
ChargeCache
Reducing DRAM Latency by

Exploiting Row Access Locality

Hasan Hassan,

Gennady Pekhimenko,

Nandita Vijaykumar,

Vivek Seshadri, Donghyuk Lee,
Oguz Ergin, Onur Mutlu

2

Executive Summary
• Goal: Reduce average DRAM access latency with no

modification to the existing DRAM chips

• Observations:

1) A highly-charged DRAM row can be accessed with low latency

2) A row’s charge is restored when the row is accessed

3) A recently-accessed row is likely to be accessed again:

 Row Level Temporal Locality (RLTL)

• Key Idea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

• ChargeCache:

– Low cost & no modifications to the DRAM

– Higher performance (8.6-10.6% on average for 8-core)

– Lower DRAM energy (7.9% on average)

3

 1. DRAM Operation Basics

 2. Accessing Highly-charged Rows

 4. ChargeCache

 5. Evaluation

 6. Conclusion

 3. Row Level Temporal Locality (RLTL)

Outline

4

DRAM Stores Data as Charge

1. Sensing

2. Restore

3. Precharge

DRAM
Cell

Sense-Amplifier

Three steps of charge
movement

MemCtrl

CPU

5

Data 0

Data 1

Cell

time

ch
a

rg
e

Sense-Amplifier

DRAM Charge over Time

Sensing Restore

Cell

Sense
Amplifier

Precharge

R/W ACT PRE

Ready to Access
Charge Level

tRCD

tRAS

Ready to Access
Ready to

Precharge

6

 1. DRAM Operation Basics

 2. Accessing Highly-charged Rows

 4. ChargeCache

 5. Evaluation

 6. Conclusion

 3. Row Level Temporal Locality (RLTL)

Outline

7

Accessing Highly-charged Rows

Data 0

Data 1

Cell

time

ch
a

rg
e

Sense-Amplifier

Sensing Restore Precharge

R/W ACT PRE
tRCD

tRAS

R/W PRE

Ready to Access Ready to Precharge

8

Observation 1

A highly-charged DRAM row can be
accessed with low latency

• tRCD: 44%

• tRAS: 37%

How does a row become
highly-charged?

9

How Does a Row Become Highly-Charged?

DRAM cells lose charge over time

Two ways of restoring a row’s charge:

• Refresh Operation

• Access

time Refresh

ch
a

rg
e

Refresh Access

10

Observation 2

A row’s charge is restored when the row
is accessed

How likely is a recently-accessed
row to be accessed again?

11

 1. DRAM Operation Basics

 2. Accessing Highly-charged Rows

 4. ChargeCache

 5. Evaluation

 6. Conclusion

 3. Row Level Temporal Locality (RLTL)

Outline

12

0%

20%

40%

60%

80%

100%

F
ra

ct
io

n
 o

f
A

cc
e

ss
e

s

Row Level Temporal Locality (RLTL)

86%

0%
20%
40%
60%
80%

100%

F
ra

ct
io

n
 o

f
A

cc
e

ss
e

s

97%

A recently-accessed DRAM row is likely to be
accessed again.

• t-RLTL: Fraction of rows that are accessed
within time t after their previous access

8ms – RLTL for single-core workloads 8ms – RLTL for eight-core workloads

13

 1. DRAM Operation Basics

 2. Accessing Highly-charged Rows

 4. ChargeCache

 5. Evaluation

 6. Conclusion

 3. Row Level Temporal Locality (RLTL)

Outline

14

Summary of the Observations

1. A highly-charged DRAM row can be
accessed with low latency

2. A row’s charge is restored when the
row is accessed

3. A recently-accessed DRAM row is
likely to be accessed again:

Row Level Temporal Locality (RLTL)

15

Key Idea

Track recently-accessed DRAM rows
and use lower timing parameters if

such rows are accessed again

16

ChargeCache Overview

Memory Controller

ChargeCache

A

:B

:D

:C

:E

:F

Requests:

:A

D A

DRAM

A
D

ChargeCache Miss: Use Default Timings ChargeCache Hit: Use Lower Timings

17

Area and Power Overhead

• Modeled with CACTI

• Area
–~5KB for 128-entry ChargeCache
–0.24% of a 4MB Last Level Cache (LLC)

area

• Power Consumption
–0.15 mW on average (static + dynamic)
–0.23% of the 4MB LLC power consumption

18

 1. DRAM Operation Basics

 2. Accessing Highly-charged Rows

 4. ChargeCache

 5. Evaluation

 6. Conclusion

 3. Row Level Temporal Locality (RLTL)

Outline

19

Methodology
• Simulator

– DRAM Simulator (Ramulator [Kim+, CAL’15])
https://github.com/CMU-SAFARI/ramulator

• Workloads
– 22 single-core workloads

• SPEC CPU2006, TPC, STREAM

– 20 multi-programmed 8-core workloads
• By randomly choosing from single-core workloads

– Execute at least 1 billion representative instructions per
core (Pinpoints)

• System Parameters
– 1/8 core system with 4MB LLC

– Default tRCD/tRAS of 11/28 cycles

20

Mechanisms Evaluated
Non-Uniform Access Time Memory Controller (NUAT)
[Shin+, HPCA’14]

– Key idea: Access only recently-refreshed rows with
lower timing parameters

 Recently-refreshed rows can be accessed faster

 Only a small fraction (10-12%) of accesses go to
recently-refreshed rows

ChargeCache

 Recently-accessed rows can be accessed faster

 A large fraction (86-97%) of accesses go to recently-
accessed rows (RLTL)

– 128 entries per core, On hit: tRCD-7, tRAS-20 cycles

Upper Bound: Low Latency DRAM

– Works as ChargeCache with 100% Hit Ratio

– On all DRAM accesses: tRCD-7, tRAS-20 cycles

21

0%

4%

8%

12%

16%

S
p

e
e

d
u

p

Single-core Performance
NUAT ChargeCache

ChargeCache + NUAT LL-DRAM (Upper bound)

ChargeCache improves
single-core performance

22

Eight-core Performance
NUAT ChargeCache

ChargeCache + NUAT LL-DRAM (Upperbound)

2.5% 9%

0%

4%

8%

12%

16%

S
p

e
e

d
u

p

13%

ChargeCache significantly improves
multi-core performance

23

DRAM Energy Savings

0%

5%

10%

15%

Single-core Eight-core

D
R

A
M

 E
n

er
gy

R

ed
u

ct
io

n

Average Maximum

ChargeCache reduces DRAM energy

24

Other Results In The Paper

• Detailed analysis of the Row Level
Temporal Locality phenomenon

• ChargeCache hit-rate analysis

• Sensitivity studies
oSensitivity to t in t-RLTL
oChargeCache capacity

25

 1. DRAM Operation Basics

 2. Accessing Highly-charged Rows

 4. ChargeCache

 5. Evaluation

 6. Conclusion

 3. Row Level Temporal Locality (RLTL)

Outline

26

Conclusion
• ChargeCache reduces average DRAM access latency at low cost

• Observations:
1) A highly-charged DRAM row can be accessed with low latency

2) A row’s charge is restored when the row is accessed

3) A recently-accessed row is likely to be accessed again: Row
Level Temporal Locality (RLTL)

• Key Idea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

• ChargeCache:
– Low cost & no modifications to the DRAM

– Higher performance (8.6-10.6% on average for 8-core)

– Lower DRAM energy (7.9% on average)

Source code will be available in May
https://github.com/CMU-SAFARI

https://github.com/CMU-SAFARI
https://github.com/CMU-SAFARI
https://github.com/CMU-SAFARI

ChargeCache
Reducing DRAM Latency by

Exploiting Row Access Locality

Hasan Hassan,

Gennady Pekhimenko,

Nandita Vijaykumar,

Vivek Seshadri, Donghyuk Lee,
Oguz Ergin, Onur Mutlu

28

Backup Slides

29

Detailed Design

Highly-charged
Row Address

Cache (HCRAC)

PRE
Insert Row
Address

ACT
Lookup the
Address

Invalidation
Mechanism

1

2

3

30

RLTL Distribution

0
20
40
60
80

100

tp
ch

6

ap
ac

h
e2

0

G
em

sF
D

TD m
cf

sp
h

in
x3

tp
ch

2

as
ta

r

h
m

m
er

m
ilc

b
w

av
es

lb
m

o
m

n
et

p
p

to
n

to

b
zi

p
2

lis
lie

3
d

sj
en

g

tp
cc

6
4

ca
ct

u
sA

D
M

lib
q

u
an

tu
m

sp
o

le
x

tp
ch

1
7

ST
R

EA
M

co
p

y

A
V

ER
A

G
E

Fr
ac

ti
o

n
 o

f
A

cc
e

ss
e

s

0.125ms - RLTL 0.25ms - RLTL 0.5ms - RLTL 1ms - RLTL 32ms - RLTL

31

Sensitivity on Capacity

32

Hit-rate Analysis

33

Sensitivity on t-RLTL

