
same frequency, and run a copy of the same application on all nodes on the
network. Table 1 shows the system configuration. We chose applications
from commercial, SPEC CPU2006, SPLASH and SPEC OMP suites. We
analyze scenarios where we double the bandwidth starting with 64-bit
links up to 512-bit links. Figure 1 shows the results of this analysis for
30 of the 36 applications in our benchmark suite (6 non-network-sensitive
applications are omitted to reduce clutter in the plots). In this figure, the
applications are shown on the X-axis in order of their increasing L1MPKI
(L1 misses per 1000 instructions). The Y-axis shows the average instruc-
tion throughput when normalized to the instruction throughput of the 64b
network.

Observations from this analysis are: (1) Of the 30 applications shown,
performance of 12 applications (the rightmost 12 in the figure after swim)
scales with increase in channel bandwidth. For these applications, an 8X
increase in bandwidth results in at least a 2X increase in performance.
We call these applications bandwidth-sensitive applications. (2) The other
18 applications (all applications to the left of and including swim), show
very little to no performance improvement with increase in network band-
width. (3) Even for bandwidth-sensitive applications, not all applications’
performance scales equally with increase in bandwidth. For example,
while omnet, gems and mcf show more than 5X performance improve-
ment for 8X bandwidth increase, applications like xalan, soplex and
cacts show only 3X improvement for the same bandwidth increase. (4)
L1MPKI is not necessarily a good predictor of bandwidth-sensitivity of
applications. Intuitively, applications that have high L1MPKI would in-
ject more packets into the network, and hence would benefit more from a
higher-bandwidth network. But this intuition does not hold entirely true.
For instance, bzip, despite having a higher L1MPKI than xalan, is less
performance-sensitive to bandwidth than xalan. Thus, we need a better
metric to identify bandwidth-sensitive applications.
Impact of network latency on performance scaling: Next, we analyze
the impact of network/router latency on the instruction throughput of these

applications. For this, we add an extra pipeline latency of 2 and 4 cycles to
each router (in the form of dummy pipeline stages) on top of the baseline
router’s 2-cycle latency. The cores and the network are clocked at the
same frequency for this analysis. Increasing the pipeline stages at each
router mimics additional contention in the routers when compared to the
baseline network. Figure 2 shows the results for this analysis, where the
channel bandwidth is 128b (although the observation from this analysis
holds true for other channel bandwidths as well).

Our observations are the following: (1) Bandwidth-sensitive applica-
tions (the rightmost 12 applications) are not very responsive to increase
in network/router latency. On average, for a 3X increase in per-hop la-
tency, there is only 7% degradation in application performance (instruc-
tion throughput) for these applications, i.e., an extra 4 cycle latency per
router is tolerated by these applications. (2) On the other hand, for all
applications to the left of and including swim, there is about 25% per-
formance degradation when the router latency increases from 2-cycles to
6-cycles. We call these latency-sensitive applications. (3) L1MPKI is not
a perfect indicator of latency-sensitivity (hmmer, despite having a higher
L1MPKI than h264, does not show proportional performance improve-
ment with reduction in router latency).
Application-level implications on network design: The above analysis
suggests that a single monolithic network is not the best option for vari-
ous application demands. Therefore, an alternative approach to designing
an on-chip interconnect is to have multiple networks, each of which is
specialized for common application requirements, and dynamically steer
requests of each application to the network that matches the application’s
requirements. Based on Figures 1 and 2, a wide and low-frequency net-
work is suitable for bandwidth-sensitive applications, while a narrow and
high-frequency network suitable for latency-sensitive ones. To improve
the performance of the latency-sensitive applications, a network architect
can reduce the router pipeline latency from 2-cycles (our baseline) to a sin-
gle cycle, while keeping the frequency constant, or increase the network
frequency (to reduce network latency). Although there are proposals that
advocate for single-cycle routers [10, 13, 12, 6], such designs often involve
speculation, which increases complexity and can be ineffective at high or
adverse load conditions, and require relatively sophisticated arbiters that
are not necessarily energy efficient. Hence, while single-cycle routers are
feasible, in this paper, we use frequency as a knob to reduce the network
latency. According to our analysis, increasing the frequency of the net-
work from 1 GHz to 3 GHz (3 times the core frequency) leads to less
than 1.5% increase in energy for latency-sensitive applications (results for
energy with frequency scaling are omitted for brevity).

Designing latency- and bandwidth-customized networks is the first step
in achieving customization in the network. We also need a runtime mech-
anism to classify applications into one of the two categories: latency or
bandwidth sensitive. In addition, since not all applications are equally sen-
sitive to bandwidth or latency, we would like a mechanism that ranks the
applications within each category in a more fine-grained manner within
the latency- and bandwidth-customized networks. The next section dis-
cusses how we perform application classification.

2

3. DYNAMIC CLASSIFICATION OF APPLICATIONS
The goal of dy-

Episode length Ep
iso

de
 h

eig
ht

Ou
tst

an
din

g
Ne

tw
or

k P
ac

ke
ts

Network episode Compute episode

Figure 3: Network and compute episodes.

namically identify-
ing an application’s
sensitivity to latency
or bandwidth is to
enable the local net-
work interface (NI)
at each router to steer packets into a network that has been optimized for
either latency or bandwidth. We propose two new metrics, called network
episode length and episode height, that effectively capture the network
latency and bandwidth demands of an application.
Episode length and height: During its life cycle, an application alter-
nates between two kinds of episodes (shown in Figure 3): (1) network
episode, where the application has at least one packet (to L2 cache or
to DRAM) in the network, and (2) compute episode, where there are no
outstanding cache/memory requests by the thread. During the network
phase, there may be multiple outstanding packets from the application in
the network owing to various techniques that exploit memory-level paral-
lelism (MLP) [5, 14]. During this network phase, the core is likely stalled,
waiting for L2 and memory requests to be serviced. Because of this, the
instruction throughput of the core is low. During the compute episode,
however, the instruction throughput is high [9]. We characterize a net-
work episode by its length and height. Length is the number of cycles
the episode lasts starting from when the first packet is injected into the
network until there are no more outstanding packets belonging to that
episode. Height is the average number of packets (L1 misses) injected
by the application during the network episode. To compute height, the
core hosting the application keeps track of the number of outstanding L1
misses (when there is at least 1 L1 miss) in the re-order buffer on a per-
cycle basis.

A short episode height suggests that the application has low MLP. In
other words, the latencies of the requests are not overlapped, and as a result
the application’s progress is sensitive to network latency. The application
also does not require significant bandwidth because it has a small number
of outstanding requests at any given time. On the other hand, a tall episode
height suggests that the application has a large number of requests in the
network, and the network latency of the packets are overlapped. This
indicates that the application likely needs significant bandwidth from the
network to make progress while its progress is less sensitive to network
latency. Hence, we use the network episode height of an application as
the main indicator of latency or bandwidth sensitivity of an application.

A short episode length (on average) suggests that the application is less
network intensive. Contrast this with an application that has a long episode
length, i.e., more network intensive. An equal amount of network delay
would slow down the former application more than it does the latter appli-
cation. As a result, the former application with a short average episode
length is likely to be more sensitive to network latency, and therefore
would likely benefit from being prioritized over another application with
a longer average episode length. Note that this observation is similar to
Kim et al.’s for memory controllers [9], which showed that prioritizing an
application with shorter memory episodes over a one with longer memory
episodes is likely to improve performance.

We compute running averages of the episode height and length to keep
track of these metrics at runtime. We quantize episode height as tall,
medium or short and episode length as long, medium and short. This
allows us to perform fine-grained dynamic application (or, application
phase) classification based on episode length and height. Figures 4 and 5
show these metrics for 30 applications in our benchmark suite. Note that,
these figures show the average metrics for an entire application and that
there are intra-application latency/bandwidth sensitive phases that our dy-
namic scheme (Section 4) captures. Based on Figures 1 and 2, we classify
all applications whose average episode length and height are shorter than
sjbb’s episode length and height, respectively, to be short in length and
height (shaded black in the figures). Applications whose average episode
height is larger than sjbb’s episode height but lower than 7 (empirically
chosen) are classified as having medium (shaded blue in the figures) and
the remaining as having tall episode heights (shaded with hatches in Fig-
ure 4). Empirically, a cut-off of 10K cycles is chosen to classify applica-
tions as having medium vs. long episode length.

Classification and ranking of applications: Figure 6 (left) shows the
classification of applications based on their episode height and length. The
figure also shows the bandwidth-sensitive and latency-sensitive applica-
tions based on such a classification. We use this fine-grained classification
to steer applications to the two networks as well as rank applications for
prioritization within a network.

Episode height, as a general principle, is used to identify the band-
width/latency sensitivity of applications. Applications with tall height are
considered bandwidth sensitive (due to high MLP, which leads to high
bandwidth demand as well as high latency tolerance), and steered to the
bandwidth-optimized network. Applications with low height are latency
sensitive (due to low MLP, which leads to low latency tolerance for each
packet) and are steered to the latency-optimized network. Figure 6 shows
the resulting classification of applications. Note that applications whose
episode height is medium but episode length is short are classified as
latency-sensitive as they have neither short nor tall episode heights, but
demand less from the network due to short episodes.

Episode length, for the most part, is used to determine the ranking of
applications within each network. The general principle is to prioritize
applications with shorter network episode length over others because de-
laying such applications in the network has much more of an effect on their
performance (slowdown) than delaying applications with long episode
lengths (since the latter set of applications are already slow due to long
network episodes anyway). Figure 6 (right) shows the resulting ranking
of the applications in their respective networks based on relative episode
length and height.

4. DESIGN DETAILS
Since we use a canonical 2D network in our study, instead of discussing

the standard router and network designs, we focus on the design aspects
for supporting our classification and prioritization schemes in this section.
Computing episode characteristics: To filter out short-term fluctuations
in episode height/length, and adapt our techniques to handle long-term
traffic characteristics, we use running averages of the metrics. On every
L1 miss, the NI computes the running average of episode height/length.
To compute episode height, the outstanding L1 miss count is obtained
from the miss-status handling registers (MSHRs). Counting the number
of cycles (using an M -bit counter) the L1 MSHRs are occupied gives the
information to compute episode length. This M -bit counter is reset every
batching interval, B. We use the notion of batching [3, 15] to prevent
starvation due to ranking of applications in each network, as done in [3,
15, 2] (more information on this is in Section S.3).

When the NI of a router receives a packet, it: (1) updates the episode
height/length metric for the current application phase and (2) decides which
network this packet is to be steered to, based on the classification scheme
(Section 3). Thus, the episode metrics are computed per phase of an ap-
plication. All packets belonging to a particular phase are steered into the
network optimized for either latency or bandwidth. Note that each appli-
cation’s rank and network sensitivity are decided at runtime (although the
classification analysis we provided in Section 3 was for the whole applica-
tion). This helps our scheme to capture within-application variation in la-
tency and bandwidth sensitivity. No central coordination is required in our
technique to decide a uniform central ranking across all the applications
in the system, which was needed in past works that ranked applications
for prioritization [3, 2]. Once a packet’s rank is decided, it is consistently
prioritized with that rank across the entire network until it reaches its des-
tination.

The NI tags the transmitted packet with its rank (2-bits) and its batch-id
(3-bits). At each router, the priority bits in the header-flit are utilized by
the priority arbiters in a router to allocate the virtual channels (VCs) and
the switch. To prevent priority inversion due to VCs in routers, where a
packet belonging to an older batch or higher rank is queued behind a lower
ranked packet, we use atomic buffers [16].
Customized network design choices: As mentioned earlier, we opt for
a high-frequency but low link-width network for the latency-sensitive ap-
plications and a high-bandwidth network operating at the same frequency
as the cores for the bandwidth-sensitive applications. We use a 2-stage
baseline router and increase the router frequency up to 3 times for the
latency-sensitive network. High-frequency routers can be designed by a
combination of both micro-architecture and circuit optimizations as shown

3

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)*
*+
,"

-
./").
0"

12
)+
"

342
56
"

7)
.5
23
"

6.
8
93
"

5)
8
1"

:$
(&

"

69
9"

*;
.)
<"

0=
50
="

+>7
?"

6=
78

@"

)3
0)
."

8
>+9
"

:8
8
2.
"

3-
>8

"

347
7"

3)
*"

A)
+)
5"

3*
:5

A"

7B
>*
"

+7
8
"

34)
3"

3=
*+
A"

9)
90
3"

=8
52

0"

62
8
3"

8
9/
"

C;
6D
"2
*>
3=
12

"+2
56
0:
"E>
5"
9<
9+2

3F
" #!G" #HG" !D%I"!D&I"

Figure 4: Average episode length (in cycles) across applications.

!"

#"

$"

%"

&"

'!"

'#"

'$"

()
)*
+"

,
-." (-
/"

01
(*"

231
45
"

6(
-4
12
"

5-
7
82
"

4(
7
0"

9#
%$

"

58
8"

):
-(
;"

/<
4/
<"

*=6
>"

5<
67

?"

(2
/(
-"

7
=*8
"

97
7
1-
"

2,
=7

"

236
6"

2(
)"

@(
*(4

"

2)
94

@"

6A
=)
"

*6
7
"

23(
2"

2<
)*
@"

8(
8/
2"

<7
41

/"

51
7
2"

7
8.
"

B:
5C
"1
)=
2<
01

"9
1=
59
/"D
41

/,
<-
?")

(8
?1
/2
E"

Figure 5: Average episode height (in packets) across applications.

Ranking Length

Long Medium Short

Height

Tall Rank-4 Rank-2 Rank-1

Medium Rank-3 Rank-2 Rank-2

Short Rank-4 Rank-3 Rank-1

Classification Length

Long Medium Short

Height

Tall gems, mcf
sphinx,lbm,

cactus, xalan
sjeng, tonto

Medium

omnetpp,

apsi

ocean, sjbb,

sap, bzip, sjas,

soplex, tpc

applu, perl, barnes,

gromacs, namd, calculix,

gcc, povray, h264,

gobmk, hmmer, astar

Short leslie
art, libq, milc,

swim
wrf, deal

Bandwidth-sensitive

Latency-sensitive

Figure 6: Application classification and ranking based on episode length and height.

by previous works [10, 11] as well as industrial prototypes [18, 7]. In
canonical router designs, the arbitration and crossbar traversal stages are
the bottleneck stages in terms of critical path [11]. In our design, since
the latency-optimized network has only 3 VCs per physical channel and a
narrow link width (64b), our analysis (based on synthesis of the RTL of
VC and switch allocation and crossbar stages) shows that it is feasible to
clock the routers in this network at a higher frequency.

Network bandwidth depends on link-width and frequency. A designer
could think of increasing the frequency of the bandwidth-customized net-
work to increase the total network bandwidth. However, increasing the
frequency of the wider 256b network would adversely affect the power
of this network. Hence, in our network designs, we only increase the
frequency of the narrow 64b link-width network whose power envelope
is 43% lower than the wider network. Increasing the frequency of the
latency-customized network also increases this network’s bandwidth, but
since we steer only latency-sensitive applications (which are agnostic to
bandwidth increase) into this network, the performance improvement of
these applications is primarily due to network latency reduction.

The design space for optimizing network latency or bandwidth is large,
and not possible to cover in this paper. Although we articulate frequency
as a knob to improve latency in the latency-optimized network, a de-
signer could use different topologies, flow-control, and arbitration mech-
anisms as various knobs to improve latency. The motivation of this paper
is to demonstrate that heterogeneous multiple networks (customized for
latency and bandwidth separately) provides a better design than a mono-
lithic network or homogeneous multiple networks. The 64b 3X-frequency
network for the latency-sensitive applications and 256b 1X-frequency net-
work for the bandwidth-sensitive applications are only two design points
to demonstrate the concept.

5. EVALUATION METHODOLOGY
Design scenarios: Starting with a monolithic network, we show the ben-
efits of having two networks, each customized for either bandwidth or
latency. We also show the benefits of our scheme compared to an iso-
resource single network (with the same total bandwidth). Following are
the nine design scenarios we evaluate on our experimental platform:
❶ 1N-128: This design has a single homogeneous 128b link network.
We assume this to be our starting point. Starting with this monolithic
network, we increase its bandwidth to create a bandwidth-optimized net-
work, and reduce its bandwidth (and increase its frequency) to design a
latency-optimized network. ❷ 1N-256: This configuration has a single
homogeneous network with 256b links. We chose this as our baseline net-

work. Starting with this network, we first design a homogeneous multiple
network design (where each network has equal bandwidth, 2N-128x128)
and then customize one network for latency-sensitive applications and the
other network for bandwidth-sensitive applications. ❸ 2N-128x128: This
design has two parallel networks, each with 128b link width. The buffer
resources in each network is half that of the 1N-128 network and each
of the networks operate at the same frequency as the cores. Packets are
steered into each network with a probability of 0.5, i.e., there is load bal-
ancing across the networks. ❹ 1N-512: This design has a single network
with 512b link width. We call this a high-bandwidth configuration and
analyze it to see how our proposal fares compared to a very high band-
width network. ❺ 2N-64x256-ST: In this design, there are two parallel
networks, one with 64b link width and the other with 256b link width.
The buffering resources in each network is half that of a single network,
so that the total buffering resources are constant across this design and
a design that has a single network. Further, in this configuration, the
bandwidth-sensitive packets are steered (hence, the annotation ST) into
the 256b network and the latency-sensitive packets are steered into the 64b
network. Each network in this configuration is clocked at the frequency
of the cores. ❻2N-64x256-ST+RK(no FS): This design is the same as
the previous network except that the network also prioritizes applications
based on their ranks (hence, the annotation RK) at every cycle in a router.
❼2N-64x256-ST+RK(FS): This design is same as the previous configu-
ration except that the 64b network is clocked at 3X the frequency of cores.
The 256b network is still clocked at the core frequency. This configuration
is analyzed to see the benefits of frequency scaling (hence, the annota-
tion FS) the latency-optimized network. ❽1N-320(no FS): In this design,
there is a single network with 320b (=64b+256b) links. The network op-
erates at the frequency of the core. This configuration is iso-bandwidth
with all our 64x256 networks and is analyzed to see the benefits of our
proposal over an equivalent configuration. ❾1N-320(FS): This design is
similar to the above design, except that the network is now clocked at 3X
the core frequency. This design is analyzed to see the effectiveness of our
scheme over a scheme that is iso-resource as well as over-clocked to help
latency-sensitive applications.
Experimental setup: Our proposals are evaluated on an instruction-trace-
driven, cycle-level x86 CMP simulator. Table 1 provides the configuration
of our baseline, which contains 64 cores in a 2D, 8x8 mesh NoC. The net-
work connects the cores, shared L2 cache banks, and memory controllers
(these all stay constant across all evaluated designs). A data packet con-
sists of 1024b (=cache line size) and is decomposed into flits depend-
ing upon the link width in each design. Since wiring resources on die
are abundant [1, 19], when simulating parallel networks, we assume the

4

!"#$%&$'()*+,'-.&/0$)#0'%-12)

3"'0#*4)*+,'-.&/0$)#0'%-12)

5)

-#6*(&7)1-+'01)

8&6$&10*9-#":

):,)

5)

Figure 7: Schematic of the proposed CMP.

Table 1: Baseline core, cache, memory and network configuration

Core

128-entry instruction window, 2 INT/FP operations and 1 LD/ST per cycle

Caches and Main Memory

L1 Caches: 32 KB per-core (private), 4-way set associative, 128B block size,
2-cycle latency, write-back, 32 MSHRs
L2 Caches: 1MB per bank, shared, 16-way set associative, 128B block size,
3-cycle bank latency, 32 MSHRs
Main Memory: 4GB; up to 16 outstanding requests per processor, 320 cycle access

Network and Router

Network Router: 2-stage wormhole switched, virtual channel flow control,
6 VC’s per port, 5 flit buffer depth, 1 flit/address packet, X-Y routing
Network Topology: 8x8 mesh, each node has a router, processor, private L1 cache
and shared L2 cache bank (all nodes), 4 memory controllers (1 at each corner node),
256b bi-directional links (= data packet’s flit width)

networks to be implemented in the same 2D substrate as the cores. A
high-level schematic of the proposed interconnection network is shown
in Figure 7. The dynamic and leakage energy numbers for the network
were extracted using Orion 2.0 [8] and Rock Creek router data [7], and
incorporated into our simulator for detailed network energy analysis at
32nm technology node. Based on Orion 2.0 and Rock Creek layout es-
timates, the area of two networks (router and links) consisting of 256b
and 64b links is only 1% larger than the iso-resource network with 320b
links (2.4X larger area when compared to the 128b link network), and
the power envelope of these two networks is 20% lower than the iso-area
network (2.3X higher power when compared to the 128b link network).
The counter configurations used in our techniques are: (1) counter size for
number of cycles in a network episode, M=14bits (2) batching interval,
B=16,000 cycles.
Application setup: We use a diverse set of multiprogrammed application
workloads comprising scientific, commercial, and desktop benchmarks.
We use the SPEC CPU2006 benchmarks, applications from SPLASH-2
and SPEC-OMP benchmark suites, and four commercial workload traces
(sap, tpcc, sjbb, sjas) totaling 36 applications. All our experiments
analyze multiprogrammed workloads, where each core runs a separate ap-
plication. We simulate at least 640 Million instructions across 64 pro-
cessors (minimum 10 Million instructions per core; a core keeps exert-
ing pressure even after 10M instructions; on average each run simulates
3.5 Billion instructions in the system). All our results are aggregated
across 25 workload combinations. In each of these workload combina-
tions, 50% (32) of the applications are latency-sensitive and 50% (32) of
the applications are bandwidth-sensitive. This provides a good mix of
bandwidth/latency-sensitive applications, which is likely to be a common
mix for future multicore systems. Within each of these two categories,
applications are randomly picked to form the workload.
Evaluation metrics: Our primary performance evaluation metrics are in-
struction throughput [4] and weighted speedup [17]. Instruction through-
put is defined to be the sum total of the number of instructions committed
per cycle (IPC) in the entire CMP. The weighted speedup metric sums up
the speedup (inverse of slowdown) experienced by each application in a
workload, compared to its standalone run in the same configuration, and
represents system throughput [4].

6. ANALYSIS OF RESULTS
Performance comparison: Figure 8 shows the performance comparison
across the network designs. The following observations are in order:
❶ Two 128b networks (2N-128x128) provide similar performance (both
system and instruction throughput) as a bandwidth-equivalent single mono-
lithic network with 256b links (1N-256). This is in spite of the increase
in packet serialization in the networks. The primary reason for this per-

!"

#!"

$!"

%!"

&!"

'!"

(!"

#
)
*#
$
+
"

#
)
*$
'
(
"

$
)
*#
$
+
,#
$
+
"

#
)
*'
#
$
"

$
)
*(
&
,$
'
(
*-
."

$
)
*(
&
,$
'
(
*-
./
0
1
23
4
"5
-6
"

$
)
*(
&
,$
'
(
*-
./
0
1
25
-6
"

#
)
*%
$
!
23
4
"5
-6
"

#
)
*%
$
!
"2
5-
6"

7
8
9:
;
<8
=
">
?
8
8
=
@
?
"

(a) Weighted speedup (WS) (system throughput)

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

#
+
,#
$
*
"

#
+
,$
'
(
"

$
+
,#
$
*
-#
$
*
"

#
+
,'
#
$
"

$
+
,(
&
-$
'
(
,.
/"

$
+
,(
&
-$
'
(
,.
/0
1
2
34
5
"6
.7
"

$
+
,(
&
-$
'
(
,.
/0
1
2
36
.7
"

#
+
,%
$
!
34
5
"6
.7
"

#
+
,%
$
!
"3
6.
7"

84
9:
;<
=>
5
4
":
?
;5
<
@?
A
<
:"

(b) Instruction throughput (IT)

Figure 8: Performance comparison of various network designs, aver-
aged across 25 multiprogrammed workload mixes.

formance improvement is reduction in congestion in each network (each
network now sees 50% fewer packets than a monolithic wider network).
The total bandwidth in the 2N-128x128 design is the same as the 1N-
256 design and hence bandwidth-sensitive applications’ performance is
not affected. On the other hand, the performance of latency-sensitive ap-
plications is improved because of the load balancing (reduced congestion
is each network), and thus, the degradation in performance due to serial-
ization latency increase is compensated by performance improvement due
to reduced congestion.
❷ Bandwidth- and latency-optimized parallel networks operating at the
same frequency as the processor along with steering of packets based
on their bandwidth/latency sensitivity (2N-64x256-ST) provide 4.3%/5%
system/instruction throughput improvement, over the baseline (1N-256)
design. By providing bandwidth-sensitive applications more bandwidth
(than 1N-128) and reducing the congestion compared to a monolithic net-
work, the performance of both bandwidth- and latency-sensitive applica-
tions is improved. Prioritizing and ranking packets based on their critical-
ity after steering them into a network (2N-64x256-ST+RK(no FS)) pro-
vides an additional 6%/3% improvement in system/instruction throughput
over the 2N-64x256-ST design. This is because, our ranking scheme pri-
oritizes the relatively network-sensitive applications in each network, and
ensures no starvation using batching.
❸ Frequency scaling the latency-optimized network along with steering
and ranking the applications (2N-64x256-ST+RK(FS)) provides the max-
imum performance improvement among our proposals: 18%/12% sys-
tem/instruction throughput improvement over the baseline network. With
frequency scaling, the latency-optimized network is clocked at a higher
frequency, accelerating the latency-sensitive packets and this brings the
additional benefits in performance.
❹ Frequency scaling and steering along with ranking of applications
(2N-64x256-ST+RK(FS)) is better than an iso-resource network (1N-
320(no FS)) by 5%/3% in weighted/instruction throughput. 2N-64x256-
ST+RK(FS) design is within 2.0%/2.2% system/instruction throughput of
the high-frequency iso-resource network with frequency increased by 3X
(1N-320(FS)). High frequency of the 1N-320(FS) network helps latency-
sensitive applications and high bandwidth of the same network (compared
to 256b links) helps bandwidth-sensitive applications. But, as we will
show shortly, the energy consumption of such a wide network is higher
than our proposal.
❺ Our proposed 2N-64x256-ST+RK(FS) design’s system performance is
within 1.8% of a very high bandwidth network (1N-512). A high band-
width network helps bandwidth-sensitive applications, but provides little

5

!"
!#$"
!#%"
!#&"
!#'"
("

(#$"
(#%"
(#&"
(#'"
$"

(
)
*(
$
'
"

(
)
*$
+
&
"

$
)
*(
$
'
,(
$
'
"

(
)
*+
(
$
"

$
)
*&
%
,$
+
&
*-
."

$
)
*&
%
,$
+
&
*-
./
0
1
23
4
"5
-6
"

$
)
*&
%
,$
+
&
*-
./
0
1
25
-6
"

(
)
*7
$
!
23
4
"5
-6
"

(
)
*7
$
!
"2
5-
6"

)
4
89

:;
<=
>
?
">
3
>
8@
A"

(a) Energy consumption of different networks

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(
)
*(
$
'
"

(
)
*$
+
&
"

$
)
*(
$
'
,(
$
'
"

(
)
*+
(
$
"

$
)
*&
%
,$
+
&
*-
."

$
)
*&
%
,$
+
&
*-
./
0
1
23
4
"5
-6
"

$
)
*&
%
,$
+
&
*-
./
0
1
25
-6
"

(
)
*7
$
!
23
4
"5
-6
"

(
)
*7
$
!
"2
5-
6"89

:
"2
3
4
;<

"=
4
"(
)
*(
$
'
"3
>=
#6
"

(b) Energy-delay product (EDP) of networks

Figure 9: Energy and EDP comparison of various network designs
(all results normalized to the 1N-128 network).

benefit for other applications. Additionally, as will be shown next, a wide-
link network’s energy consumption is very high (about 75% higher than
a 128b link-width network). Hence, although our proposed network pro-
vides similar performance as a very high bandwidth network, it does so at
a lower energy envelope.
Energy and EDP comparison: Increasing the link width decreases the
serialization (and zero-load) latency and hence, end-to-end latency is re-
duced. However, increasing the link width also affects router crossbar
power quadratically. Figure 9 shows the energy and energy-delay product
(EDP) of the applications across the 9 designs. We find that:
❶ The average energy consumption of a 256b link network (1N-256) is
38% higher than a 128b link network (1N-128). However, the two 128b
network design (2N-128x128) has similar energy consumption as a single
128b link monolithic network. The energy reduction going from one net-
work to two networks comes primarily from reduction in network latency
(by reducing the congestion in each network). In fact, we observed that the
energy consumption of two parallel networks, each with link width N/2,
is always lower than a single network with link width N . When compared
to the 1N-128 network, the 2N-128x128 network has the same buffer-
ing resources but double the number of routers and links, which leads to
higher power. However, the 2N-128x128 has better performance and less
contention, which leads to lower energy. These two effects mostly cancel
out, leading to similar energy consumption for 2N-128x128 and 1N-128.
❷ The average energy consumption of a high bandwidth (512b links) net-
work (1N-512) is 75% and 26% higher than a 128b and 256b link network
respectively. When link width increases, although serialization latency
reduces, the crossbar power starts to dominate the energy component.
❸ Our proposed design with two heterogeneous networks and fine-grained
application prioritization in each network (2N-64x256-ST+RK(FS)) con-
sumes 16% lower energy than the baseline 1N-256 network. This is 39%
lower energy when compared to a high-bandwidth network (1N-512) and
31% lower energy than an iso-resource network which is frequency scaled
(1N-320(FS)). Overall, our proposed design consumes lower energy than
an iso-resource 320b link network, and the 2N-64x256-ST network. Note
that using fine-grained prioritization within each network provides 6.7%
energy reduction over not doing so.
❹ On the EDP metric, our proposed design (2N-64x256-ST+RK(FS)) is
35% better than the baseline (1N-256). Our scheme reduces network la-
tency significantly, which lowers the delay component in the EDP met-
ric. Even without frequency scaling, the 2N-64x256-ST+RK(no FS) de-
sign has 22% lower EDP than the baseline. Our proposed design always
has lower EDP than a high-bandwidth network (1N-512), the iso-resource

320b link network, or the iso-resource 2N-64x256-ST network.
Summary: Overall, compared to an iso-resource 320b link monolithic

network operating at 1X frequency, we find that the combination of a 64b
network operating at 3X frequency and a 256b network operating at 1X
frequency (along with our steering and prioritization algorithms) provides
better performance, energy and EDP.

7. CONCLUSIONS
We proposed an application-driven approach for designing high-

performance and energy-efficient heterogeneous on-chip networks
(NoCs). The goal of our design is to cater to the applications’ require-
ments more effectively and more efficiently than an application-agnostic
monolithic NoC design. The main idea is to have one network customized
for low latency and another customized for high bandwidth, and steer
latency-sensitive applications to the former and the bandwidth-sensitive
applications to the latter. Within each network, applications that are more
likely to improve system throughput are prioritized over others. We find
that network episode height and length are simple-to-measure metrics to
classify applications in terms of bandwidth- and latency-sensitivity. Our
results show that the proposed heterogeneous two-network design outper-
forms a single monolithic network or two homogeneous networks. We
conclude that our application-driven methodology for designing hetero-
geneous NoCs provides high system and application performance at re-
duced energy, and hope that the proposed dynamic application classifica-
tion scheme can provide a simple framework for designing heterogeneous
on-chip networks.

References
[1] J. Balfour et al. “Design Tradeoffs for Tiled CMP On-Chip Net-

works”. In ICS. 2006.

[2] R. Das et al. “Aergia: Exploiting Packet Latency Slack in On-Chip
Networks”. In ISCA. 2010.

[3] R. Das et al. “Application-Aware Prioritization Mechanisms for
On-Chip Networks”. In MICRO. 2010.

[4] S. Eyerman et al. “System-Level Performance Metrics for Multi-
program Workloads”. In IEEE Micro (2008).

[5] A. Glew. “MLP Yes! ILP No!” In ASPLOS WACI. 1998.

[6] M. Hayenga et al. “The NoX router”. In MICRO. 2011.

[7] J. Howard et al. “A 48-Core IA-32 Processor in 45 nm CMOS
Using On-Die Message-Passing and DVFS for Performance and
Power Scaling”. In J. Solid-State Circuits 46.1 (2011).

[8] A. B. Kahng et al. “ORION 2.0: A Fast and Accurate NoC Power
and Area Model for Early-Stage Design Space Exploration”. In
DATE. 2009.

[9] Y. Kim et al. “ATLAS: A Scalable and High-Performance Schedul-
ing Algorithm for Multiple Memory Controllers”. In HPCA. 2010.

[10] A. Kumar et al. “A 4.6Tbits/s 3.6GHz Single-cycle NoC Router
with a Novel Switch Allocator in 65nm CMOS”. In ICCD. 2007.

[11] A. K. Mishra et al. “A Case for Dynamic Frequency Tuning in On-
Chip Networks”. In MICRO. 2010.

[12] T. Moscibroda et al. “A Case for Bufferless Routing in On-Chip
Networks”. In ISCA. 2009.

[13] R. Mullins et al. “Low-Latency Virtual-Channel Routers for On-
Chip Networks”. In ISCA. 2004.

[14] O. Mutlu et al. “Efficient Runahead Execution: Power-Efficient Mem-
ory Latency Tolerance”. In IEEE Micro (2006).

[15] O. Mutlu et al. “Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems”. In ISCA.
2008.

[16] C. A. Nicopouloulos et al. “ViChaR: A Dynamic Virtual Channel
Regulator for Network-on-Chip Routers”. In MICRO. 2006.

[17] A. Snavely et al. “Symbiotic Jobscheduling for a Simultaneous Mul-
tithreaded Processor”. In ASPLOS. 2000.

[18] S. Vangal et al. “An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm
CMOS”. In ISSCC. 2007.

[19] D. Wentzlaff et al. “On-Chip Interconnection Architecture of the
Tile Processor”. In IEEE Micro (2007).

6

0

500

1000

1500

2000

0

20

40

60

80

100

120

ap
pl

u

w
rf ar
t

de
al

sj
en

g

ba
rn

es

gr
m

cs

na
m

d

h2
64 gc

c

pv
ra

y

to
nt

o

lib
q

go
bm

k

as
ta

r

m
ilc

hm
m

er

sw
im

sj
bb sa

p

xa
la

n

sp
hn

x

bz
ip

lb
m

sj
as

so
pl

x

ca
ct

s

om
ne

t

ge
m

s

m
cf

Sl
ac

k
(in

 c
yc

le
s)

L1
/L

2
M

PK
I

L1MPKI L2MPKI Slack

Figure 10: Average L1MPKI, L2MPKI and slack of applications.

m
ilc

p
o
vr

a
y

sw
im

h
m

m
e
r

a
st

a
r

le
sl

ie
3
d

g
o
b
m

k
b
a
rn

e
s

g
ro

m
a
cs g
cc

sj
e
n
g

n
a
m

d
lib

q
u
a
n
tu

m
h
2
6
4
re

f
ca

lc
u
lix

p
e
rlb

e
n
ch a
rt

d
e
a
lII

a
p
p
lu

w
rf

o
m

n
e
tp

p
G

e
m

sF
D

T
D

a
p
si

m
cf

sj
b
b

to
n
to

sp
h
in

x3 lb
m tp
c

sj
a
s

o
ce

a
n

sa
p

b
zi

p
2

so
p
le

x
xa

la
n
cb

m
k

ca
ct

u
sA

D
M

0
1
0

2
5

L
in

ka
g
e
 d

is
ta

n
ce

Figure 11: Hierarchical clustering of applications. Applications on the left branch of the root are
latency-sensitive, those on the right branch are bandwidth-sensitive.

!"

#$"

$!"

%$"

&!!"

&#$"

&$!"

&%$"

#!!"

##$"

!" $" &!" &$" #!" #$" '!" '$"

(
)*
+)
,"
-.
/0

1"
20
3
"/
4"2
50

6.
72
"

80397."/4":;02*7.2"

Figure 12: Reduction in within-group
sum of squares with increase in number
of clusters.

S. SUPPLEMENTAL
In this supplemental section, we present further analyses of our pro-

posed metrics and how they compare to previously proposed criticality
metrics, explain more the rationale for our application classification into
sub-classes, discuss subtle but important design aspects and how we ad-
dressed them, provide more discussion on application characteristics, and
present how our scheme compares to closely related previous works.

S.1 Network Episodes vs. Other Metrics
In Section 3, we use the notion of network episodes for classifying

applications into latency-sensitive or bandwidth-sensitive categories. We
propose two new metrics, network episode height and length for the clas-
sification. We contrast these proposed metrics to two recently proposed
heuristics, L1MPKI [8] and slack [7], which were proposed to estimate a
packet’s criticality in the network.
Private cache misses per instruction (MPI): This metric captures an
application’s network intensity. If the network intensity is low, the ap-
plication likely (but not always) has low MLP and hence its request are
likely to be latency-sensitive as opposed to bandwidth-sensitive. Fig-
ure 10 shows the L1MPKI and L2 MPKI of 30 applications. We find
that MPI (or MPKI) can help in identifying latency-sensitive applications
from bandwidth-sensitive ones. In Figure 10, all applications to the left of
sjbb have a lower MPKI than sjbb’s MPKI. Since these applications
are latency-sensitive, empirically we can think of having a threshold in
MPKI (equal to sjbb’s MPKI) to classify applications as bandwidth- or
latency-sensitive. However, as mentioned earlier, this metric is not as ef-
fective in distinguishing between applications within the latency-sensitive
class or bandwidth-sensitive class (as we will demonstrate in Section S.5.4).
Packet slack: Slack was investigated by Das et al. [7] to identify a packet’s
criticality in the network. It quantifies how long a packet can be delayed
without affecting an application’s performance. We measured an instruc-
tion’s slack from when it enters the re-order buffer (ROB) to when the in-
struction actually becomes the oldest in the ROB and is ready to commit.
Figure 10 shows how average slack varies across applications. Intuitively,
the slack of an L1-miss instruction directly translates to the packet’s crit-
icality in the network: an application that has a larger average slack is
more tolerant to network delay versus an application that has a smaller
slack. We find that, although slack is very useful in prioritizing individual
packets’ criticality, it has low correlation in identifying increase in perfor-
mance with increase in bandwidth or frequency for a given application.

S.2 Rationale for Application Classification
In Section 3, we classify applications into two gross classes, latency-

and bandwidth-sensitive, and nine sub-classes. The sub-classes aid our
mechanism in fine-grained prioritization within the networks to further
improve performance and reduce energy. We take two decisions in our

application-level classification: (1) choosing sjbb’s episode length and
height as a threshold to distinguish between applications, and (2) choosing
9 smaller sub-classes after classifying the applications as bandwidth- or
latency-sensitive. Here, we present more empirical results that had led us
to these decisions.

Figure 11 shows the results of the hierarchical clustering of all the ap-
plications in our benchmark suite. Hierarchical clustering incrementally
groups objects that are similar, i.e., objects that are close to each other in
terms of some distance metric [13]. The input to the clustering algorithm
consists of the improvement in IPC with bandwidth scaling (from 64b
to 512b) and improvement in IPC with router latency scaling (from 1X to
3X), i.e., values from Figures 1 and 2. Our purpose is to observe whether a
clustering algorithm perceives noticeable difference between applications’
performance with frequency and bandwidth scaling. To perform cluster-
ing, we tried using various linkage distance metrics (linkage metric deter-
mines the affinity between sets of data-points as a function of the pairwise
distances between them), such as Euclidean distance, Pearson correlation,
and average distance between the objects, and found similar clustering re-
sults with all. In all cases, the clustering was consistent with that shown
in Figure 11 (shown for Euclidean distance). Although the eventual hi-
erarchical cluster memberships are different from that shown in our clas-
sification matrix in Figure 6, the broader classification of how hierarchi-
cal clustering groups applications into bandwidth- and latency-sensitive
clusters (from the root, the left dendrogram represents latency-sensitive
applications and the right dendrogram represents bandwidth-sensitive ap-
plications) matches exactly with our classification scheme, which is based
on episode height and length – with the exception of sjeng. The rea-
son for sjeng’s misclassification is that its performance does not scale
with bandwidth and hence, hierarchical clustering classifies it as a latency-
sensitive application. However, sjeng’s episode height is tall and length
is short, on average, meaning it is very bursty during a small interval of
time (as such, it has high MLP). Because of this, we classify it as the
highest ranking application in the bandwidth-optimized network.
Why 9 sub-classes? To answer this question, we measure the total within-
group sum-of-squares (WG-SS) of the clusters resulting from hierarchical
clustering. Figure 12 shows this metric as the number of clusters increases.
The total WG-SS is a measure of the total dispersion between individual
clusters and is regarded as a metric to decide the optimal number of clus-
ters from a hierarchical or K-means clustering algorithm [18, 27]. When
all clustering objects are grouped into one cluster, the total WG-SS is max-
imized, whereas, if each object is classified as a separate object, WG-SS
is minimized (=0). Figure 12 suggests that 8 or 9 clusters have similar
WG-SS and, 8 or 9 clusters reduce the total WG-SS by 13X compared to
a single cluster. Based on this, we choose 9 classes for our application
classification and, hence, quantize episode height and length into three
classes each.

7

S.3 More Design Details
We present two important design decisions we made while architecting

our scheme: 1) how to handle starvation, 2) how to handle packet reorder-
ing.
Handling starvation: Prioritizing highly-ranked packets in a network
may lead to starvation of other packets. To prevent starvation, we com-
bine our application-aware prioritization with a “batching mechanism"
proposed by Das et al. in [8, 7]. Each packet is part of a batch, and pack-
ets belonging to older batches are prioritized over packets from younger
batches. Only if two packets belong to the same batch, they are prior-
itized based on their applications’ rank order that is based on episode
height/length. A batch also provides a convenient granularity in which
the ranking of the applications is enforced.

To support batching, each node keeps a local copy of a batch-ID (BID)
register containing the current (injection) batch number and maximum
supported batch-ID register containing the maximum number of batch-
ing priority levels (L). BID is incremented every B cycles, and thus, BID
values across all nodes are the same. Due to batch-ID wrap-around, a
router cannot simply prioritize packets with lower batch-IDs over others
with higher batch-IDs, and we use schemes suggested in [8, 7] to handle
relative priorities inside a router. In all our experiments we used L=8 as
the number of batching levels.
Handling packet reordering: Due to deterministic routing in the baseline
design, for every pair of source and destination in the network, there is
always a single path from the source to the destination. Multiple packets
on this path do not get re-ordered. When using our scheme with multiple
networks, since there are multiple routes between a source and destination
pair (via the two different networks), there is a chance of packet reordering
in the network. The effect arising out of reordering could be handled either
by the software or application layer or by the network itself.

In our case, we use packet sequence numbers to handle reordering.
For each destination, a source router maintains sequence numbers (8 bit)
which every outgoing packet is tagged with. These sequence numbers
are reset at the end of every batch. With this, whenever a cache con-
troller or memory controller receives a request packet to be serviced (in
the attached cache bank or memory), the controller inspects the sequence
number of the packet. If the sequence number of the packet is not the next
in sequence to the last serviced packet, then the controller does not ser-
vice the packet and buffers it in the NIC queues. With this scheme, even
if a node (cache or memory controller) receives packets out-of-order, the
packets are always serviced in order. Note that reordering in the network
could also be introduced due to the use of adaptive routing or deflection
routing [10, 11]. Our scheme could leverage any mechanism that handles
packet reordering in such systems.

S.4 Application Characteristics
Table 2 characterizes our application suite. The reported parameters

are for the applications running alone on the baseline system without
any interference. The table shows application characteristics based on
network load intensity (high/low), episode height (tall/medium/short),
episode length (long/medium/short) and the fraction of execution time
spent in network episodes. It is this fraction of execution time spent in
the network that is reduced by our scheme which leads to improvement
in performance. Energy efficiency benefits come from 1) steering each
application to a network that is more appropriately provisioned for the
application’s demand, 2) prioritizing applications appropriately such that
contention that degrades both energy and performance reduces.

S.5 More Results and Analyses

S.5.1 Reply packets from L2 cache (DRAM) to L1 cache (L2
cache)

In all of our earlier evaluations, we route the L2 cache (DRAM) replies
to the L1 cache (L2 cache) in either the 64b or the 256b network depending
on where the request packet traversed the network: if the request packet
was bandwidth-sensitive, the matching reply is sent on the 256b network
and vice-versa.

Reply packets are L1/L2 cache line sized packets (1024b). Transmit-
ting them over the 64b network increases their serialization latency. How-
ever, the 64b network is relatively less congested than the 256b network
(because of lower injection ratio of latency-sensitive applications). Since

Table 2: Application characteristics when run on the baseline (Load:
High/Low depending on network injection rate, Episode height:
Tall/Medium/Short, Episode length: Long/Medium/Short, Net. frac-
tion: Fraction of execution time spent in network episodes)

Benchmark Load Episode Episode Net.
height length fraction

1 applu Low Medium Short 8.2%

2 wrf Low Short Short 9.4%

3 perlbench Low Medium Short 8.8%

4 art Low Short Medium 82.3%

5 dealII (deal) Low Short Short 27.9%

6 sjeng Low Tall Short 28.4%

7 barnes Low Medium Short 72.5%

8 gromacs (grmcs) Low Medium Short 48.6%

9 namd Low Medium Short 51.6%

10 h264ref (h264) Low Medium Short 61.5%

11 calculix Low Medium Short 48.2%

12 gcc Low Medium Short 47.6%

13 povray (pvray) Low Medium Short 59.6%

14 tonto Low Tall Short 53.0%

15 libquantum (libq) Low Short Medium 99.0%

16 gobmk Low Medium Short 64.9%

17 astar Low Medium Short 82.8%

18 milc Low Short Medium 88.2%

19 ocean Low Medium Medium 90.1%

20 hmmer Low Medium Short 66.1%

21 swim Low Short Medium 41.0%

22 sjbb High Medium Medium 87.3%

23 sap High Medium Medium 88.9%

24 xalancbmk (xalan) High Tall Medium 89.9%

25 sphinx3 (sphnx) High Tall Medium 83.9%

26 bzip2 (bzip) High Medium Medium 84.9%

27 lbm High Tall Medium 81.1%

28 sjas High Medium Medium 89.5%

29 soplex (soplx) High Medium Medium 81.2%

30 tpc High Medium Medium 86.8%

31 cactusADM (cacts) High Tall Medium 82.3%

32 leslie3d High Short Long 99.7%

33 omnetpp High Medium Long 92.6%

34 GemsFDTD High Tall Long 97.3%

35 apsi High Medium Long 95.2%

36 mcf High Tall Long 99.2%

the 64b network is clocked at 3X frequency, the network latency in this
network is also lower. Our analysis shows that transmitting all the reply
packets in the 256b network increases the system/instruction throughput
by an additional 1.6%/2.4% and reduces energy consumption by an addi-
tional 4% when compared to the baseline network. Also, since coherence
packets are usually latency-sensitive, our design can route them in the
latency-optimized network.

S.5.2 Intra-application latency/bandwidth sensitivity

Figure 13 shows the percentage of packets in an application dynam-
ically steered into each network via our mechanism. The data for this
figure is collected by averaging 25 workload combinations consisting of
50% latency and 50% bandwidth-sensitive applications (the same work-
loads used for Figures 8 and 9). The results highlight the dynamic nature
of our scheme, where each application phase is classified as either latency
or bandwidth-sensitive and all packets belonging to a phase are steered
into either of the networks. The figure depicts the intra-application vari-
ance: at one extreme is gems which has 99% bandwidth-sensitive packets
and on the other extreme is wrf which has 98% latency-sensitive pack-
ets. All other applications in our benchmark suite lie within these two
extremes.

S.5.3 Sensitivity to fraction of bandwidth- and latency-sensitive
applications in the workload

In all results shown so far, each workload is a multiprogrammed mix
of applications with equal percentage of latency- and bandwidth-sensitive
applications. To analyze the sensitivity of our scheme across more diverse
multiprogrammed application mixes, we vary the fraction of bandwidth-
sensitive applications in a workload from 0% to 100%. Figure 14 shows
the results of this analysis (the results are normalized to the 128b mono-
lithic network). We find that our proposal, in general, has higher sys-
tem/instruction throughput across the entire spectrum of workload mixes.
However, as expected, the benefits are small (4%/9% system/instruction

8

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*
*+
,#

-
./#).
0#

12
)+
#

3)
.4
25
#

6.
7
85
#

4)
7
1#

9$
&%

#

68
8#

*:
.)
;#

+<3
=#

6>
37

?#

)5
0)
.#

7
<+8
#

97
7
2.
#

5-
<7

#

+2
5+<
2#

*2
.+#

8)
+8,

+<@
#

0>
40
>#

5A2
46
#

5A3
3#

5)
*#

@)
+)
4#

5*
94

@#

3B
<*
#

+3
7
#

5A)
5#

5>
*+
@#

8)
80
5#

>7
42

0#

62
7
5#

7
8/
#

)*
5<#

>8
2)
4#

0*
8#"
#*
)8
?2
05
#<4
#5,

3C
42

0-
>.
?#

D)0248;C>*E7<B21#420->.?#

F)41-<109C>*E7<B21#420->.?#

Figure 13: Fraction of packets dynamically steered into latency- vs. bandwidth-optimized networks.

!"#$

!"%$

&"&$

&"'$

&"($

!)$*+,-./-01$

&!!)$2+03,45$

6()$*+,-./-01$

#()$2+03,45$

(!)$*+,-./-01$

(!)$2+03,45$

#()$*+,-./-01$

6()$2+03,45$

&!!)$*+,-./-01$

!)$2+03,45$

.
7
$8
9
:
$/
0
$;
9
<
=>

"$
?<
$&
,
@&
6
A
$9
B
?"
C$

.7$ /0$

Figure 14: Performance improvement versus the proportion of
bandwidth- and latency-sensitive applications in each workload.

!"#$

%"!$

%"&$

%"'$

%(
)%
&#

)*
+,

$

%(
)%
&#

)*
+-
.
/$

&(
)%
&#

0%
&#

)1
2
)3
4
1$

&(
)5
'0
&6

5)
7
)1
2
)3
4
1$

&(
)5
'0
&6

5)
*+
-.

/8
9*
:$

7
*$
;<
=$
>+
$8<

?@
A
"$B
?$
%(

)%
&#

$<
CB
":
$

7*$ >+$

Figure 15: Weighted speedup (WS) and instruction throughput (IT)
versus state-of-the art designs [8, 5] (normalized to 1N-128).

throughput improvement over 1N-128 design) when the system has 100%
latency-sensitive applications. When the application mix is skewed (i.e.,
the system has only bandwidth or latency-sensitive applications), we
weighted-load-balanced the two networks (as described in Section S.5.4).
As such, with 100% latency-sensitive applications in the workload mix,
benefits arise only due to load distribution and reduction in congestion,
rather than customization of the network to application requirements
(which is the purpose of heterogeneity). We conclude that, even though
our design provides performance (and energy) benefits when the applica-
tion mix is homogeneous in terms of latency- and bandwidth-sensitivity,
our heterogeneous network design provides the largest performance and
energy improvements when the application mix is heterogeneous.

S.5.4 Comparison with prior works

Das et al. [8] proposed a ranking framework, called stall time criticality
(STC), which is based on the dynamic identification of the criticality of
a packet in the network. The authors use the L1MPKI metric to estimate
the criticality of an application’s packets and use a ranking framework
that ranks applications with lower L1MPKI over applications with higher
L1MPKI. In their work, a central decision logic periodically gathers in-
formation from each node, determines a global application ranking and
communicates this information to each node. Each node then prioritizes
packets 1) belonging to the oldest batch over others and 2) in their ap-
plication rank order within a batch. Since our proposal also prioritizes
applications in the network using a rank order, we compare our scheme
with STC. When comparing with STC for a single network design, we
utilize a 2-level ranking scheme for our technique. The first-level ranking
prioritizes latency-sensitive applications over bandwidth-sensitive appli-
cations. Within the latency- and bandwidth-sensitive application groups,
we use episode width and height to rank the applications (Section 3).

Balfour and Dally [5] showed the effectiveness of load balancing traffic
equally over two parallel networks. In this work, each of the networks

is a concentrated mesh with similar bandwidth. With detailed layout/area
analysis, the authors found that a second network has no impact on the
chip area since the additional routers can reside in areas initially allocated
for wider channels in the first network. As we also propose parallel net-
works (although our results in Section 6 show heterogeneous networks are
better than homogeneous), we compare our scheme with a similar load-
balancing scheme proposed by Balfour and Dally [5].

Figure 15 shows the results, where we compare the performance of our
schemes with the two prior proposals mentioned above. All numbers in
these plots are normalized to that of a 128b-link network with no prior-
itization (the link width used in the STC work [8]). The STC schemes
are annotated as -STC and the load-balancing schemes are annotated as
-LD-BAL with a given network design in the figure.

The performance improvement of STC is 6%/3% system/instruction
in a 128b link monolithic network. Our 2-level ranking scheme shows
11%/8% system/instruction throughput improvement over the 1N-128 de-
sign. As shown earlier, L1MPKI, which STC uses, is not a very strong
metric to decide the fine-grained latency/bandwidth sensitivity of applica-
tions. L1MPKI metric does not take into account the time factor, which
is taken into account by network episode height and length metrics. We
found that taking time into account provides a better indication of 1) an
application’s average MLP (bandwidth demand), 2) how important prior-
itizing the application will be in relative terms to other applications. Both
of these factors are inherently is affected by the notion of time. Averaging
episode height over time, and measuring episode length provides better
estimators for these two factors than L1MPKI, which leads to the perfor-
mance benefit with our schemes compared to STC.

In Figure 15, 2N-128x128-LD-BAL design is the one proposed by Bal-
four and Dally in [5]: equal load balancing across two parallel networks.
Since we propose heterogeneous networks, when load balancing between
two networks in comparison to [5], we steer packets in the weighted-
ratio of 256

256+64
and 64

256+64
between the 256b and the 64b network. This

scheme is annotated as -W-LD-BAL. We consider weighted-ratio load
balancing, because our evaluations show that, steering packets with equal
probability into each network leads to more congestion in the 64b-link net-
work and under-utilizes the 256b-link network, leading to suboptimal per-
formance. Overall, we find that our proposal (2N-64x256-ST+RK(FS))
has an additional 18%/10% system/instruction throughput improvement
over the weighted load-balancing scheme (2N-64x256-W-LD-BAL). The
load balancing scheme is oblivious to application characteristics. With this
scheme, a latency-sensitive packet is steered into the bandwidth-optimized
network with a probability of 0.8 and a bandwidth-sensitive packet is
steered into the latency-optimized network with a probability of 0.2. As
a result, in both cases performance either degrades or does not improve.
We conclude that, with heterogeneous networks, application-unaware load
balancing (either equal or weighted-ratio) is suboptimal and that intelli-
gently steering packets based on the applications’ latency versus band-
width sensitivity can lead to significant performance benefits.

S.6 Related Work
To our knowledge, this is the first proposal for a heterogeneous on-chip

network where one network is customized for latency-sensitive workloads
and the other for bandwidth-sensitive ones. Our paper is also the first
to use the metrics network episode height and length to characterize the
latency- and bandwidth-sensitivity of applications. Our proposal is related
to other proposals of multiple networks, heterogeneous networks, and re-
quest prioritization, which we review below.
Multiple networks: We have already compared our scheme with Bal-
four and Dally’s proposal for homogeneous multiple networks [5], and
showed that our scheme is more effective than a (weighted) load balanc-

9

ing scheme. Other prior works that have proposed multiple networks for
NoCs include TRIPS [24], RAW [26], Tilera [29], and IBM cell [14, 2].
The motivation for including multiple networks in all these designs is en-
tirely different from ours. In TRIPS, multiple networks are used to con-
nect operand networks. RAW has two static networks (routes specified at
compile time) and two dynamic networks (one for trusted and other for
untrusted clients). Cell’s EIB has a set of four unidirectional concentric
rings (arranged in groups of four and interleaved with ground and power
shields) primarily to reduce coupling noises. DASH multiprocessor [19]
had multiple networks (request and reply meshes) to eliminate request-
reply deadlocks. Tilera’s iMesh network consists of five separate networks
to handle different packet sizes: memory access, streaming packet trans-
fers, user data, cache misses, and interprocess communication. In contrast
to all these multiple-network designs, our proposal customizes each net-
work to cater to a different class of applications.
Heterogeneity in networks: HeteroNoC [20], polymorphic NoCs [15]
and Kilo-NOC [12] have explored heterogeneity in NoCs from router
micro-architecture, topology and QoS perspectives, respectively. Het-
eroNoC constructs heterogeneous networks by using two types of routers
and is agnostic to application properties. Polymorphic NoCs provide per-
application network reconfiguration (that needs to be done before the ap-
plication is run) and incurs a high area overhead to provide performance
benefits. Kilo-NOC uses two kinds of routers, QoS-enabled and not QoS-
enabled, to provide low cost, scalable and energy-efficient QoS guaran-
tees in a network. Prior work has also investigated co-designing the NoC
with caches [6, 4], asymmetric cores [20] and memory controllers [1, 20].
In particular, works in [6, 4] have examined heterogeneous wires with
varying width, latency and energy, and proposed mapping coherence mes-
sages with differing latency and bandwidth characteristics onto the differ-
ent wires. Similar to ours, Volos et al. [28] proposes two asymmetric net-
works, one customized for coherence and short messages and the other for
cache block reply packets. Most of these past works have investigated het-
erogeneity or customization in the network based on micro-architectural
(long or short packets) or hardware characteristics (coherence). Our ap-
proach is different because it provides an application-aware design for
heterogeneous networks – as such, we expect our techniques can poten-
tially be combined with these other proposals for heterogeneity.
Request Prioritization: There has been extensive research on prioritiz-
ing memory accesses based on their importance to overall application per-
formance and system throughput/fairness [8, 7, 17, 22, 16, 23, 9, 21, 3,
25]. We already presented comparisons of our proposal to [8]. Closely
related to our work is Thread Cluster Memory Scheduling (TCM) by
Kim et al. [17]. In this work, the authors propose mechanisms to group
threads with similar memory access behavior into either latency-sensitive
or bandwidth-sensitive clusters and prioritize memory accesses (to DRAM)
of the latency-sensitive cluster over those of the bandwidth-sensitive clus-
ter at the memory controller. Our work is related to TCM in the sense that
we also exploit latency and bandwidth sensitivity of applications to im-
prove system performance. However, our proposal is different and com-
plementary since it is in the context of NoCs, uses new metrics for classi-
fication of applications, and exploits heterogeneous networks.

The concept of compute and non-compute episodes has been used in
ATLAS [16]. ATLAS defines memory episode length to be the duration for
which an application awaits at least one memory request (i.e., L2 miss).
ATLAS exploits the notion of memory episodes to prioritize threads with
the least attained memory service times. In contrast, we use the concept
of network episode length, which is the duration for which an application
awaits at least one L1 miss. We use network episode characteristics to
classify applications into categories. Further, we introduce the notion of
network episode height to measure an application’s MLP, which no previ-
ous work has done.

Acknowledgments

We would like to thank the anonymous reviewers, Rachata Ausavarung-
nirun, and Kevin Kai-Wei Chang for their feedback. This research is sup-
ported in part by NSF grants #1213052, #1152479, #1147388, #1139023,
#1017882, #0963839, #0811687, #147397, #1212962, #0953246 and
grants from Intel. Onur Mutlu is in part supported by an Intel Early Career
Faculty Honor Program Award.

References
[1] D. Abts et al. “Achieving Predictable Performance Through Bet-

ter Memory Controller Placement in Many-Core CMPs”. In ISCA.
2009.

[2] T. W. Ainsworth et al. “Characterizing the Cell EIB On-Chip Net-
work”. In IEEE Micro (2007).

[3] R. Ausavarungnirun et al. “Staged Memory Scheduling: Achieving
High Performance and Scalability in Heterogeneous Systems”. In
ISCA. 2012.

[4] R. Balasubramonian et al. “Microarchitectural Wire Management
for Performance and Power in Partitioned Architectures”. In HPCA.
2005.

[5] J. Balfour et al. “Design Tradeoffs for Tiled CMP On-Chip Net-
works”. In ICS. 2006.

[6] L. Cheng et al. “Interconnect-Aware Coherence Protocols for Chip
Multiprocessors”. In ISCA. 2006.

[7] R. Das et al. “Aergia: Exploiting Packet Latency Slack in On-Chip
Networks”. In ISCA. 2010.

[8] R. Das et al. “Application-Aware Prioritization Mechanisms for
On-Chip Networks”. In MICRO. 2010.

[9] E. Ebrahimi et al. “Parallel Application Memory Scheduling”. In
MICRO. 2011.

[10] C. Fallin et al. “CHIPPER: A Low-Complexity Bufferless Deflec-
tion Router”. In HPCA. 2011.

[11] C. Fallin et al. “MinBD: Minimally-Buffered Deflection Routing
for Energy-Efficient Interconnect”. In NOCS. 2012.

[12] B. Grot et al. “Kilo-NOC: a heterogeneous network-on-chip archi-
tecture for scalability and service guarantees”. In ISCA. 2011.

[13] T. Hastie et al. The Elements of Statistical Learning (2nd edition).
Springer-Verlag, 2008.

[14] J. A. Kahle et al. “Introduction to the Cell Multiprocessor”. In IBM
J. of Research and Development (2005).

[15] M. M. Kim et al. “Polymorphic On-Chip Networks”. In ISCA. 2008.

[16] Y. Kim et al. “ATLAS: A Scalable and High-Performance Schedul-
ing Algorithm for Multiple Memory Controllers”. In HPCA. 2010.

[17] Y. Kim et al. “Thread Cluster Memory Scheduling: Exploiting Dif-
ferences in Memory Access Behavior”. In MICRO. 2010.

[18] W. J. Krzanowski et al. “A Criterion for Determining the Number
of Groups in a Data Set Using Sum-of-Squares Clustering”. In Bio-
metrics 44.1 (1988).

[19] D. Lenoski et al. “The Stanford Dash multiprocessor”. In IEEE
Computer (1992).

[20] A. K. Mishra et al. “A Case for Heterogeneous On-Chip Intercon-
nects for CMPs”. In ISCA. 2011.

[21] S. P. Muralidhara et al. “Reducing Memory Interference in Mul-
ticore Systems via Application-Aware Memory Channel Partition-
ing”. In MICRO. 2011.

[22] O. Mutlu et al. “Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems”. In ISCA.
2008.

[23] O. Mutlu et al. “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors”. In MICRO. 2007.

[24] K. Sankaralingam et al. “Exploiting ILP, TLP, and DLP with The
Polymorphous TRIPS Architecture”. In ISCA. 2003.

[25] L. Subramanian et al. “MISE: Providing Performance Predictabil-
ity and Improving Fairness in Shared Main Memory Systems”. In
HPCA. 2013.

[26] M. B. Taylor et al. “The Raw Microprocessor: A Computational
Fabric for Software Circuits and General Purpose Programs”. In
IEEE Micro (2002).

[27] R. Tibshirani et al. “Estimating the Number of Clusters in a Data
Set via the Gap Statistic”. In Journal of the Royal Statistical Society.
63.2 (2001).

[28] S. Volos et al. “CCNoC: Specializing On-Chip Interconnects for
Energy Efficiency in Cache-Coherent Servers”. In NOCS. 2012.

[29] D. Wentzlaff et al. “On-Chip Interconnection Architecture of the
Tile Processor”. In IEEE Micro (2007).

10

