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First study of flash reliability:
▪ at a large scale 

▪ in the field
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We do not observe the 
effects of read disturbance 
errors in the field.
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We quantify the effects of 
the page cache and write 
amplification in the field.
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▪ persistent 
▪ high performance 
▪ hard disk alternative 
▪ used in solid-state drives (SSDs) 
▪ prone to a variety of errors 

▪ wearout, disturbance, retention

Flash memory



Our goal

Understand SSD reliability:
▪ at a large scale 

▪ millions of device-days, across four years 

▪ in the field 
▪ realistic workloads and systems



Server SSD 
architecture





PCIe



Flash chips



SSD controller
▪ translates addresses 
▪ schedules accesses 
▪ performs wear leveling
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Types of errors
Small errors
▪ 10's of flipped bits per KB 
▪ silently corrected by SSD controller

Large errors
▪ 100's of flipped bits per KB 
▪ corrected by host using driver 
▪ referred to as SSD failure



Small errors

Large errors

Types of errors

▪ ~10's of flipped bits per KB 
▪ silently corrected by SSD controller

▪ ~100's of flipped bits per KB 
▪ corrected by host using driver 
▪ refer to as SSD failure

We examine large errors 
(SSD failures) in this study.



Error collection/ 
analysis 
methodology



SSD data measurement
▪ metrics stored on SSDs 
▪ measured across SSD lifetime



SSD characteristics
▪ 6 different system configurations 

▪ 720GB, 1.2TB, and 3.2TB SSDs 
▪ servers have 1 or 2 SSDs 
▪ this talk: representative systems 

▪ 6 months to 4 years of operation 
▪ 15TB to 50TB read and written



Bit error rates (BER)
▪ BER = bit errors per bits transmitted 
▪ 1 error per 385M bits transmitted to 

1 error per 19.6B bits transmitted 
▪ averaged across all SSDs in each system type 

▪ 10x to 1000x lower than prior studies 
▪ large errors, SSD performs wear leveling



A few SSDs cause most errors



A few SSDs cause most errors



A few SSDs cause most errors

What factors contribute to 
SSD failures in the field?



Analytical methodology
▪ not feasible to log every error 
▪ instead, analyze lifetime counters 
▪ snapshot-based analysis
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bathtub curve
Storage lifecycle background:

the

[Schroeder+,FAST'07]

for disk drives

Failure 
rate

Usage

Early 
failure 
period

Useful life 
period

Wearout 
period

Do SSDs display similar 
lifecycle periods?



Use data written to flash
to examine SSD lifecycle

(time-independent utilization metric)
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Early detection lifecycle period 
distinct from hard disk drive lifecycle.
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Read disturbance
▪ reading data can disturb contents 
▪ failure mode identified in lab setting 
▪ under adversarial workloads



Read disturbance
▪ reading data can disturb contents 
▪ failure mode identified in lab setting 
▪ under adversarial workloads

Does read disturbance 
affect SSDs in the field?



Examine SSDs with
flash R/W

to understand read effects

(isolate effects of read vs. write errors)

ratios
most data readand

high
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We do not observe the 
effects of read disturbance 
errors in the field.
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High temperature: 
may throttle or 
shut down
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Throttling SSD usage helps mitigate 
temperature-induced errors.
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Access pattern effects
System buffering
▪ data served from OS caches 
▪ decreases SSD usage

Write amplification
▪ updates to small amounts of data 
▪ increases erasing and copying



Access pattern effects

Write amplification
▪ updates to small amounts of data 
▪ increases erasing and copying

System buffering
▪ data served from OS caches 
▪ decreases SSD usage
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OS

the impact of SSD writes
System caching reduces

Page cache
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Access pattern effects
System buffering
▪ data served from OS caches 
▪ decreases SSD usage

Write amplification
▪ updates to small amounts of data 
▪ increases erasing and copying



OS

Flash devices use a
translation layer

to locate data



OS

Logical 
address 
space

Translation layer
Physical 
address 
space

<offset1, size1>
<offset2, size2>

...



Sparse data layout
more translation metadata

potential for higher write amplification



Dense data layout
less translation metadata

potential for lower write amplification



Use translation data size
to examine effects of data layout

(relates to application access patterns)
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Figure 8: SSD failure rate vs. DRAM bu↵er usage. Sparse data mappings (e.g., non-contiguous data, indicated
by high DRAM bu↵er usage to store flash translation layer metadata) negatively a↵ect SSD reliability the
most (Platforms A, B, and D). Additionally, some dense data mappings (e.g., contiguous data in Platforms
E and F) also negatively a↵ect SSD reliability, likely due to the e↵ect of small, sparse writes.
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Figure 9: SSD failure rate vs. DRAM bu↵er usage across six applications that run on Platform B. We observe
similar DRAM bu↵er e↵ects to Figure 8, even among SSDs running the same application.

5. THE ROLE OF EXTERNAL FACTORS
We next examine how factors external to the SSD influence

the errors observed over an SSD’s lifetime. We examine the ef-
fects of temperature, PCIe bus power, and system-level writes
reported by the OS.

5.1 Temperature
It is commonly assumed that higher temperature negatively

a↵ects the operation of flash-based SSDs. In flash cells, higher
temperatures have been shown to cause cells to age more
quickly due to the temperature-activated Arrhenius e↵ect [39].
Temperature-dependent e↵ects are especially important to un-
derstand for flash-based SSDs in order to make adequate data
center provisioning and cooling decisions. To examine the ef-
fects of temperature, we used temperature measurements from
temperature sensors embedded on the SSD cards, which pro-
vide a more accurate portrayal of the temperature of flash cells
than temperature sensors at the server or rack level.

Figure 10 plots the failure rate for SSDs that have various
average operating temperatures. We find that at an operating
temperature range of 30 to 40�C, SSDs across server platforms
see similar failure rates or slight increases in failure rates as
temperature increases.

Outside of this range (at temperatures of 40�C and higher),
we find that SSDs fall into one of three categories with respect
to their reliability trends vs. temperature: (1) temperature-
sensitive with increasing failure rate (Platforms A and B),
(2) less temperature-sensitive (Platforms C and E), and (3)

temperature-sensitive with decreasing failure rate (Platforms
D and F). There are two factors that may a↵ect the trends we
observe with respect to SSD temperature.
One potential factor when analyzing the e↵ects of temper-

ature is the operation of the SSD controller in response to
changes in temperature. The SSD controllers in some of the
SSDs we examine attempt to ensure that SSDs do not exceed
certain temperature thresholds (starting around 80�C). Simi-
lar to techniques employed in processors to reduce the amount
of processor activity in order to keep the processor within a
certain temperature range, our SSDs attempt to change their
behavior (e.g., reduce the frequency of SSD access or, in the
extreme case, shut down the SSD) in order not to exceed tem-
perature thresholds.
A second potential factor is the thermal characteristics of

the machines in each platform. The existence of two SSDs in
a machine (in Platforms B, D, and F) compared to one SSD
in a machine may (1) increase the thermal capacity of the
machine (causing its SSDs to reach higher temperatures more
quickly and increase the work required to cool the SSDs) and
(2) potentially reduce airflow to the components, prolonging
the e↵ects of high temperatures when they occur.
One hypothesis is that temperature-sensitive SSDs with in-

creasing error rates, such as Platforms A and B, may not em-
ploy as aggressive temperature reduction techniques as other
platforms. While we cannot directly measure the actions the
SSD controllers take in response to temperature events, we
examined an event that can be correlated with temperature
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Figure 8: SSD failure rate vs. DRAM bu↵er usage. Sparse data mappings (e.g., non-contiguous data, indicated
by high DRAM bu↵er usage to store flash translation layer metadata) negatively a↵ect SSD reliability the
most (Platforms A, B, and D). Additionally, some dense data mappings (e.g., contiguous data in Platforms
E and F) also negatively a↵ect SSD reliability, likely due to the e↵ect of small, sparse writes.
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Figure 9: SSD failure rate vs. DRAM bu↵er usage across six applications that run on Platform B. We observe
similar DRAM bu↵er e↵ects to Figure 8, even among SSDs running the same application.

5. THE ROLE OF EXTERNAL FACTORS
We next examine how factors external to the SSD influence

the errors observed over an SSD’s lifetime. We examine the ef-
fects of temperature, PCIe bus power, and system-level writes
reported by the OS.

5.1 Temperature
It is commonly assumed that higher temperature negatively

a↵ects the operation of flash-based SSDs. In flash cells, higher
temperatures have been shown to cause cells to age more
quickly due to the temperature-activated Arrhenius e↵ect [39].
Temperature-dependent e↵ects are especially important to un-
derstand for flash-based SSDs in order to make adequate data
center provisioning and cooling decisions. To examine the ef-
fects of temperature, we used temperature measurements from
temperature sensors embedded on the SSD cards, which pro-
vide a more accurate portrayal of the temperature of flash cells
than temperature sensors at the server or rack level.

Figure 10 plots the failure rate for SSDs that have various
average operating temperatures. We find that at an operating
temperature range of 30 to 40�C, SSDs across server platforms
see similar failure rates or slight increases in failure rates as
temperature increases.

Outside of this range (at temperatures of 40�C and higher),
we find that SSDs fall into one of three categories with respect
to their reliability trends vs. temperature: (1) temperature-
sensitive with increasing failure rate (Platforms A and B),
(2) less temperature-sensitive (Platforms C and E), and (3)

temperature-sensitive with decreasing failure rate (Platforms
D and F). There are two factors that may a↵ect the trends we
observe with respect to SSD temperature.

One potential factor when analyzing the e↵ects of temper-
ature is the operation of the SSD controller in response to
changes in temperature. The SSD controllers in some of the
SSDs we examine attempt to ensure that SSDs do not exceed
certain temperature thresholds (starting around 80�C). Simi-
lar to techniques employed in processors to reduce the amount
of processor activity in order to keep the processor within a
certain temperature range, our SSDs attempt to change their
behavior (e.g., reduce the frequency of SSD access or, in the
extreme case, shut down the SSD) in order not to exceed tem-
perature thresholds.

A second potential factor is the thermal characteristics of
the machines in each platform. The existence of two SSDs in
a machine (in Platforms B, D, and F) compared to one SSD
in a machine may (1) increase the thermal capacity of the
machine (causing its SSDs to reach higher temperatures more
quickly and increase the work required to cool the SSDs) and
(2) potentially reduce airflow to the components, prolonging
the e↵ects of high temperatures when they occur.

One hypothesis is that temperature-sensitive SSDs with in-
creasing error rates, such as Platforms A and B, may not em-
ploy as aggressive temperature reduction techniques as other
platforms. While we cannot directly measure the actions the
SSD controllers take in response to temperature events, we
examined an event that can be correlated with temperature
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▪ Block erasures and discards 
▪ Page copies 
▪ Bus power consumption

More results in paper
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▪ Large scale 
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System characteristics
SSD 

capacity
PCIe

Average 
age 

(years)

SSDs per 
server

Average 
written 

(TB)

Average 
read 
(TB)

720GB v1, x4 2.4 1 27.2 23.8
2 48.5 45.1

1.2TB v2, x4 1.6 1 37.8 43.4
2 18.9 30.6

3.2TB v2, x4 0.5 1 23.9 51.1
2 14.8 18.2
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Channels
operate in parallel



DRAM buffer
▪ stores address translations 
▪ may buffer writes
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