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ABSTRACT
Cache compression is a promising technique to increase on-chip
cache capacity and to decrease on-chip and off-chip bandwidth
usage. Unfortunately, directly applying well-known compression
algorithms (usually implemented in software) leads to high hard-
ware complexity and unacceptable decompression/compression la-
tencies, which in turn can negatively affect performance. Hence,
there is a need for a simple yet efficient compression technique that
can effectively compress common in-cache data patterns, and has
minimal effect on cache access latency.

In this paper, we introduce a new compression algorithm called
Base-Delta-Immediate (B∆I) compression, a practical technique
for compressing data in on-chip caches. The key idea is that, for
many cache lines, the values within the cache line have a low dy-
namic range – i.e., the differences between values stored within
the cache line are small. As a result, a cache line can be repre-
sented using a base value and an array of differences whose com-
bined size is much smaller than the original cache line (we call this
the base+delta encoding). Moreover, many cache lines intersperse
such base+delta values with small values – our B∆I technique ef-
ficiently incorporates such immediate values into its encoding.

Compared to prior cache compression approaches, our studies
show that B∆I strikes a sweet-spot in the tradeoff between com-
pression ratio, decompression/compression latencies, and hardware
complexity. Our results show that B∆I compression improves per-
formance for both single-core (8.1% improvement) and multi-core
workloads (9.5% / 11.2% improvement for two/four cores). For
many applications, B∆I provides the performance benefit of dou-
bling the cache size of the baseline system, effectively increasing
average cache capacity by 1.53X.

Categories and Subject Descriptors: B.3.2 [Design Styles]: Cache
Memories; E.4 [Coding and Information Theory]: Data com-
paction and compression

General Terms:
Performance, Experimentation, Measurement, Design.

Keywords: Cache compression, Caching, Memory.
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1. INTRODUCTION
To mitigate the latency and bandwidth limitations of accessing

main memory, modern microprocessors contain multi-level on-chip
cache hierarchies. While caches have a number of design param-
eters and there is a large body of work on using cache hierarchies
more effectively (e.g., [11, 17, 20, 21]), one key property of a cache
that has a major impact on performance, die area, and power con-
sumption is its capacity. The decision of how large to make a given
cache involves tradeoffs: while larger caches often result in fewer
cache misses, this potential benefit comes at the cost of a longer
access latency and increased area and power consumption.

As we look toward the future with an increasing number of on-
chip cores, the issue of providing sufficient capacity in shared L2
and L3 caches becomes increasingly challenging. Simply scaling
cache capacities linearly with the number of cores may be a waste
of both chip area and power. On the other hand, reducing the L2
and L3 cache sizes may result in excessive off-chip cache misses,
which are especially costly in terms of latency and precious off-
chip bandwidth.

One way to potentially achieve the performance benefits of larger
cache capacity without suffering all disadvantages is to exploit data
compression [2, 10, 12, 13, 33, 34]. Data compression has been
successfully adopted in a number of different contexts in modern
computer systems [14, 35] as a way to conserve storage capacity
and/or data bandwidth (e.g., downloading compressed files over the
Internet [24] or compressing main memory [1]). However, it has
not been adopted by modern commodity microprocessors as a way
to increase effective cache capacity. Why not?

The ideal cache compression technique would be fast, simple,
and effective in saving storage space. Clearly, the resulting com-
pression ratio should be large enough to provide a significant up-
side, and the hardware complexity of implementing the scheme
should be low enough that its area and power overheads do not
offset its benefits. Perhaps the biggest stumbling block to the adop-
tion of cache compression in commercial microprocessors, how-
ever, is decompression latency. Unlike cache compression, which
takes place in the background upon a cache fill (after the critical
word is supplied), cache decompression is on the critical path of
a cache hit, where minimizing latency is extremely important for
performance. In fact, because L1 cache hit times are of utmost
importance, we only consider compression of the L2 caches and
beyond in this study (even though our algorithm could be applied
to any cache).

Because the three goals of having fast, simple, and effective cache
compression are at odds with each other (e.g., a very simple scheme
may yield too small a compression ratio, or a scheme with a very
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high compression ratio may be too slow, etc.), the challenge is to
find the right balance between these goals. Although several cache
compression techniques have been proposed in the past [2, 6, 8, 12,
33], they suffer from either a small compression ratio [8, 33], high
hardware complexity [12], or large decompression latency [2, 6,
12, 33]. To achieve significant compression ratios while minimiz-
ing hardware complexity and decompression latency, we propose
a new cache compression technique called Base-Delta-Immediate
(B∆I) compression.

1.1 Our Approach: B∆I Compression
The key observation behind Base-Delta-Immediate (B∆I) com-

pression is that, for many cache lines, the data values stored within
the line have a low dynamic range: i.e., the relative difference be-
tween values is small. In such cases, the cache line can be repre-
sented in a compact form using a common base value plus an ar-
ray of relative differences (“deltas”), whose combined size is much
smaller than the original cache line. (Hence the “base” and “delta”
portions of our scheme’s name).

We refer to the case with a single arbitrary base as Base+Delta
(B+∆) compression, and this is at the heart of all of our designs.
To increase the likelihood of being able to compress a cache line,
however, it is also possible to have multiple bases. In fact, our re-
sults show that for the workloads we studied, the best option is to
have two bases, where one base is always zero. (The deltas relative
to zero can be thought of as small immediate values, which explains
the last word in the name of our B∆I compression scheme.) Using
these two base values (zero and something else), our scheme can
efficiently compress cache lines containing a mixture of two sepa-
rate dynamic ranges: one centered around an arbitrary value chosen
from the actual contents of the cache line (e.g., pointer values), and
one close to zero (e.g., small integer values). Such mixtures from
two dynamic ranges are commonly found (e.g., in pointer-linked
data structures), as we will discuss later.

As demonstrated later in this paper, B∆I compression offers the
following advantages: (i) a high compression ratio since it can ex-
ploit a number of frequently-observed patterns in cache data (as
shown using examples from real applications and validated in our
experiments); (ii) low decompression latency since decompressing
a cache line requires only a simple masked vector addition; and
(iii) relatively modest hardware overhead and implementation com-
plexity, since both the compression and decompression algorithms
involve only simple vector addition, subtraction, and comparison
operations.

This paper makes the following contributions:

• We propose a new cache compression algorithm, Base-Delta-
Immediate Compression (B∆I), which exploits the low dy-
namic range of values present in many cache lines to com-
press them to smaller sizes. Both the compression and de-
compression algorithms of B∆I have low latency and require
only vector addition, subtraction and comparison operations.

• Based on the proposed B∆I compression algorithm, we in-
troduce a new compressed cache design. This design achieves
a high degree of compression at a lower decompression la-
tency compared to two state-of-the-art cache compression
techniques: Frequent Value Compression (FVC) [33] and
Frequent Pattern Compression (FPC) [2], which require com-
plex and long-latency decompression pipelines [3].

• We evaluate the performance benefits of B∆I compared to a
baseline system that does not employ compression, as well as
against three state-of-the-art cache compression techniques [2,

33, 8]. We show that B∆I provides a better or comparable
degree of compression for the majority of the applications we
studied. It improves performance for both single-core (8.1%)
and multi-core workloads (9.5% / 11.2% for two- / four-
cores). For many applications, compression with B∆I pro-
vides the performance benefit of doubling the uncompressed
cache size of the baseline system.

2. BACKGROUND AND MOTIVATION
Data compression is a powerful technique for storing large

amounts of data in a smaller space. Applying data compression
to an on-chip cache can potentially allow the cache to store more
cache lines in compressed form than it could have if the cache lines
were not compressed. As a result, a compressed cache has the po-
tential to provide the benefits of a larger cache at the area and the
power of a smaller cache.

Prior work [2, 33, 9] has observed that there is a significant
amount of redundancy in the data accessed by real-world appli-
cations. There are multiple patterns that lead to such redundancy.
We summarize the most common of such patterns below.

Zeros: Zero is by far the most frequently seen value in applica-
tion data [4, 9, 33]. There are various reasons for this. For example,
zero is most commonly used to initialize data, to represent NULL
pointers or false boolean values, and to represent sparse matrices
(in dense form). In fact, a majority of the compression schemes
proposed for compressing memory data either base their design
fully around zeros [9, 8, 15, 31], or treat zero as a special case [2,
32, 34].

Repeated Values: A large contiguous region of memory may
contain a single value repeated multiple times [23]. This pattern
is widely present in applications that use a common initial value
for a large array, or in multimedia applications where a large num-
ber of adjacent pixels have the same color. Such a repeated value
pattern can be easily compressed to significantly reduce storage re-
quirements. Simplicity, frequent occurrence in memory, and high
compression ratio make repeated values an attractive target for a
special consideration in data compression [2].

Narrow Values: A narrow value is a small value stored using
a large data type: e.g., a one-byte value stored as a four-byte in-
teger. Narrow values appear commonly in application data due to
over-provisioning or data alignment. Programmers typically pro-
vision the data types in various data structures for the worst case
even though a majority of the values may fit in a smaller data type.
For example, storing a table of counters requires the data type to be
provisioned to accommodate the maximum possible value for the
counters. However, it can be the case that the maximum possible
counter value needs four bytes, while one byte might be enough
to store the majority of the counter values. Optimizing such data
structures in software for the common case necessitates significant
overhead in code, thereby increasing program complexity and pro-
grammer effort to ensure correctness. Therefore, most program-
mers over-provision data type sizes. As a result, narrow values
present themselves in many applications, and are exploited by dif-
ferent compression techniques [2, 32, 16].

Other Patterns: There are a few other common data patterns
that do not fall into any of the above three classes: a table of point-
ers that point to different locations in the same memory region, an
image with low color gradient, etc. Such data can also be com-
pressed using simple techniques and has been exploited by some
prior proposals for main memory compression [32] and image com-
pression [28].

In this work, we make two observations. First, we find that the
above described patterns are widely present in many applications
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Characteristics Compressible data patterns
Decomp. Lat. Complex. C. Ratio Zeros Rep. Val. Narrow LDR

ZCA [8] Low Low Low 4 5 5 5

FVC [33] High High Modest 4 Partly 5 5

FPC [2] High High High 4 4 4 5

B∆I Low Modest High 4 4 4 4

Table 1: Qualitative comparison of B∆I with prior work. LDR: Low
dynamic range. Bold font indicates desirable characteristics.

(SPEC CPU benchmark suites, and some server applications, e.g.,
Apache, TPC-H). Figure 1 plots the percentage of cache lines that
can be compressed using different patterns.1 As the figure shows,
on average, 43% of all cache lines belonging to these applications
can be compressed. This shows that there is significant opportunity
to exploit data compression to improve on-chip cache performance.
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Figure 1: Percentage of cache lines with different data patterns in a
2MB L2 cache. “Other Patterns” includes “Narrow Values”.

Second, and more importantly, we observe that all the above
commonly occurring patterns fall under the general notion of low
dynamic range – a set of values where the differences between the
values is much smaller than the values themselves. Unlike prior
work, which has attempted to exploit each of these special patterns
individually for cache compression [2, 33] or main memory com-
pression [9, 32], our goal is to exploit the general case of values
with low dynamic range to build a simple yet effective compres-
sion technique.

Summary comparison: Our resulting mechanism, base-delta-
immediate (B∆I) compression, strikes a sweet-spot in the tradeoff
between decompression latency (Decomp. Lat.), hardware com-
plexity of the implementation (Complex.), and compression ratio
(C. Ratio), as shown in Table 1. The table qualitatively compares
B∆I with three state-of-the-art mechanisms: ZCA [8], which does
zero-value compression, Frequent Value Compression (FVC) [33],
and Frequent Pattern Compression (FPC) [2]. (These mechanisms
are described in detail in Section 6.) It also summarizes which data
patterns (zeros, repeated values, narrow values, and other low dy-
namic range patterns) are compressible with each mechanism. For
modest complexity, B∆I is the only design to achieve both low de-
compression latency and high compression ratio.

We now explain the design and rationale for our scheme in two
parts. In Section 3, we start by discussing the core of our scheme,
which is Base+Delta (B+∆) compression. Building upon B+∆,
we then discuss our full-blown B∆I compression scheme (with
multiple bases) in Section 4.

3. BASE + DELTA ENCODING: BASIC IDEA
We propose a new cache compression mechanism, Base+Delta

(B+∆) compression, which unlike prior work [2, 8, 33], looks for
compression opportunities at a cache line granularity – i.e., B+∆
either compresses the entire cache line or stores the entire cache

1The methodology used in this and other experiments is described
in Section 7. We use a 2MB L2 cache unless otherwise stated.

line in uncompressed format. The key observation behind B+∆ is
that many cache lines contain data with low dynamic range. As a
result, the differences between the words within such a cache line
can be represented using fewer bytes than required to represent the
words themselves. We exploit this observation to represent a cache
line with low dynamic range using a common base and an array
of deltas (differences between values within the cache line and the
common base). Since the deltas require fewer bytes than the values
themselves, the combined size of the base and the array of deltas
can be much smaller than the size of the original uncompressed
cache line.

The fact that some values can be represented in base+delta form
has been observed by others, and used for different purposes:
e.g. texture compression in GPUs [28] and also to save band-
width on CPU buses by transferring only deltas from a common
base [10]. To our knowledge, no previous work examined the use
of base+delta representation to improve on-chip cache utilization
in a general-purpose processor.

To evaluate the applicability of the B+∆ compression technique
for a large number of applications, we conducted a study that com-
pares the effective compression ratio (i.e., effective cache size in-
crease, see Section 7 for a full definition) of B+∆ against a sim-
ple technique that compresses two common data patterns (zeros
and repeated values2). Figure 2 shows the results of this study for
a 2MB L2 cache with 64-byte cache lines for applications in the
SPEC CPU2006 benchmark suite, database and web-server work-
loads (see Section 7 for methodology details). We assume a design
where a compression scheme can store up to twice as many tags
for compressed cache lines than the number of cache lines stored
in the uncompressed baseline cache (Section 5 describes a practical
mechanism that achieves this by using twice the number of tags).3

As the figure shows, for a number of applications, B+∆ provides
significantly higher compression ratio (1.4X on average) than us-
ing the simple compression technique. However, there are some
benchmarks for which B+∆ provides very little or no benefit (e.g.,
libquantum, lbm, and mcf ). We will address this problem with a
new compression technique called B∆I in Section 4. We first pro-
vide examples from real applications to show why B+∆ works.
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Figure 2: Effective compression ratio with different value patterns

3.1 Why Does B+∆ Work?
B+∆ works because of: (1) regularity in the way data is al-

located in the memory (similar data values and types grouped to-
gether), and (2) low dynamic range of cache/memory data. The
first reason is typically true due to the common usage of arrays

2Zero compression compresses an all-zero cache line into a bit that
just indicates that the cache line is all-zero. Repeated value com-
pression checks if a cache line has the same 1/2/4/8 byte value re-
peated. If so, it compresses the cache line to the corresponding
value.
3This assumption of twice as many tags as the baseline is true for
all compressed cache designs, except in Section 8.3.

3



to represent large pieces of data in applications. The second rea-
son is usually caused either by the nature of computation, e.g.,
sparse matrices or streaming applications; or by inefficiency (over-
provisioning) of data types used by many applications, e.g., 4-byte
integer type used to represent values that usually need only 1 byte.
We have carefully examined different common data patterns in ap-
plications that lead to B+∆ representation and summarize our ob-
servations in two examples.

Figures 3 and 4 show the compression of two 32-byte4 cache
lines from the applications h264ref and perlbench using B+∆. The
first example from h264ref shows a cache line with a set of narrow
values stored as 4-byte integers. As Figure 3 indicates, in this case,
the cache line can be represented using a single 4-byte base value,
0, and an array of eight 1-byte differences. As a result, the entire
cache line data can be represented using 12 bytes instead of 32
bytes, saving 20 bytes of the originally used space. Figure 4 shows
a similar phenomenon where nearby pointers are stored in the same
cache line for the perlbench application.

0x00000000 0x0000000B 0x00000003 0x00000001 0x00000004 0x00000000 0x00000003 0x00000004

0x00000000
Base

4 bytes

0x00 0x0B 0x03 0x01 0x04 0x00 0x03 Saved Space0x04

32-byte Uncompressed Cache Line

12-byte Compressed Cache Line
20 bytes

4 bytes

4 bytes 1 byte 1 byte

Figure 3: Cache line from h264ref compressed with B+∆

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 0xC04039E0 0xC04039E8 0xC04039F0 0xC04039F8

0xC04039C0
Base

4 bytes

0x00 0x08 0x10 0x18 0x20 0x28 0x30 Saved Space0x38

32-byte Uncompressed Cache Line

12-byte Compressed Cache Line
20 bytes

4 bytes

4 bytes 1 byte 1 byte

Figure 4: Cache line from perlbench compressed with B+∆

We now describe more precisely the compression and decom-
pression algorithms that lay at the heart of the B+∆ compression
mechanism.

3.2 Compression Algorithm
The B+∆ compression algorithm views a cache line as a set of

fixed-size values i.e., 8 8-byte, 16 4-byte, or 32 2-byte values for
a 64-byte cache line. It then determines if the set of values can be
represented in a more compact form as a base value with a set of
differences from the base value. For analysis, let us assume that
the cache line size is C bytes, the size of each value in the set is k
bytes and the set of values to be compressed is S = (v1, v2, ..., vn),
where n = C

k
. The goal of the compression algorithm is to deter-

mine the value of the base, B∗ and the size of values in the set,
k, that provide maximum compressibility. Once B∗ and k are de-
termined, the output of the compression algorithm is {k,B∗,∆ =
(∆1,∆2, ...,∆n)}, where ∆i = B∗ − vi ∀i ∈ {1, .., n}.

Observation 1: The cache line is compressible only if
∀i,max(size(∆i)) < k, where size(∆i) is the smallest number of
bytes that is needed to store ∆i.

In other words, for the cache line to be compressible, the number
of bytes required to represent the differences must be strictly less
than the number of bytes required to represent the values them-
selves.
4We use 32-byte cache lines in our examples to save space. 64-byte
cache lines were used in all evaluations (see Section 7).

Observation 2: To determine the value of B∗, either the value
of min(S) or max(S) needs to be found.

The reasoning, where max(S)/min(S) are the maximum and
minimum values in the cache line, is based on the observation that
the values in the cache line are bounded by min(S) and max(S).
And, hence, the optimum value for B∗ should be between min(S)
and max(S). In fact, the optimum can be reached only for min(S),
max(S), or exactly in between them. Any other value of B∗ can
only increase the number of bytes required to represent the differ-
ences.

Given a cache line, the optimal version of the B+∆ compression
algorithm needs to determine two parameters: (1) k, the size of
each value in S, and (2) B∗, the optimum base value that gives the
best possible compression for the chosen value of k.

Determining k. Note that the value of k determines how the
cache line is viewed by the compression algorithm – i.e., it defines
the set of values that are used for compression. Choosing a single
value of k for all cache lines will significantly reduce the opportu-
nity of compression. To understand why this is the case, consider
two cache lines, one representing a table of 4-byte pointers pointing
to some memory region (similar to Figure 4) and the other repre-
senting an array of narrow values stored as 2-byte integers. For the
first cache line, the likely best value of k is 4, as dividing the cache
line into a set of of values with a different k might lead to an in-
crease in dynamic range and reduce the possibility of compression.
Similarly, the likely best value of k for the second cache line is 2.

Therefore, to increase the opportunity for compression by cater-
ing to multiple patterns, our compression algorithm attempts to
compress a cache line using three different potential values of k
simultaneously: 2, 4, and 8. The cache line is then compressed us-
ing the value that provides the maximum compression rate or not
compressed at all.5

Determining B∗. For each possible value of k ∈ {2, 4, 8},
the cache line is split into values of size k and the best value for
the base, B∗ can be determined using Observation 2. However,
computing B∗ in this manner requires computing the maximum or
the minimum of the set of values, which adds logic complexity and
significantly increases the latency of compression.

To avoid compression latency increase and reduce hardware
complexity, we decide to use the first value from the set of val-
ues as an approximation for the B∗. For a compressible cache line
with a low dynamic range, we find that choosing the first value as
the base instead of computing the optimum base value reduces the
average compression ratio only by 0.4%.

3.3 Decompression Algorithm
To decompress a compressed cache line, the B+∆ decompres-

sion algorithm needs to take the base value B∗ and an array of
differences ∆ = ∆1,∆2, ...,∆n, and generate the corresponding
set of values S = (v1, v2, ..., vn). The value vi is simply given by
vi = B∗+∆i. As a result, the values in the cache line can be com-
puted in parallel using a SIMD-style vector adder. Consequently,
the entire cache line can be decompressed in the amount of time it
takes to do an integer vector addition, using a set of simple adders.

4. B∆I COMPRESSION

4.1 Why Could Multiple Bases Help?
Although B+∆ proves to be generally applicable for many ap-

plications, it is clear that not every cache line can be represented
5We restrict our search to these three values as almost all basic
data types supported by various programming languages have one
of these three sizes.
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in this form, and, as a result, some benchmarks do not have a high
compression ratio, e.g., mcf. One common reason why this happens
is that some of these applications can mix data of different types in
the same cache line, e.g., structures of pointers and 1-byte integers.
This suggests that if we apply B+∆ with multiple bases, we can
improve compressibility for some of these applications.

Figure 5 shows a 32-byte cache line from mcf that is not com-
pressible with a single base using B+∆, because there is no sin-
gle base value that effectively compresses this cache line. At the
same time, it is clear that if we use two bases, this cache line can
be easily compressed using a similar compression technique as in
the B+∆ algorithm with one base. As a result, the entire cache
line data can be represented using 19 bytes: 8 bytes for two bases
(0x00000000 and 0x09A40178), 5 bytes for five 1-byte deltas
from the first base, and 6 bytes for three 2-byte deltas from the
second base. This effectively saves 13 bytes of the 32-byte line.

0x00000000 0x09A40178 0x0000000B 0x00000001 0x09A4A838 0x0000000A 0x0000000B 0x09A4C2F0

0x09A40178
Base1

4 bytes

0x00 0x0000 0x0B 0x01 0xA6C0 0x0A Saved Space0x0B

32-byte Uncompressed Cache Line

19-byte Compressed Cache Line
13 bytes

4 bytes

4 bytes 1 byte 2 bytes

0xC178

2 bytes

0x00000000

Base2

4 bytes

Figure 5: Cache line from mcf compressed by B+∆ (two bases)

As we can see, multiple bases can help compress more cache
lines, but, unfortunately, more bases can increase overhead (due
to storage of the bases), and hence decrease effective compression
ratio that can be achieved with one base. So, it is natural to ask how
many bases are optimal for B+∆ compression?

In order to answer this question, we conduct an experiment
where we evaluate the effective compression ratio with different
numbers of bases (selected suboptimally using a greedy algorithm).
Figure 6 shows the results of this experiment. The “0” base bar
corresponds to a mechanism that compresses only simple patterns
(zero and repeated values). These patterns are simple to compress
and common enough, so we can handle them easily and efficiently
without using B+∆, e.g., a cache line of only zeros compressed to
just one byte for any number of bases. We assume this optimization
for all bars in Figure 6.6
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Figure 6: Effective compression ratio with different number of bases.
“0” corresponds to zero and repeated value compression.

Results in Figure 6 show that the empirically optimal number
of bases in terms of effective compression ratio is 2, with some
benchmarks having optimums also at one or three bases. The key
conclusion is that B+∆ with two bases significantly outperforms
6If we do not assume this optimization, compression with multi-
ple bases will have very low compression ratio for such common
simple patterns.

B+∆ with one base (compression ratio of 1.51 vs. 1.40 on av-
erage), suggesting that it is worth considering for implementation.
Note that having more than two bases does not provide additional
improvement in compression ratio for these workloads, because the
overhead of storing more bases is higher than the benefit of com-
pressing more cache lines.

Unfortunately, B+∆ with two bases has a serious drawback: the
necessity of finding a second base. The search for a second arbi-
trary base value (even a sub-optimal one) can add significant com-
plexity to the compression hardware. This opens the question of
how to find two base values efficiently. We next propose a mech-
anism that can get the benefit of compression with two bases with
minimal complexity.

4.2 B∆I: Refining B+∆ with Two Bases and
Minimal Complexity

Results from Section 4.1 suggest that the optimal (on average)
number of bases to use is two, but having an additional base has
the significant shortcoming described above. We observe that set-
ting the second base to zero gains most of the benefit of having an
arbitrary second base value. Why is this the case?

Most of the time when data of different types are mixed in the
same cache line, the cause is an aggregate data type: e.g., a struc-
ture (struct in C). In many cases, this leads to the mixing of wide
values with low dynamic range (e.g., pointers) with narrow values
(e.g., small integers). A first arbitrary base helps to compress wide
values with low dynamic range using base+delta encoding, while
a second zero base is efficient enough to compress narrow values
separately from wide values. Based on this observation, we refine
the idea of B+∆ by adding an additional implicit base that is al-
ways set to zero. We call this refinement Base-Delta-Immediate
or B∆I compression.

There is a tradeoff involved in using B∆I instead of B+∆ with
two arbitrary bases. B∆I uses an implicit zero base as the sec-
ond base, and, hence, it has less storage overhead, which means
potentially higher average compression ratio for cache lines that
are compressible with both techniques. B+∆ with two general
bases uses more storage to store an arbitrary second base value, but
can compress more cache lines because the base can be any value.
As such, the compression ratio can potentially be better with ei-
ther mechanism, depending on the compressibility pattern of cache
lines. In order to evaluate this tradeoff, we compare in Figure 7
the effective compression ratio of B∆I, B+∆ with two arbitrary
bases, and three prior approaches: ZCA [8] (zero-based compres-
sion), FVC [33], and FPC [2].7

Although there are cases where B+∆ with two bases is better —
e.g., leslie3d and bzip2 — on average, B∆I performs slightly bet-
ter than B+∆ in terms of compression ratio (1.53 vs. 1.51). We
can also see that both mechanisms are better than the previously
proposed FVC mechanism [33], and competitive in terms of com-
pression ratio with a more complex FPC compression mechanism.
Taking into an account that B+∆ with two bases is also a more
complex mechanism than B∆I, we conclude that our cache com-
pression design should be based on the refined idea of B∆I.

Now we will describe the design and operation of a cache that
implements our B∆I compression algorithm.

7All mechanisms are covered in detail in Section 6. We provide
a comparison of their compression ratios here to give a demon-
stration of BDI’s relative effectiveness and to justify it as a viable
compression mechanism.
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Figure 7: Compression ratio comparison of different algorithms: ZCA [8], FVC [33], FPC [2], B+∆ (two arbitrary bases), and B∆I. Results are
obtained on a cache with twice the tags to accommodate more cache lines in the same data space as an uncompressed cache.

5. B∆I: DESIGN AND OPERATION

5.1 Design
Compression and Decompression. We now describe the de-

tailed design of the corresponding compression and decompression
logic.8 The compression logic consists of eight distinct compressor
units: six units for different base sizes (8, 4 and 2 bytes) and ∆
sizes (4, 2 and 1 bytes), and two units for zero and repeated value
compression (Figure 8). Every compressor unit takes a cache line
as an input, and outputs whether or not this cache line can be com-
pressed with this unit. If it can be, the unit outputs the compressed
cache line. The compressor selection logic is used to determine a
set of compressor units that can compress this cache line. If multi-
ple compression options are available for the cache line (e.g., 8-byte
base 1-byte ∆ and zero compression), the selection logic chooses
the one with the smallest compressed cache line size. Note that all
potential compressed sizes are known statically and described in
Table 2. All compressor units can operate in parallel.

32-byte Uncompressed Cache Line

8-byte B0

1-byte-Δ
CU 

8-byte B0

2-byte-Δ
CU 

8-byte B0

4-byte-Δ
CU 

4-byte B0

1-byte-Δ
CU 

4-byte B0

2-byte-Δ
CU 

2-byte B0

1-byte-Δ
CU 

Zero 
CU

Rep. 
Values 

CU

Compression Selection (based on compr. sizes from Table 2)

Compressed Cache Line (CCL)Described in 
Figure 9

Compressible or 
Not ? +

Compressed Cache 
Line (CCL)

CoN &
CCL

CoN &
CCL

CoN &
CCL

CoN &
CCL

CoN &
CCL

CoN &
CCL

CoN &
CCL

CoN &
CCL

Figure 8: Compressor design. CU: Compressor unit.

Figure 9 describes the organization of the 8-byte-base 1-byte-∆
compressor unit for a 32-byte cache line. The compressor “views”
this cache line as a set of four 8-byte elements (V0, V1, V2, V3), and
in the first step, computes the difference between the base element
and all other elements. Recall that the base (B0) is set to the first
value (V0), as we describe in Section 3. The resulting difference
values (∆0,∆1,∆2,∆3) are then checked to see whether their first

8For simplicity, we start with presenting the compression and de-
compression logic for B+∆. Compression for B∆I requires one
more step, where elements are checked to be compressed with zero
base; decompression logic only requires additional selector logic to
decide which base should be used in the addition. We describe the
differences between B∆I and B+∆ designs later in this section.

7 bytes are all zeros or ones (1-byte sign extension check). If so,
the resulting cache line can be stored as the base value B0 and the
set of differences ∆0,∆1,∆2,∆3, where each ∆i requires only 1
byte. The compressed cache line size in this case is 12 bytes in-
stead of the original 32 bytes. If the 1-byte sign extension check
returns false (i.e., at least one ∆i cannot be represented using 1
byte), then the compressor unit cannot compress this cache line.
The organization of all other compressor units is similar. This com-
pression design can be potentially optimized, especially if hardware
complexity is more critical than latency, e.g., all 8-byte-base value
compression units can be united into one to avoid partial logic du-
plication.

Name Base ∆ Size Enc. Name Base ∆ Size Enc.

Zeros 1 0 1/1 0000 Rep.Values 8 0 8/8 0001

Base8-∆1 8 1 12/16 0010 Base8-∆2 8 2 16/24 0011

Base8-∆4 8 4 24/40 0100 Base4-∆1 4 1 12/20 0101

Base4-∆2 4 2 20/36 0110 Base2-∆1 2 1 18/34 0111

NoCompr. N/A N/A 32/64 1111

Table 2: B∆I encoding. All sizes are in bytes. Compressed sizes (in
bytes) are given for 32-/64-byte cache lines.

Δ3Δ2Δ0

V1V0 V2 V3

B0 =def V0

32-byte Uncompressed Cache Line
8 bytes 8-byte Base Compression

Is every element 1-byte sign extended?

Yes         No

8 bytes 1 byte

12-byte Compressed Cache Line

-

Δ1Δ0 Δ2 Δ3

1 byte sign 
extended?

1 byte sign 
extended?

1 byte sign 
extended?

1 byte sign 
extended?

Δ1B0

- - -

Figure 9: Compressor unit for 8-byte base, 1-byte ∆
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Figure 10 shows the latency-critical decompression logic. Its
organization is simple: for a compressed cache line that consists
of a base value B0 and a set of differences ∆0,∆1,∆2, ∆3, only
additions of the base to the differences are performed to obtain the
uncompressed cache line. Such decompression will take as long
as the latency of an adder, and allows the B∆I cache to perform
decompression very quickly.

Compressed Cache Line

Uncompressed Cache Line

Δ3Δ2Δ0 Δ1B0

V1V0 V2 V3

+ + + +

Figure 10: Decompressor design

B∆I Cache Organization. In order to obtain the benefits
of compression, the conventional cache design requires certain
changes. Cache compression potentially allows more cache lines
to be stored in the same data storage than a conventional uncom-
pressed cache. But, in order to access these additional compressed
cache lines, we need a way to address them. One way to achieve
this is to have more tags [2], e.g., twice as many,9 than the number
we have in a conventional cache of the same size and associativ-
ity. We can then use these additional tags as pointers to more data
elements in the corresponding data storage.

Figure 11 shows the required changes in the cache design. The
conventional 2-way cache with 32-byte cache lines (shown on the
top) has a tag store with two tags per set, and a data store with
two 32-byte cache lines per set. Every tag directly maps to the
corresponding piece of the data storage. In the B∆I design (at the
bottom), we have twice as many tags (four in this example), and
every tag also has 4 additional bits to represent whether or not the
line is compressed, and if it is, what compression type is used (see
“Encoding” in Table 2). The data storage remains the same in size
as before (2×32 = 64 bytes), but it is separated into smaller fixed-
size segments (e.g., 8 bytes in size in Figure 11). Every tag stores
the starting segment (e.g., Tag2 stores segment S2) and the encod-
ing for the cache block. By knowing the encoding we can easily
know the number of segments used by the cache block.

Storage Cost Analysis. This cache organization potentially al-
lows storing twice as many cache lines in the same data storage, be-
cause the number of tags in a set is doubled. As a result, it requires
modest increase in the tag store size (similar to some other designs
[3, 11, 22]. We analyze the storage overhead in terms of raw addi-
tional bits in Table 3 for a baseline 16-way 2MB cache. We have
also used CACTI 5.3 [29] to estimate the additional latency and
area cost of our proposed cache organization, using parameters for
the 32nm technology node. Cache access latency increases by 1-2
cycles (depending on cache size) for a 4GHz processor. On-chip
cache area increases by 2.3%, but this increase is small compared
to the 137% increase in area, which occurs if we double both the
tag store and the data store size (by doubling the associativity).10

9We describe an implementation with the number of tags doubled
and evaluate sensitivity to the number of tags in Section 8.

10As we show in Section 8, B∆I with our proposed cache organiza-
tion achieves performance that is within 1-2% of a cache that has
double the tag and data store size.

Baseline B∆I
Size of tag-store entry 21 bits 32 bits (+4–encoding, +7–segment pointer)

Size of data-store entry 512 bits 512 bits

Number of tag-store entries 32768 65536

Number of data-store entries 32768 32768

Tag-store size 84kB 256kB

Total (data-store+tag-store) size 2132kB 2294kB

Table 3: Storage cost analysis for 2MB 16-way L2 cache, assuming 64-
byte cache lines, 8-byte segments, and 36 bits for address space.

Cache Eviction Policy. In a compressed cache, there are two
cases under which multiple cache lines may need to be evicted be-
cause evicting a single cache line (i.e., the LRU one in a cache that
uses the LRU replacement policy) may not create enough space
for the incoming or modified cache line. First, when a new cache
line (compressed or uncompressed) is inserted into the cache. Sec-
ond, when a cache line already in the cache is modified such that
its new size is larger than its old size. In both cases, we propose
to use a slightly modified version of the LRU replacement pol-
icy wherein the cache evicts multiple LRU cache lines to create
enough space for the incoming or modified cache line.11 such a
policy can increase the latency of eviction, it has negligible effect
on performance as evictions are off the critical path of execution.
Note that more effective replacement policies that take into account
compressed cache line sizes are possible – e.g., a policy that does
not evict a zero cache line unless there is a need for space in the tag
store. We leave the study of such policies for future work.

B∆I Design Specifics. So far, we described the common part
in the designs of both B+∆ and B∆I. However, there are some
specific differences between these two designs.

First, B∆I compression happens (off the critical path) in two
steps (vs. only one step for B+∆). For a fixed ∆ size, Step 1
attempts to compress all elements using an implicit base of zero.
Step 2 tries to compress those elements that were not compressed
in Step 1. The first uncompressible element of Step 1 is chosen
as the base for Step 2. The compression step stores a bit mask, 1-
bit per element indicating whether or not the corresponding base is
zero. Note that we keep the size of ∆ (1, 2, or 4 bytes) the same
for both bases.

Second, B∆I decompression is implemented as a masked addi-
tion of the base (chosen in Step 2) to the array of differences. The
elements to which the base is added depends on the bit-mask stored
in the compression step.

5.2 Operation
We propose using our B∆I design at cache levels higher than

L1 (e.g., L2 and L3). While it is possible to compress data in the
L1 cache [33], doing so will increase the critical path of latency-
sensitive L1 cache hits. This can result in significant performance
degradation for applications that do not benefit from compression.

We now describe how a B∆I cache fits into a system with a 2-
level cache hierarchy (L1, L2 and main memory) with the L2 cache
compressed using B∆I – note that the only changes are to the L2
cache. We assume all caches use the writeback policy. There are
four scenarios related to the compressed L2 cache operation: 1) an
L2 cache hit, 2) an L2 cache miss, 3) a writeback from L1 to L2,
and 4) a writeback from L2 to memory.

First, on an L2 hit, the corresponding cache line is sent to the L1
cache. If the line is compressed, it is first decompressed before it
is sent to the L1 cache. Second, on an L2 miss, the corresponding

11On average, 5.2% of all insertions or writebacks into the cache
resulted in the eviction of multiple cache lines in our workloads.
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Figure 11: B∆I vs. conventional cache organization. Number of tags is doubled, compression encoding bits are added to every tag, data storage is
the same in size, but partitioned into segments.

cache line is brought from memory and is sent to the L1 cache.
In this case, the line is also compressed and inserted into the L2
cache. Third, when a line is written back from L1 to L2, it is first
compressed. If an old copy of the line is already present in the
L2 cache, the old (stale) copy is invalidated. The new compressed
cache line is then inserted into the L2 cache. Fourth, when a line is
written back from L2 cache to memory, it is decompressed before it
is sent to the memory controller. In both second and third scenarios,
potentially multiple cache lines might be evicted from the L2 cache
based on the cache eviction policy described in Section 5.1.

6. RELATED WORK
Multiple previous works investigated the possibility of using

compression for on-chip caches [34, 2, 8, 15, 11, 6] and/or mem-
ory [32, 1, 9]. All proposed designs have different tradeoffs be-
tween compression ratio, decompression/compression latency and
hardware complexity. The spectrum of proposed algorithms ranges
from general-purpose compression schemes e.g., the Lempel-Ziv
algorithm [35], to specific pattern-based schemes, e.g., zero val-
ues [8, 15] and frequent values [33].

The fundamental difference between B∆I and previous cache
compression mechanisms is that whereas prior techniques com-
press data at word granularity – i.e., each word within a cache line
is compressed separately, B∆I compresses data at cache-line gran-
ularity – i.e., all the words within a cache line are compressed using
the same encoding or all the words within a cache line are stored
uncompressed. As a result, B∆I provides two major advantages.
First, the decompression of all words in the same cache line can
be performed in parallel (using a masked vector addition), since
the starting point of each word is known in the compressed cache
line. In contrast, compressing each word within a cache line sepa-
rately, as in prior works, typically serializes decompression as dif-
ferent words can be compressed to different sizes, making the start-
ing point of each word in the compressed cache line dependent on
the previous word. Second, B∆I exploits correlation across words
within a cache line, which can lead to a better compression ratio –
e.g., when cache line consists of an array of pointers. Prior works
do not exploit this correlation as they compress words individually.
As already summarized in Table 1, different prior works suffer from
one or more of the following shortcomings, which B∆I alleviates:
1) high decompression latency, 2) low effective compression ratio,
and 3) high hardware complexity. We now describe the prior de-
signs in more detail.

6.1 Zero-based Designs
Dusser et al. [8] propose Zero-Content Augmented (ZCA) cache

design where a conventional cache is augmented with a specialized
cache to represent zero cache lines. Decompression and compres-
sion latencies as well as hardware complexity for the ZCA cache
design are low. However, only applications that operate on a large
number of zero cache lines can benefit from this design. In our
experiments, only 6 out of 24 applications have enough zero data

to benefit from ZCA (Figure 7), leading to relatively small perfor-
mance improvements (as we show in Section 8).

Islam and Stenström [15] observe that 18% of the dynamic loads
actually access zero data, and propose a cache design called Zero-
Value Canceling where these loads can be serviced faster. Again,
this can improve performance only for applications with substan-
tial amounts of zero data. Our proposal is more general than these
designs that are based only on zero values.

6.2 Frequent Value Compression
Zhang et al. [34] observe that a majority of values read or written

by memory operations come from a small set of frequently occur-
ring values. Based on this observation, they propose a compression
technique [33] that encodes frequent values present in cache lines
with fewer bits. They apply this technique to a direct-mapped L1
cache wherein each entry in the cache can store either one uncom-
pressed line or two compressed lines.

Frequent value compression (FVC) has three major drawbacks.
First, since FVC can only compress frequent values, it cannot ex-
ploit other commonly found patterns, e.g., narrow values or stride
patterns in application data. As a result, it does not provide a high
degree of compression for most applications as shown in Section 8.
Second, FVC compresses only the frequent values, while other val-
ues stay uncompressed. Decompression of such a cache line re-
quires sequential processing of every element (because the begin-
ning of the next element can be determined only after the previ-
ous element is processed), significantly increasing the latency of
decompression, which is undesirable. Third, the proposed mech-
anism requires profiling to identify the frequent values within an
application. Our quantitative results in Section 8 shows that B∆I
outperforms FVC due to these reasons.

6.3 Pattern-Based Compression Techniques
Alameldeen and Wood [2] propose frequent pattern compression

(FPC) that exploits the observation that a majority of words fall un-
der one of a few compressible patterns, e.g., if the upper 16 bits of
a 32-bit word are all zeros or are all ones, all bytes in a 4-byte word
are the same. FPC defines a set of these patterns [3] and then uses
them to encode applicable words with fewer bits of data. For com-
pressing a cache line, FPC first divides the cache line into 32-bit
words and checks if each word falls under one of seven frequently
occurring patterns. Each compressed cache line contains the pat-
tern encoding for all the words within the cache line followed by
the additional data required to decompress each word.

The same authors propose a compressed cache design [2] based
on FPC which allows the cache to store two times more compressed
lines than uncompressed lines, effectively doubling the cache size
when all lines are compressed. For this purpose, they maintain
twice as many tag entries as there are data entries. Similar to
frequent value compression, frequent pattern compression also re-
quires serial decompression of the cache line, because every word
can be compressed or decompressed. To mitigate the decompres-
sion latency of FPC, the authors design a five-cycle decompression
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pipeline [3]. They also propose an adaptive scheme which avoids
compressing data if the decompression latency nullifies the benefits
of compression.

Chen et al. [6] propose a pattern-based compression mechanism
(called C-Pack) with several new features: (1) multiple cache lines
can be compressed into one, (2) multiple words can be compressed
in parallel; but parallel decompression is not possible. Although
the C-Pack design is more practical than FPC, it still has a high
decompression latency (8 cycles due to serial decompression), and
its average compression ratio is lower than that of FPC.

7. EVALUATION METHODOLOGY
We use an in-house, event-driven 32-bit x86 simulator whose

front-end is based on Simics [18]. All configurations have either a
two- or three-level cache hierarchy, with private L1D caches. Ma-
jor simulation parameters are provided in Table 4. All caches uni-
formly use a 64B cache block size and LRU policy for replacement.
All cache latencies were determined using CACTI [29] (assuming
a 4GHz frequency), and provided in Table 5. We also checked
that these latencies match the existing last level cache implemen-
tations from Intel and AMD, when properly scaled to the corre-
sponding frequency.12 For evaluations, we use benchmarks from
the SPEC CPU2006 suite [26], three TPC-H queries [30], and an
Apache web server (shown in Table 6, whose detailed description is
in Section 8). All results are collected by running a representative
portion of the benchmarks for 1 billion instructions.

Processor 1–4 cores, 4GHz, x86 in-order

L1-D cache 32kB, 64B cache-line, 2-way, 1 cycle

L2 caches 0.5–16 MB, 64B cache-line, 16-way

L3 caches 2–16 MB, 64B cache-line, 16-way

Memory 300 cycle latency

Table 4: Major parameters of the simulated system

Size Latency Size Latency Size Latency

512kB 15 1MB 21 2MB 27

4MB 34 8MB 41 16MB 48

Table 5: Cache hit latencies used in simulations (in cycles). B∆I caches
have +1 cycle for 0.5–4MB (+2 cycle for others) on a hit/miss due to
larger tag stores, and +1 cycle for decompression.

Metrics. We measure performance of our benchmarks using IPC
(instruction per cycle), effective compression ratio (effective cache
size increase, e.g., 1.5 for 2MB cache means effective size of 3MB),
and MPKI (misses per kilo instruction). For multi-programmed
workloads we use the weighted speedup [25] as the performance

metric: (
∑

i

IPCshared
i

IPCalone
i

). For bandwidth consumption we use
BPKI (bytes transferred over bus per thousand instructions [27]).

Effective compression ratio for all mechanisms is computed
without meta-data overhead. We add all meta-data to the tag stor-
age, e.g., for B∆I, we add four bits to encode the compression
scheme, and a bit mask to differentiate between two bases. We in-
clude these in the tag overhead, which was evaluated in Section 5.
Our comparisons are fair, because we do not include this overhead
in compression ratios of previous works we compare to. In fact, the
meta-data overhead is higher for FPC (3 bits for each word).

We conducted a study to see applications’ performance sensitiv-
ity to the increased L2 cache size (from 512kB to 16 MB). Our
results show that there are benchmarks that are almost insensitive
(IPC improvement less than 5% with 32x increase in cache size) to

12Intel Xeon X5570 (Nehalem) 2.993GHz, 8MB L3 - 35 cy-
cles [19]; AMD Opteron 2.8GHz, 1MB L2 - 13 cycles [5].

the size of the L2 cache: dealII, povray, calculix, gamess, namd,
milc, and perlbench. This typically means that their working sets
mostly fit into the L1D cache, leaving almost no potential for any
L2/L3/memory optimization. Therefore, we do not present data for
these applications, although we verified that our mechanism does
not affect their performance.

Parameters of Evaluated Schemes. For FPC, we used a de-
compression latency of 5 cycles, and a segment size of 1 byte (as
for B∆I) to get the highest compression ratio as described in [3].
For FVC, we used static profiling for 100k instructions to find the
7 most frequent values as described in [33], and a decompression
latency of 5 cycles. For ZCA and B∆I, we used a decompression
latency of 1 cycle.

We also evaluated B∆I with higher decompression latencies (2-5
cycles). B∆I continues to provide better performance, because for
most applications it provides a better overall compression ratio than
prior mechanisms. When decompression latency of B∆I increases
from 1 to 5 cycles, performance degrades by 0.74%.

Internal Fragmentation. In our simulations, we assumed that
before every insertion, we can shift segments properly to avoid
fragmentation (implementable, but might be inefficient). We be-
lieve this is reasonable, because insertion happens off the critical
path of the execution. Previous work [2] adopted this assumption,
and we treated all schemes equally in our evaluation.

8. RESULTS & ANALYSIS

8.1 Single-core Results
Figure 12a shows the performance improvement of our proposed

B∆I design over the baseline cache design for various cache sizes,
normalized to the performance of a 512KB baseline design. The
results are averaged across all benchmarks. Figure 12b plots the
corresponding results for MPKI also normalized to a 512KB base-
line design. Several observations are in-order. First, the B∆I cache
significantly outperforms the baseline cache for all cache sizes. By
storing cache lines in compressed form, the B∆I cache is able to
effectively store more cache lines and thereby significantly reduce
the cache miss rate (as shown in Figure 12b). Second, in most
cases, B∆I achieves the performance improvement of doubling the
cache size. In fact, the 2MB B∆I cache performs better than the
4MB baseline cache. This is because, B∆I increases the effective
cache size without significantly increasing the access latency of the
data storage. Third, the performance improvement of B∆I cache
decreases with increasing cache size. This is expected because,
as cache size increases, the working set of more benchmarks start
fitting into the cache. Therefore, storing the cache lines in com-
pressed format has increasingly less benefit. Based on our results,
we conclude that B∆I is an effective compression mechanism to
significantly improve single-core performance, and can provide the
benefits of doubling the cache size without incurring the area and
latency penalties associated with a cache of twice the size.
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Figure 12: Performance of B∆I with different cache sizes. Percentages
show improvement over the baseline cache (same size).
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Cat. Name Comp. Ratio Sens. Name Comp. Ratio Sens. Name Comp. Ratio Sens. Name Comp. Ratio Sens.

LCLS gromacs 1.43 / L L hmmer 1.03 / L L lbm 1.00 / L L libquantum 1.25 / L L
leslie3d 1.41 / L L sphinx 1.10 / L L tpch17 1.18 / L L wrf 1.01 / L L

HCLS
apache 1.60 / H L zeusmp 1.99 / H L gcc 1.99 / H L GemsFDTD 1.99 / H L
gobmk 1.99 / H L sjeng 1.50 / H L tpch2 1.54 / H L cactusADM 1.97 / H L
tpch6 1.93 / H L

HCHS astar 1.74 / H H bzip2 1.60 / H H mcf 1.52 / H H xalancbmk 1.61 / H H
omnetpp 1.58 / H H soplex 1.99 / H H h264ref 1.52 / H H

Table 6: Benchmark characteristics and categories: Comp. Ratio (effective compression ratio for 2MB B∆I L2) and Sens. (cache size sensitivity).
Sensitivity is the ratio of improvement in performance by going from 512kB to 2MB L2 (L - low (≤ 1.10) , H - high (> 1.10)). For compression ratio:
L - low (≤ 1.50), H - high (> 1.50). Cat. means category based on compression ratio and sensitivity.

8.2 Multi-core Results
When the working set of an application fits into the cache, the

application will not benefit significantly from compression even
though its data might have high redundancy. However, when such
an application is running concurrently with another cache-sensitive
application in a multi-core system, storing its cache lines in com-
pressed format will create additional cache space for storing the
data of the cache-sensitive application, potentially leading to sig-
nificant overall performance improvement.

To study this effect, we classify our benchmarks into four cat-
egories based on their compressibility using B∆I (low (LC) or
high (HC)) and cache sensitivity (low (LS) or high (HS)). Table 6
shows the sensitivity and compressibility of different benchmarks
along with the criteria used for classification. None of the bench-
marks used in our evaluation fall into the low-compressibility high-
sensitivity (LCHS) category. We generate six different categories
of 2-core workloads (20 in each category) by randomly choos-
ing benchmarks with different characteristics (LCLS, HCLS and
HCHS).

Figure 13 shows the performance improvement provided by four
different compression schemes, namely, ZCA, FVC, FPC, and
B∆I, over a 2MB baseline cache design for different workload cat-
egories. We draw three major conclusions.
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Figure 13: Normalized weighted speedup for 2MB L2 cache, 2-cores.
Percentages show improvement over the baseline uncompressed cache.

First, B∆I outperforms all prior approaches for all workload cat-
egories. Overall, B∆I improves system performance by 9.5% com-
pared to the baseline cache design.

Second, as we mentioned in the beginning of this section, even
though an application with highly compressible data may not it-
self benefit from compression (HCLS), it can enable opportunities
for performance improvement for the co-running application. This
effect is clearly visible in the figure. When at least one bench-
mark is sensitive to cache space, the performance improvement of
B∆I increases with increasing compressibility of the co-running
benchmark (as observed by examining the bars labeled as High
Sensitivity). B∆I provides the highest improvement (18%) when

both benchmarks in a workload are highly compressible and highly
sensitive to cache space (HCHS-HCHS). As the figure shows, the
performance improvement is not as significant when neither bench-
mark is sensitive to cache space irrespective of their compressibility
(as observed by examining the bars labeled Low Sensitivity).

Third, although FPC provides a degree of compression similar
to B∆I for most benchmarks (as we showed in Section 4.2, Fig-
ure 7) its performance improvement is lower than B∆I for all work-
load categories. This is because FPC has a more complex decom-
pression algorithm with higher decompression latency compared
to B∆I. On the other hand, for high sensitivity workloads, neither
ZCA nor FVC is as competitive as FPC or B∆I in the HCLS-HCHS
category. This is because both ZCA and FVC have a significantly
lower degree of compression compared to B∆I. However, a num-
ber of benchmarks in the HCLS category (cactusADM, gcc, gobmk,
zeusmp, and GemsFDTD) have high occurrences of zero in their
data. Therefore, ZCA and FVC are able to compress most of the
cache lines of these benchmarks, thereby creating additional space
for the co-running HCHS application.

We conducted a similar experiment with 100 4-core workloads
with different compressibility and sensitivity characteristics. We
observed trends similar to the 2-core results presented above. On
average, B∆I improves performance by 11.2% for the 4-core work-
loads and it outperforms all previous techniques. We conclude that
B∆I, with its high compressibility and low decompression latency,
outperforms other state-of-the-art compression techniques for both
2-core and 4-core workloads, likely making it a more competitive
candidate for adoption in modern multi-core processors.

We summarize B∆I performance improvement against the base-
line 2MB L2 cache (without compression) and other mechanisms
in Table 7.

Cores No Compression ZCA FVC FPC
1 5.1% 4.1% 2.1% 1.0%

2 9.5% 5.7% 3.1% 1.2%

4 11.2% 5.6% 3.2% 1.3%

Table 7: Average performance improvement of B∆I over other mecha-
nisms: No Compression, ZCA, FVC, and FPC.

8.3 Effect on Cache Capacity
Our proposed B∆I cache design aims to provide the benefits

of increasing the cache size while not incurring the increased la-
tency of a larger data storage. To decouple the benefits of com-
pression using B∆I from the benefits of reduced latency compared
to a larger cache, we perform the following study. We compare
the performance of the baseline cache design and the B∆I cache
design by progressively doubling the cache size by doubling the
cache associativity. We fix the latency of accessing all caches.

Figure 14 shows the results of this experiment. With the same ac-
cess latency for all caches, we expect the performance of the B∆I
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cache (with twice the number of tags as the baseline) to be strictly
between the baseline cache of the same size (lower limit) and the
baseline cache of double the size (upper limit, also reflected in our
results). However, with its high degree of compression, the B∆I
cache’s performance comes close to the performance of the twice
as-large baseline cache design for most benchmarks (e.g., h264ref
and zeusmp). On average, the performance improvement due to the
B∆I cache is within 1.3% – 2.3% of the improvement provided by
a twice as-large baseline cache. We conclude that our B∆I imple-
mentation (with twice the number of tags as the baseline) achieves
performance improvement close to its upper bound potential per-
formance of a cache twice the size of the baseline.

For an application with highly compressible data, the compres-
sion ratio of the B∆I cache is limited by the number of additional
tags used in its design. Figure 15 shows the effect of varying the
number of tags (from 2× to 64× the number of tags in the base-
line cache) on compression ratio for a 2MB cache. As the figure
shows, for most benchmarks, except soplex, cactusADM, zeusmp,
and GemsFDTD, having more than twice as many tags as the base-
line cache does not improve the compression ratio. The improved
compression ratio for the four benchmarks is primarily due to the
large number of zeros and repeated values present in their data.
At the same time, having more tags does not benefit a majority of
the benchmarks and also incurs higher storage cost and access la-
tency. Therefore, we conclude that these improvements likely do
not justify the use of more than 2X the tags in the B∆I cache de-
sign compared to the baseline cache.
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Figure 15: Effective compression ratio vs. number of tags

8.4 Effect on Bandwidth
In a system with a 3-level cache hierarchy, where both the L2

and the L3 caches store cache lines in compressed format, there
is an opportunity to compress the traffic between the two caches.
This has two benefits: (1) it can lead to reduced latency of com-

munication between the two caches, and hence, improved system
performance, and (2) it can lower the dynamic power consump-
tion of the processor as it communicates less data between the two
caches [7]. Figure 16 shows the reduction in L2-L3 bandwidth (in
terms of bytes per kilo instruction) due to B∆I compression. We
observe that the potential bandwidth reduction with B∆I is as high
as 53X (for GemsFDTD), and 2.31X on average. We conclude that
B∆I can not only increase the effective cache size, but it can also
significantly decrease the on-chip traffic.
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Figure 16: Effect of compression on bus bandwidth (in terms of BPKI)
between L2 (256kB) and L3 (8MB)

8.5 Detailed Comparison with Prior Work
To compare the performance of B∆I against state-of-the-art

cache compression techniques, we conducted a set of studies and
evaluated IPC, MPKI, and effective compression ratio (Figure 7)
for single core workloads, and weighted speedup (Figure 13) for
two- and four-core workloads.

Figure 17 shows the improvement in IPC using different com-
pression mechanisms over a 2MB baseline cache in a single-core
system. As the figure shows, B∆I outperforms all prior approaches
for most of the benchmarks. For benchmarks that do not bene-
fit from compression (e.g, leslie3d, GemsFDTD, and hmmer), all
compression schemes degrade performance compared to the base-
line. However, B∆I has the lowest performance degradation with
its low 1-cycle decompression latency, and never degrades perfor-
mance by more than 1%. On the other hand, FVC and FPC degrade
performance by as much as 3.1% due to their relatively high 5-cycle
decompression latency. We also observe that B∆I and FPC consid-
erably reduce MPKI compared to ZCA and FVC, especially for
benchmarks with more complex data patterns like h264ref, bzip2,
xalancbmk, hmmer, and mcf (not shown due to space limitations).

Based on our results, we conclude that B∆I, with its low decom-
pression latency and high degree of compression, provides the best
performance compared to all examined compression mechanisms.
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9. CONCLUSIONS
This paper presents B∆I, a new and simple, yet efficient hard-

ware cache compression technique that provides high effective
cache capacity increase and system performance improvement
compared to three state-of-the-art cache compression techniques.
B∆I achieves these benefits by exploiting the low dynamic range of
in-cache data and representing cache lines in the form of two base
values (with one implicit base equal to zero) and an array of differ-
ences from these base values. We provide insights into why B∆I
compression is effective via examples of existing in-cache data pat-
terns from real programs. B∆I’s key advantage over previously
proposed cache compression mechanisms is its ability to have low
decompression latency (due to parallel decompression) while still
having a high average compression ratio.

We describe the design and operation of a cache that can uti-
lize B∆I compression with relatively modest hardware overhead.
Our extensive evaluations across a variety of workloads and sys-
tem configurations show that B∆I compression in an L2 cache
can improve system performance for both single-core (8.1%) and
multi-core workloads (9.5% / 11.2% for two/four cores), outper-
forming three state-of-the-art cache compression mechanisms. In
many workloads, the performance benefit of using B∆I compres-
sion is close to the performance benefit of doubling the L2/L3 cache
size. We conclude that B∆I is an efficient and low-latency data
compression substrate for on-chip caches in both single- and multi-
core systems.
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