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Executive Summary 
• Goal: Reduce average DRAM access latency with no 

modification to the existing DRAM chips 

• Observations:  

1) A highly-charged DRAM row can be accessed with low latency 

2) A row’s charge is restored when the row is accessed 

3) A recently-accessed row is likely to be accessed again:  

 Row Level Temporal Locality (RLTL) 

• Key Idea: Track recently-accessed DRAM rows and use lower 
timing parameters if such rows are accessed again 

• ChargeCache: 

– Low cost & no modifications to the DRAM 

– Higher performance (8.6-10.6% on average for 8-core) 

– Lower DRAM energy (7.9% on average) 
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Observation 1 

A highly-charged DRAM row can be 
accessed with low latency 

• tRCD: 44% 

• tRAS: 37% 

 

How does a row become 
highly-charged? 
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How Does a Row Become Highly-Charged? 

DRAM cells lose charge over time 

Two ways of restoring a row’s charge: 

• Refresh Operation 

• Access 

time Refresh 
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Refresh Access 
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Observation 2 

A row’s charge is restored when the row 
is accessed 
 

 

 

 

How likely is a recently-accessed 
row to be accessed again? 
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A recently-accessed DRAM row is likely to be 
accessed again. 

• t-RLTL: Fraction of rows that are accessed 
within time t after their previous access 

8ms – RLTL for single-core workloads 8ms – RLTL for eight-core workloads 
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Summary of the Observations 

1. A highly-charged DRAM row can be 
accessed with low latency 

 

2. A row’s charge is restored when the 
row is accessed 

 

3. A recently-accessed DRAM row is 
likely to be accessed again: 

Row Level Temporal Locality (RLTL) 
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Key Idea 

Track recently-accessed DRAM rows 
and use lower timing parameters if 

such rows are accessed again 
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ChargeCache Overview 
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Area and Power Overhead 

• Modeled with CACTI 

 

• Area 
–~5KB for 128-entry ChargeCache 
–0.24% of a 4MB Last Level Cache (LLC) 

area 
 

• Power Consumption 
–0.15 mW on average (static + dynamic) 
–0.23% of the 4MB LLC power consumption 
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Methodology 
• Simulator 

– DRAM Simulator (Ramulator [Kim+, CAL’15]) 
https://github.com/CMU-SAFARI/ramulator 

• Workloads 
– 22 single-core workloads 

• SPEC CPU2006, TPC, STREAM 

– 20 multi-programmed 8-core workloads 
• By randomly choosing from single-core workloads 

– Execute at least 1 billion representative instructions per 
core (Pinpoints) 

• System Parameters 
– 1/8 core system with 4MB LLC 

– Default tRCD/tRAS of 11/28 cycles 
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Mechanisms Evaluated 
Non-Uniform Access Time Memory Controller (NUAT) 
[Shin+, HPCA’14] 

– Key idea:  Access only recently-refreshed rows with 
lower timing parameters 

  Recently-refreshed rows can be accessed faster 

  Only a small fraction (10-12%) of accesses go to 
recently-refreshed rows 

ChargeCache 

  Recently-accessed rows can be accessed faster 

  A large fraction (86-97%) of accesses go to recently-
accessed rows  (RLTL) 

– 128 entries per core, On hit: tRCD-7, tRAS-20 cycles 

Upper Bound: Low Latency DRAM 

– Works as ChargeCache with 100% Hit Ratio 

– On all DRAM accesses: tRCD-7, tRAS-20 cycles 
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Eight-core Performance 
NUAT ChargeCache 

ChargeCache + NUAT LL-DRAM (Upperbound) 
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ChargeCache significantly improves 
multi-core performance 
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DRAM Energy Savings 
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Other Results In The Paper 

• Detailed analysis of the Row Level 
Temporal Locality phenomenon 

 

• ChargeCache hit-rate analysis 

 

• Sensitivity studies 
oSensitivity to t in t-RLTL 
oChargeCache capacity 
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Conclusion 
• ChargeCache reduces average DRAM access latency at low cost 

• Observations:  
1) A highly-charged DRAM row can be accessed with low latency 

2) A row’s charge is restored when the row is accessed 

3) A recently-accessed row is likely to be accessed again: Row 
Level Temporal Locality (RLTL) 

• Key Idea: Track recently-accessed DRAM rows and use lower 
timing parameters if such rows are accessed again 

• ChargeCache: 
– Low cost & no modifications to the DRAM 

– Higher performance (8.6-10.6% on average for 8-core) 

– Lower DRAM energy (7.9% on average) 

Source code will be available in May 
https://github.com/CMU-SAFARI  

https://github.com/CMU-SAFARI
https://github.com/CMU-SAFARI
https://github.com/CMU-SAFARI
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Detailed Design 
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RLTL Distribution 
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Sensitivity on Capacity 
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Hit-rate Analysis 
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Sensitivity on t-RLTL 

 


