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This article aims to tackle two fundamental memory bottlenecks: limited off-chip bandwidth (bandwidth
wall) and long access latency (memory wall). To achieve this goal, our approach exploits the inherent error
resilience of a wide range of applications. We introduce an approximation technique, called Rollback-Free
Value Prediction (RFVP). When certain safe-to-approximate load operations miss in the cache, RFVP predicts
the requested values. However, RFVP does not check for or recover from load-value mispredictions, hence,
avoiding the high cost of pipeline flushes and re-executions. RFVP mitigates the memory wall by enabling
the execution to continue without stalling for long-latency memory accesses. To mitigate the bandwidth
wall, RFVP drops a fraction of load requests that miss in the cache after predicting their values. Dropping
requests reduces memory bandwidth contention by removing them from the system. The drop rate is a knob
to control the trade-off between performance/energy efficiency and output quality. Our extensive evaluations
show that RFVP, when used in GPUs, yields significant performance improvement and energy reduction
for a wide range of quality-loss levels. We also evaluate RFVP’s latency benefits for a single core CPU. The
results show performance improvement and energy reduction for a wide variety of applications with less
than 1% loss in quality.
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1. INTRODUCTION

The disparity between the speed of processors and off-chip memory is one of the main
challenges in microprocessor design. Loads that miss in the last-level cache can take
hundreds of cycles to deliver data. This long latency causes frequent long stalls in the
processor. This problem is known as the memory wall. Modern GPUs exploit large-scale
data parallelism to hide main-memory latency. However, this solution suffers from a
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fundamental bottleneck: limited off-chip memory bandwidth to supply data to process-
ing units. In fact, memory bandwidth is predicted to be one of the main performance-
limiting factors in accelerator-rich architectures as technology scales [Chung et al.
2010]. This problem is known as the bandwidth wall [Rogers et al. 2009]. Fortunately,
there is an opportunity to leverage the inherent error resiliency of many emerging
applications to tackle the memory and bandwidth problems. This article exploits this
opportunity and introduces an approximation technique to mitigate these memory
subsystem bottlenecks.

Large classes of emerging applications—such as web search, data analytics, ma-
chine learning, cyber-physical systems, augmented reality, and computer vision—can
tolerate error in large parts of their execution, hence, the growing interest in devel-
oping general-purpose approximation techniques. These techniques can tolerate error
in computation and trade Quality of Result for gains in performance, energy, storage
capacity, and hardware cost [Yazdanbakhsh et al. 2015; Mahajan et al. 2015; Amant
et al. 2014; Luo et al. 2014; Sidiroglou-Douskos et al. 2011]. These techniques in-
clude (a) voltage overscaling [Esmaeilzadeh et al. 2012a; Chakrapani et al. 2006], (b)
loop perforation [Sidiroglou-Douskos et al. 2011], (c) loop early termination [Baek and
Chilimbi 2010], (d) computation substitution [Amant et al. 2014; Samadi et al. 2013;
Esmaeilzadeh et al. 2012b], (e) memoization [Samadi et al. 2014; Arnau et al. 2014;
Alvarez et al. 2005], (f) limited fault recovery [de Kruijf et al. 2010; Li and Yeung
2007], and (g) approximate data storage [Luo et al. 2014; Sampson et al. 2013; Liu
et al. 2011]. However, there is a lack of approximation techniques that address the key
memory system performance bottlenecks of long-access latency and limited off-chip
memory bandwidth.

To mitigate these memory subsystem bottlenecks, this article introduces a new ap-
proximation technique called Rollback-Free Value Prediction (RFVP). The key idea is
to predict the value of the safe-to-approximate loads when they miss in the cache,
without checking for mispredictions or recovering from them, thus avoiding the high
cost of pipeline flushes and re-executions. RFVP mitigates the memory wall by en-
abling the computation to continue without stalling for long-latency memory accesses
of safe-to-approximate loads. To tackle the bandwidth wall, RFVP drops a certain frac-
tion of the cache misses after predicting their values. Dropping these requests reduces
the memory bandwidth demand as well as memory and cache contention. The drop
rate becomes a knob to control the trade-off between performance-energy and qual-
ity. In this work, we aim to devise concepts and mechanisms that maximize RFVP’s
opportunities for speedup and energy gains, while keeping the quality degradations
acceptably small. We provide architectural mechanisms to control quality degradation
and always guarantee execution without catastrophic failures by leveraging program-
mer annotations. RFVP shares some similarities with traditional exact value-prediction
techniques [Perais and Seznec 2014; Goeman et al. 2001; Sazeides and Smith 1997;
Lipasti et al. 1996; Eickemeyer and Vassiliadis 1993] that can mitigate the memory
wall. However, it fundamentally differs from prior work in that it does not check for
misspeculations and does not recover from them. Consequently, RFVP not only avoids
the high cost of recovery, but is able to drop a fraction of the memory requests to
mitigate the bandwidth wall.

In our initial work [Thwaites et al. 2014], we introduced the RFVP technique for
CPUs to lower the effective memory-access latency. We also discussed the idea of drop-
ping a fraction of memory requests [Thwaites et al. 2014]. Our results show that
dropping memory requests in CPUs is not effective. Later, in a concurrent effort, San
Miguel et al. [2014] proposed a technique that uses value prediction without checks for
misprediction to address the memory latency bottleneck in CPU processors. They also
studied the effect of dropping memory requests in CPUs and how it affects the accuracy
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of the predictor, and corroborated our reported results [Thwaites et al. 2014]. This ar-
ticle explores the following directions that differ from our initial work [Thwaites et al.
2014] and the concurrent work [San Miguel et al. 2014]: (1) we specialize our tech-
niques for GPU processors, targeting the bandwidth bottleneck rather than latency,
showing that RFVP is an effective approach for mitigating both latency and band-
width problems; (2) we utilize the value similarity of accesses across adjacent threads
in many GPU applications to develop a low-overhead, multivalue predictor capable of
producing values for many simultaneously missing loads as they execute lock-step in
GPU cores; and (3) we drop a portion of missing load requests to address the limited
off-chip bandwidth bottleneck.

This article makes the following contributions:

(1) We introduce a new approximation technique, Rollback-Free Value Prediction
(RFVP), that addresses two important system bottlenecks, long-memory latency
and limited off-chip bandwidth, by utilizing approximate value prediction mech-
anisms. The core idea in RFVP is to drop a fraction of cache-missing loads after
predicting their values. Therefore, RFVP mitigates the memory bandwidth bottle-
neck and reduces the effective memory latency.

(2) We propose a new multivalue prediction mechanism for SIMD load instructions
in GPUs. These SIMD load instructions request multiple values in one access. To
minimize the overhead of the multivalue predictor, we exploit the insight that there
is significant value similarity across accesses in the adjacent threads (e.g., due to
existing similarity in adjacent pixels in an image). Such value similarity has been
demonstrated in recent works [Samadi et al. 2014; Arnau et al. 2014]. For our mul-
tivalue predictor in RFVP, we use the two-delta value predictor [Eickemeyer and
Vassiliadis 1993]. To find the best design parameters for our proposed predictor, we
perform a Pareto-optimality analysis and explore the design space of our predictor,
applying the optimal design in a modern GPU.

(3) We provide a comprehensive evaluation of RFVP using a modern Fermi GPU ar-
chitecture. For a diverse set of benchmarks from Rodinia, Mars, and Nvidia SDK,
employing RFVP delivers, on average, 36% speedup, 27% energy reduction, and
48% reduction in off-chip memory bandwidth consumption, with an average 8.8%
quality loss. With less than 10% quality loss, the benefits reach a maximum of 2.4×
speedup, 2.0× energy reduction, and 2.3× off-chip memory bandwidth consumption
reduction. For a subset of SPEC CFP 2000/2006 benchmarks that are amenable to
safe approximation, employing RFVP in a modern CPU achieves, on average, 9.7%
speedup and 6.2% energy reduction, with 0.9% average quality loss.

2. ARCHITECTURE DESIGN FOR RFVP

2.1. Rollback-Free Value Prediction

Motivation. GPU architectures exploit large-scale data-level parallelism through
many-thread SIMD execution to mitigate the penalties of long-memory access latency.
Concurrent SIMD threads issue many simultaneous memory accesses that require
high off-chip bandwidth–one of the main bottlenecks for modern GPUs [Vijaykumar
et al. 2015; Pekhimenko et al. 2015; Keckler et al. 2011]. Figure 1 illustrates the effects
of memory bandwidth on application performance by varying the available off-chip
bandwidth in the Nvidia GTX 480 chipset with the Fermi architecture. Many of the
applications in our workload pool benefit significantly from increased bandwidth. For
instance, a system with twice the baseline off-chip bandwidth enjoys 26% average
speedup, with up to 80% speedup for the s.srad2 application. These results support our
expectation that alleviating the bandwidth bottleneck can result in significant perfor-
mance benefits. RFVP exploits this insight and aims to lower the memory bandwidth
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Fig. 1. Performance improvement with different amounts of DRAM bandwidth and perfect memory (last
bar). The baseline bandwidth is 177.4GB/s (based on the Nvidia GTX 480 chipset with the Fermi architec-
ture). The legend (N×) indicates a configuration with N times the bandwidth of the baseline. Perfect memory
is an idealized system in which all memory accesses are L1 cache hits.

pressure by dropping a fraction of the value-predicted safe-to-approximate loads,
slightly trading output quality for large gains in performance and energy efficiency.

Overview. As explained earlier, the key idea of RFVP is to predict the values of the
safe-to-approximate loads when they miss in the cache with no checks or recovery from
misprediction. RFVP not only avoids the high cost of checks and rollbacks but also
drops a fraction of the cache misses. Dropping these misses enables RFVP to mitigate
the bottleneck of limited off-chip bandwidth, and does not affect output quality when
the value prediction is correct. All other requests are serviced normally, allowing the
processing core to benefit from the spatial and temporal locality in future accesses.

Drop rate is a knob to control the trade-off between performance/energy gains and
quality loss. A higher drop rate enables the core to use more predicted approximate
values, thereby reducing main-memory accesses. We expose the drop rate as an ar-
chitectural knob to the software. The compiler or the runtime system can use this
knob to control the performance/energy and quality trade-off. Furthermore, RFVP en-
ables the core to continue without stalling for long-latency memory accesses that service
the value-predicted load misses. Consequently, these cache-missing loads are removed
from the critical path of the program execution. We now elaborate on the safety guar-
antees with RFVP, its ISA extensions and their semantics, and its integration into the
microarchitecture.

2.2. Safe Approximation with RFVP

Not all load instructions can be safely approximated. For example, loads that affect crit-
ical data segments, array indices, pointer addresses, or control flow conditionals are
usually not safe to approximate. RFVP is not used to predict the values of such loads.
As prior work in approximation showed [Park et al. 2015; Sampson et al. 2011], safety
is a semantic property of the program, and language construction with programmer
annotations is necessary to identify safely approximable instructions. As a result, the
common and necessary practice is to rely on programming language support along with
compiler optimizations to identify which instructions are safe to approximate [Carbin
et al. 2013; Esmaeilzadeh et al. 2012a, 2012b; Sampson et al. 2011; Baek and Chilimbi
2010]. Similarly, RFVP requires programmer annotations to determine the set of can-
didate load instructions for safe approximation. Therefore, any architecture that lever-
ages RFVP needs to provide ISA extensions that enable the compiler to mark the safely
approximable loads. Section 2.3 describes these ISA extensions. Section 3 describes the
details of our compilation workflow and language support for RFVP.
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2.3. Instruction Set Architecture to Support RFVP

We extend the ISA with two new instructions: (1) an approximate load instruction, and
(2) a new instruction for setting the drop rate. Similar to prior work [Esmaeilzadeh et al.
2012a], we extend the ISA with dual approximate versions of the load instructions. A bit
in the opcode is set when a load is approximate, permitting the microarchitecture to use
RFVP. Otherwise, the load is precise and must be executed normally. RFVP is triggered
only when the load misses in the cache. For ISAs without explicit load instructions, the
compiler marks any safe-to-approximate instruction that can generate a load micro-op.
In this case, RFVP is triggered only when the load micro-op misses in the cache.

Drop rate. The drop rate is a knob that is exposed to the compiler to control the
quality trade-offs. We provide an instruction that sets the value of a special register to
the desired drop rate. This rate is usually set once during application execution (not
for each load). More precisely, the drop rate is the fraction of approximate cache misses
that do not initiate memory-access requests, and instead only trigger RFVP.1 When the
request is not dropped, it is considered a normal cache miss, and its value is fetched
from memory.

Approximate load. Semantically, an approximate load is a probabilistic load. That
is, executing load.approx Reg<id>, MEMORY<address> assigns the exact value stored
in MEMORY<address> to Reg<id> with some probability, referred to as the probability
of exact assignment. The Reg<id> receives a predicted value in other cases. Intuitively,
with RFVP, the probability of exact assignment is usually high for two reasons: (1) Our
technique is triggered only by cache misses. Approximate loads that hit in the cache
(the common case) return the correct value and (2) even in the case of a cache miss,
the value predictor may generate a correct value prediction. Our measurements with a
50% drop rate show that, across all GPU applications, the average probability of exact
assignment to the approximate loads is 71%. This probability ranges from 43% to 88%.
These results confirm the effectiveness of using cache misses as a trigger for RFVP.
However, we do not expect the compiler to take these probabilities into consideration.

2.4. Integrating RFVP into the Microarchitecture

As Figure 2 illustrates, the RFVP value predictor supplies the data to the processing
core when triggered by a safe-to-approximate load. The core then uses the data as
if it were supplied by the cache. The core commits the load instruction without any
checks or pipeline stalls associated with the original miss. In the microarchitecture,
we use a simple pseudo-random number generator, a Linear Feedback Shift Register
(LFSR) [Murase 1992], to determine when to drop the request based on the specified
drop rate.

In modern GPUs, each Streaming Multiprocessor (SM) contains several Stream Pro-
cessors (SP) and has its own dedicated L1. We augment each SM with an RFVP predic-
tor that is triggered by its L1 data-cache misses. Integrating the RFVP predictor with
SMs requires special consideration because each GPU SIMD load instruction accesses
multiple data elements for multiple concurrent threads. In the case of an approximate
load miss, if the predictor drops the request, it predicts the entire cache line. The pre-
dictor supplies the requested words back to the SM, and also inserts the predicted line
into the L1 cache.

If RFVP does not predict the entire cache line, a subsequent safe-to-approximate
load to the same cache line would lead to another miss. But since RFVP does not
predict and drop all missing safe-to-approximate loads, the same line would need to

1Another option is to enable dropping a certain fraction of all cache accesses, including hits. Such a policy
may be desirable for controlling error in multikernel workloads.
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Fig. 2. Integration of the RFVP predictor into the GPU microarchitecture.

be requested again from memory. Thus, RFVP would not be able to effectively reduce
bandwidth consumption if it did not insert the entire cache line. Hence, our decision is
to value-predict and insert the entire cache line.

Since predicted lines may be written to memory, we require that any data accessed
by a precise load must not share a cache line with data accessed by approximate loads.
The compiler is responsible for allocating objects in memory such that precise and ap-
proximate data never share a cache line. We accomplish this by always requiring that
the compiler allocate objects in memory at cache-line granularity. Approximate data
always begins at a cache-line boundary, and is padded to end at a cache line bound-
ary. Thus, we can ensure that data-value prediction does not contaminate precise load
operations.2 The same stipulation has been set forth in several recent works in approx-
imate computing, such as Truffle [Esmaeilzadeh et al. 2012a] and EnerJ [Sampson
et al. 2011].

The coalescing logic in the SMs handles memory divergence and serializes the di-
vergent threads. Since RFVP is triggered only by cache misses that happen after
coalescing, RFVP is agnostic to memory divergence.

3. LANGUAGE AND SOFTWARE SUPPORT FOR RFVP

Our design principle for RFVP is to maximize the opportunities for performance and
energy-efficiency improvements, while limiting the adverse effects of approximation on
output quality.

To achieve this goal, the compilation workflow for RFVP first identifies performance-
critical loads. A performance-critical load is one that provides a higher potential for per-
formance improvement when its latency is reduced. Second, among the performance-
critical loads, the programmer determines and annotates the loads that are safe to
approximate, which means they will not cause catastrophic failures if approximated.
The list of performance-critical and safe-to-approximate loads are the candidates
for approximation with RFVP. Afterwards, we determine the drop rate using either
(1) programmer annotation, (2) compiler heuristics, or (3) a runtime system such as
SAGE [Samadi et al. 2013]. In our evaluation, we empirically pick the best drop rate
to maximize performance while maintaining high output quality.3

3.1. Targeting Performance-Critical Loads

The first step in the compilation workflow for RFVP is to identify the subset of the loads
that cause the largest percentage of cache misses. As prior work has shown [Collins
et al. 2001] and our experiments corroborate, only a very small fraction of the load
instructions cause most of the total cache misses. Figure 3 illustrates this trend by

2Note that we do not use any padding for the baseline experiments. As a result, there is no artificial increase
in bandwidth consumption in the baseline.
3A light profiling step can be utilized to automatically tune the drop rate for the target output quality
requirement.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 62, Publication date: January 2016.



RFVP: Rollback-Free Value Prediction with Safe-to-Approximate Loads 62:7

Fig. 3. Cumulative distribution function (CDF) plot of the LLC load cache misses. A point (x, y) indicates
that y percent of the cache misses are caused by x distinct load instructions.

showing the cumulative distribution function (CDF) of the LLC cache misses caused by
distinct load instructions in the GPU. As Figure 3 shows, in all of our GPU applications
except one, almost six loads cause more than 80% of the misses. We refer to these
loads as the performance-critical loads. This hot subset of loads is selected without
any a priori knowledge of the applications. We use one training input to profile the
benchmarks. The output of the profiling is a sorted list of the loads in decreasing
order based on the fraction of cache misses that each load causes. Note that the list
of performance-critical loads is obtained only once and is not changed based on the
inputs. Clearly, focusing RFVP on these loads will provide the opportunity to eliminate
a majority of the cache misses. Furthermore, the focus on a small, selected subset of
loads reduces the predictor size and consequently its overheads. Therefore, this step
provides the set of the most performance-critical and safe-to-approximate loads as
candidates for approximation. We explain the nature of some of these loads in the
Appendix. Note that programmer annotations identify which of these performance-
critical loads are safe to approximate (see Sections 2.2 and 3.2).

3.2. Providing Safety Guarantees

The next step is to ensure that loads that can cause safety violations are excluded from
RFVP. Any viable approximation technique, including ours, needs to provide strict
safety guarantees. In other words, applying approximation should cause only graceful
quality degradations without catastrophic failures, for example, segmentation faults
or infinite loops.

Safety is a semantic property of a program [Park et al. 2015; Yazdanbakhsh et al.
2015; Mahajan et al. 2015; Carbin et al. 2013; Sampson et al. 2011]. Therefore, only the
programmer can reliably identify which instructions are safe to approximate. For ex-
ample, EnerJ [Sampson et al. 2011] provides language constructs and compiler support
for annotating safe-to-approximate operations in Java. We do not expect the program-
mer to deeply annotate the approximable loads. Instead, programming models such as
FlexJava [Park et al. 2015] and EnerJ [Sampson et al. 2011] are used that allow the
programmer to annotate only the variable declarations, and the compiler automatically
infers the approximable loads from these annotations. The rule of thumb is that it is
usually not safe to approximate array indices, pointers, and control flow conditionals.
However, even after excluding these cases to ensure safety, RFVP still provides signifi-
cant performance and energy gains (as our results in Section 6 confirm) because there
are still enough performance-critical loads that are safe to approximate.

Figure 4 shows code examples from our applications to illustrate how approximat-
ing load instructions can lead to safety violations. In Figure 4(a), it is not safe to
approximate loads from ei , row , d_iS[row] variables that are used as array indices.
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Fig. 4. Code examples with different safety violations.

Approximating such loads may lead to out-of-bounds array accesses and segmentation
faults. In Figure 4(b), it is unsafe to approximate variable d_Src, which is a pointer.
Approximation of this variable may lead to memory safety violations and segmentation
faults. In Figure 4(c), it is not safe to approximate the ei_new and in2_elem variables
because they affect control flow. Approximating such loads may lead to infinite loops
or premature termination. In many cases, control flow in the form of an if-then-else
statement can be if-converted to dataflow [Allen et al. 1983]. Therefore, it might be
safe to approximate the loads that affect the if-convertible control flow conditionals.
Figure 4(d) illustrates such a case. Loads for both value and newValue are safe to
approximate even though they affect the if condition.

3.3. Drop-Rate Selection

These first two steps provide a small list of safe-to-approximate and performance-
critical loads for RFVP. The final step in the RFVP compilation workflow is to pick the
best drop rate that maximizes the benefits of RFVP while satisfying the target output
quality requirement. In general, providing formal quality guarantees for approxima-
tion techniques across all possible inputs is still an open research problem. However,
the drop rate is a knob that enables RFVP to explore various quality trade-offs. RFVP
can use different techniques to select the drop rate. We can determine the drop rate dy-
namically at runtime using techniques such as those described in SAGE [Samadi et al.
2013]. SAGE uses computation sampling and occasional redundant execution on the
CPU to dynamically monitor and control approximation. While dynamically setting the
drop rate may provide the advantage of more adaptive error control, it comes at the cost
of some additional overhead. Alternatively, a lightweight, profile-driven technique can
statically determine the drop rate that satisfies the target output quality. To this end,
the compiler can perform a stochastic binary search to determine the drop rate. The
compiler starts with a drop rate of 50%. If this drop rate satisfies the output quality
target, the compiler increases the drop rate by a delta. Otherwise, it reduces the drop
rate. This process continues until the highest drop rate that stochastically satisfies
the target quality is found. Ultimately, the compiler empirically picks a static drop
rate in our evaluation, but using a dynamic scheme to adjust drop rate is also a viable
alternative.

Altogether, the three steps (described in Sections 3.1, 3.2, and 3.3) provide a compi-
lation workflow that focuses RFVP on the safe-to-approximate loads with the highest
potential in terms of performance and energy savings while satisfying the target output
quality requirement.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 62, Publication date: January 2016.



RFVP: Rollback-Free Value Prediction with Safe-to-Approximate Loads 62:9

4. VALUE PREDICTOR DESIGN FOR RFVP

One of the main design challenges for effective RFVP is devising a low-overhead
and fast-learning value predictor. The predictor needs to quickly adapt to the rapidly
changing value patterns in every approximate load instruction. There are several mod-
ern exact value predictors (e.g., Perais and Seznec [2014] and Goeman et al. [2001]).
We use the two-delta stride predictor [Eickemeyer and Vassiliadis 1993], due to its
low complexity and reasonable accuracy, as the base for our multivalue prediction
mechanism for GPUs (which predicts all values in an entire cache line). We have also
experimented with other value-prediction mechanisms such as DFCM [Goeman et al.
2001], last value [Lipasti and Shen 1996] and stride [Sazeides and Smith 1997]. Empir-
ically, two-delta predictor provides a good trade-off between accuracy and complexity.
We choose this scheme because it requires only one addition to perform the prediction
and only a few additions and subtractions for training. It also requires lower storage
overhead than more accurate context-sensitive alternatives [Perais and Seznec 2014;
Goeman et al. 2001]. However, this predictor cannot be readily used for multivalue pre-
diction (for predicting the entire cache line), which is required for GPUs, as explained
earlier. Due to the SIMD execution model in modern GPUs, the predictor needs to
generate multiple parallel predictions for multiple parallel threads.

In the next section, we first describe the design of the base predictor, then devise a
new predictor that performs full cache line multivalue GPU prediction.

4.1. Base Predictor for RFVP

Figure 5 illustrates the structure of the two-delta predictor [Eickemeyer and Vassiliadis
1993], which we use as the base predictor design for RFVP in GPUs.4 The predictor
consists of a value-history table that tracks the values of the load instructions. The
table is indexed by a hash of the approximate load’s PC. We use a hash function that
is similar to the one used in Goeman et al. [2001]. Each row in the table stores three
values: (1) the last precise value (64-bit), (2) Stride1 (16-bit), and (3) Stride2 (16b). The
last value plus Stride1 makes up the predicted value. When a safe-to-approximate load
misses in the cache but is not dropped, the predictor updates the last value upon
receiving the data from lower level memory. We refer to the value from memory as
the current value. Then, the predictor calculates the stride, the difference between
the last value and the current value. If the stride is equal to Stride2, it stores the
stride in Stride1. Otherwise Stride1 will not be updated. The predictor always stores
the stride in Stride2. The two-delta predictor updates Stride1, which is the prediction
stride, only if it observes the same stride twice in a row. This technique produces a low
rate of mispredictions, especially for integer workloads [Eickemeyer and Vassiliadis
1993]. However, for floating-point loads, it is unlikely to observe two matching strides.
Floating-point additions and subtractions are also costly. Furthermore, RFVP performs
approximate value predictions for error-resilient applications that can tolerate small
deviations in floating-point values. Considering these challenges with floating-point
value prediction and the approximate nature of the target applications, our two-delta
predictor simply outputs the last value for floating-point loads. We add a bit to each row
of the predictor to indicate whether or not the corresponding load is a floating-point
instruction.

4.2. Value-Predictor Design for GPUs

Here, we elaborate on the RFVP predictor design for multivalue prediction, (i.e., for
predicting the entire cache line) in GPUs, in which SIMD loads read multiple words.

4For clarity, Figure 5 does not depict the update logic of the predictor.
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Fig. 5. Structure of the base two-delta predictor.

GPU predictor structure. The fundamental challenge in designing the GPU pre-
dictor is that a single data request is an SIMD load that must produce values for
multiple parallel threads. A naive approach to performing value prediction in GPUs
is to replicate the single-value predictor for each parallel thread. For example, in a
typical modern GPU, there may be as many as 1,536 threads in flight during execu-
tion. Therefore, the naive predictor would require 1,536 separate two-delta predictors,
which is impractical. Fortunately, we find that, while each SIMD load requires many
predicted data elements, adjacent threads operate on data that has significant value
similarity. In other words, we expect that the value in a memory location accessed by
thread N will be similar to the values accessed by threads N-1 and N+1. This insight
drives our value-predictor design.

In many GPU applications, adjacent threads in a warp process data elements with
some degree of value similarity, for example, pixels of an image. Previous work [Samadi
et al. 2013] shows the value similarity between the neighboring locations in memory
for GPGPU workloads. Furthermore, GPU bandwidth compression techniques (e.g.,
Vijaykumar et al. [2015]) exploit this value similarity in GPGPU workloads to compress
data with simple compression algorithms [Pekhimenko et al. 2012]. Our evaluation also
shows significant value similarity between adjacent threads in the applications that
we study.

In our multivalue predictor design for GPUs, we leverage (1) the existing value simi-
larity in the adjacent threads and (2) the fact that predictions are only approximations
and the application can tolerate small prediction errors.

We design a predictor that consists of only two specialized two-delta predictors. In
order to perform the entire cache line5 prediction, we introduce special prediction and
update mechanisms for RFVP, which we explain later in this section. Additionally,
to reduce the conflicts between loads from different active warps, we make the GPU
predictor set associative (using the Least Recently Used (LRU) replacement policy).
As Figure 6 shows, for each row in the predictor, we keep the corresponding load’s
{WarpID, PC} as the row tag. A load value is predicted only if its {WarpID, PC} matches
the row tag. For most measurements, we use a predictor that has 192 entries, is 4-way
set associative, and consists of two two-delta predictors and two last-value predictors.
Using set associativity for the predictor is a unique aspect of our design that performs
multivalue prediction. Section 6 provides a detailed design-space exploration for the
GPU predictor, which includes the set associativity and number of parallel predictors,
as well as the number of entries.

We explain the prediction and update mechanisms for our GPU configuration
(Table II) in which there are 32 threads per warp. Our RFVP predictor can be eas-
ily adapted for other GPU configurations.

RFVP prediction mechanism. When there is a match between the {WarpID, PC}
of a SIMD load and one of the row tags of the RFVP predictor, the predictor gen-
erates two predictions: one for ThreadID=0–15 and one for ThreadID=16–31. RFVP

5In our GPU configuration (Table II), each cache line has 32 4B words.
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Fig. 6. Structure of the multivalue predictor for RFVP in GPUs. The GPU predictor consists of two two-delta
and two last-value predictors. The GPU predictor is also set-associative to reduce the conflicts between loads
from different active warps. The predictor produces predictions for full cache lines.

achieves the entire cache-line prediction by replicating the two predicted values for the
corresponding threads. As Figure 6 shows, the Two-Delta (Th0–Th15) structure gener-
ates a prediction value that is replicated for threads 0 to 15. Similarly, the Two-Delta
(Th16-Th31) generates a prediction for threads 16 to 31. Note that each of the two two-
delta predictors works similarly as the baseline two-delta predictor [Eickemeyer and
Vassiliadis 1993]. Using this approach, RFVP is able to predict the entire cache line for
each SIMD load access. Due to the high cost of the floating-point operations, our RFVP
predictor falls back to a simple last-value predictor for FP values. In other words, the
predictor outputs the last value entry of each of the two two-delta predictors as the pre-
dicted data. We use the FP bit in the RFVP predictor to identify the floating-point loads.

In the GPU execution model, there might be situations in which an issued warp has
less than 32 active threads. Having less than 32 active threads causes gaps in the
predicted cache line. However, the data in these gaps might be used later by other
warps. The simple approach is not to perform value prediction for these gaps and fill
them with random data. Our evaluation shows that this approach leads to significant
output-quality degradation. To avoid this quality degradation, RFVP fills the gaps with
approximated data. We add a column to each two-delta predictor that tracks the last
value of word0 and word16 in the cache line being accessed by the approximate load.
When predicting the cache line, all the words that are accessed by the active threads
are filled by the pair of two-delta predictors. The last value column of thread group
Th0–Th15 (LVW0) is used to fill the gaps in W0 to W15. Similarly, the last value column
of thread group Th16–Th31 (LVW16) is used to fill the gaps in W16 to W31. This proposed
mechanism in RFVP guarantees that all the threads get value-predicted approximated
data (instead of random data) and avoids significant output-quality degradation.

RFVP update mechanism. When a safe-to-approximate load misses in the cache
but is not dropped, the predictor updates the two-delta predictor upon receiving
the data from lower-level memory. The fetched data from lower-level memory is precise;
we refer to its value as the current value. The Two-Delta (Th0-Th15) structure is updated
with the current value of the active thread of the thread group ThreadID=0–15 with
the lowest threadID. Similarly, the Two-Delta (Th16-Th31) is updated with the current
value of the active thread of thread group ThreadID=16–31 with the lowest threadID.

5. EXPERIMENTAL METHODOLOGY

We use a diverse set of applications, cycle-level simulation, and low-level energy model-
ing to evaluate RFVP in a modern GPU. This section details our experimental method-
ology and Section 6 presents our results.
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Table I. Evaluated GPU Applications, Input Data, Quality Metrics, and Characteristics

5.1. Experimental Methodology for GPUs

Applications. As Table I shows, we use a diverse set of already optimized GPU bench-
marks from Rodinia [Che et al. 2009], Nvidia SDK, and Mars [He et al. 2008] benchmark
suites to evaluate RFVP with the GPU architectures. Columns 1 through 3 of Table I
summarize these applications and their domains. The applications are amenable to
approximation and represent a wide range of domains including pattern recognition,
machine learning, image processing, scientific computing, medical imaging, and web
mining. One of the applications, srad , takes an inordinately long time to simulate to
completion. Therefore, we evaluate the two kernels that dominate srad ’s runtime sep-
arately. These kernels are denoted as s.reduce and s.srad2 in Table I. We use NVCC
4.2 from the CUDA SDK with -O3 flag to compile the applications for the Fermi mi-
croarchitecture. Furthermore, we do not perform any optimizations in the source code
in favor of RFVP. We optimize only the number of thread blocks and number of threads
per block of each kernel for our simulated hardware.

Quality metrics. Column 4 of Table I lists each application’s quality metric. Each
application-specific quality metric determines the application’s output-quality loss as
it undergoes RFVP approximation. Using application-specific quality metrics is com-
mensurate with other works on approximation [Amant et al. 2014; Esmaeilzadeh et al.
2012b, 2012a; Sampson et al. 2011; Baek and Chilimbi 2010]. To measure quality loss,
we compare the output from the RFVP-enabled execution to the output with no approx-
imation. For similarityscore, s.reduce, s.rad2, and matrixmul , which generate numerical
outputs, we use the Normalized Root-Mean-Square Error (NRMSE) as the quality
metric. The backprop application solves a regression problem and generates a numeric
output. The regression error is measured as relative error. Since gaussian and fastwalsh
output images, we use the image difference Root-Mean-Square Error (RMSE) as the
quality metric. The heartwall application finds the inner and outer walls of a heart from
3D images and computes the location of each wall. We measure the quality loss using
the average Euclidean distance between the corresponding points of the approximate
and precise output. We use the same metric for particlefilter , which computes locations
of particles in a 3D space. Finally, we use the total mismatch rate for stringmatch.
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Table II. Simulated GPU Microarchitectural Parameters

System Overview: 15 SMs, 32 threads/warp, 6 memory channels; Shader Core Config: 1.4GHz,
2 Schedulers/SM [Rogers et al. 2012], Resources/SM: 48 warps/SM, 32,768 registers, 32KB shared
memory; L1 Data Cache: 16KB, 128B line, 4-way, LRU; L2 Unified Cache: 768KB, 128B line, 8-way,
LRU; Memory: GDDR5, 924MHz, 16 banks/MC, FR-FCFS; Interconnect: 700MHz, 1 crossbar/direction
(15 SMs, 6 MCs); Off-Chip Bandwidth: 177.4GB/s

Load identification. The final column of Table I lists the number of static approxi-
mate loads identified. These loads are a subset of all the loads that are marked as safe
to approximate by the programmer. There are only a few loads that contribute signifi-
cantly to the total number of cache misses. Therefore, RFVP focuses on the intersection
of the performance-critical loads and the loads that are marked by the programmer as
safe to approximate (as described in Sections 3.1 and 3.2). For some applications, such
as backprop, fastwalsh, and particlefilter , we list the number of approximate loads for
each individual kernel within the application as a tuple in Table I, for example, (2, 1,
4) for fastwalsh.

Cycle-level microarchitectural simulation. We use the cycle-level GPGPU-Sim
simulator version 3.1 [Bakhoda et al. 2009]. We modified the simulator to include our
ISA extensions, value prediction, and all necessary cache and memory logic to support
RFVP. Table II summarizes the microarchitectural parameters of our baseline GPU. We
run each application 10 times with different input datasets to completion and report
the average results.

Energy modeling and overheads. To measure the energy benefits of RFVP, we
use GPUWattch [Leng et al. 2013], which is integrated with GPGPU-Sim. GPUWattch
models the power consumption of the cores, on-chip interconnect, caches, memory
controller, and DRAM. RFVP comes with overheads, including the prediction tables,
arithmetic operations, and allocation of the predicted lines in the cache. Our simulator
changes enable GPUWattch to account for the caching overheads. We estimate the
prediction table read-and -write energy using CACTI version 6.5 [Muralimanohar et al.
2007]. We extract the overhead of arithmetic operations from McPAT [Li et al. 2009].
Our energy evaluations use a 40nm process node and 1.4GHz clock frequency (similar to
the shader core clock frequency). Furthermore, we have synthesized the LFSR and the
hash function and incorporated the energy overheads. The default RFVP prediction
table size is 14KB per SM and the GPU consists of 15 SMs. The off-chip memory
bandwidth of the simulated GPU is 177.4GB/s.

6. EXPERIMENTAL RESULTS

6.1. GPU Measurements

Speedup, energy, memory bandwidth, and quality. Figure 7(a) shows the speedup
with RFVP for maximum 1%, 3%, 5%, and 10% quality degradation. We have explored
this trade-off by setting different drop rates, which is RFVP’s knob for quality control.
The baseline is the default GPU system that we model without RFVP. Figures 7(b) and
7(c) illustrate the energy reduction and the reduction in off-chip bandwidth consump-
tion, respectively. The error bars show the standard deviation of 10 simulation runs
with different inputs.

As Figures 7(a) and 7(b) show, RFVP yields, on average, 36% speedup and 27% energy
reduction with 10% quality loss. The speedup is as high as 2.2× for matrixmul and 2.4×
for similarityscore with 10% quality loss. The maximum energy reduction is 2.0× for
similarityscore. RFVP yields these benefits despite approximating fewer than 10 static
performance-critical load instructions per kernel. The results show the effectiveness
of our proposed mechanism in focusing approximation where it is most beneficial.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 62, Publication date: January 2016.



62:14 A. Yazdanbakhsh et al.

Fig. 7. GPU (a) performance improvement, (b) energy reduction, and (c) memory bandwidth consumption
reduction for at most 1%, 3%, 5%, and 10% quality degradation. Error bars show the standard deviation of
10 simulation runs with different inputs.

With 5% quality loss, the average performance and energy gains are 16% and 14%,
respectively. Thus, RFVP is able to navigate the trade-off between quality loss and
performance-energy improvement based on the user requirements.

Even with a small quality degradation (e.g., 1%), RFVP yields significant speedup and en-
ergy reduction in several applications, including fastwalsh, particlefilter , similarityscore,
s.srad2. The benefits are as high as 22% speedup and 20% energy reduction for parti-
clefilter with strictly less than 1% quality loss.

Comparing Figures 7(a), 7(b), and 7(c) shows that the benefits strongly correlate with
the reduction in bandwidth consumption. This strong correlation suggests that RFVP
is able to significantly improve both GPU performance and energy consumption by pre-
dicting load values and dropping memory-access requests. The applications for which
the bandwidth consumption is reduced the most (matrixmul, similarityscore), are usually
the ones that benefit the most from RFVP. One notable exception is s.reduce. Figure 7(c)
shows that RFVP reduces this application’s bandwidth consumption significantly (up
to 90%), yet the performance and energy benefits are relatively modest (about 10%).
However, Figure 1 illustrates that s.reduce yields less than 40% performance benefit
even with perfect memory. Therefore, the benefits from RFVP are expected to be lim-
ited for this application even with significant bandwidth reduction. This case shows
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Fig. 8. Speedup and energy reduction when RFVP does not drop memory requests and sends them to the
lower memory subsystem (the value-predicted line is still inserted in the L1 cache).

that an application’s performance sensitivity to off-chip communication bandwidth is
an important factor in RFVP’s ability to improve performance and energy efficiency.
Also, RFVP provides no benefit for stringmatch with 10% quality degradation. This case
is an interesting outlier that we discuss in greater detail in the next section.

To better understand the sources of the benefits, we perform an experiment in which
RFVP fills the L1 cache with predicted values, but does not drop the corresponding
memory requests. In this scenario, when the memory request completes, the predic-
tor is updated with the fetched value from the main memory. The results are pre-
sented in Figure 8. Without dropping requests, RFVP yields only 2% performance im-
provement and increases energy consumption by 2% on average for these applications.
These results suggest that the source of RFVP’s benefits come primarily from reduced
bandwidth consumption, which is a major bottleneck in GPUs that hide latency with
many-thread execution.6

All applications but one benefit considerably from RFVP in terms of both performance
and energy consumption, due to reduced off-chip communication. The energy benefits
are due to both reduced runtime and fewer costly data fetches from off-chip memory.
Overall, these results confirm the effectiveness of RFVP in mitigating the bandwidth
bottleneck for a diverse set of GPU applications.

Sources of quality degradation. To determine the effectiveness of our value pre-
diction, we measure the portion of load operations that return approximate values.
Figure 9 shows the result of these measurements for three different drop rates: 12.5%,
25%, and 50%. The results show that, on average, only 2% (max 5.4%) of all dynamic
load instructions return approximate values for a 25% drop rate. This percentage in-
creases to 3% (max 7.5%) for a 50% drop rate. Thus, a large majority of all dynamic
loads return exact values, even at reasonably high drop rates. The prediction accu-
racy is relatively low (on average, 63%), yet commensurate with prior works on value
prediction [Ceze et al. 2006; Goeman et al. 2001; Eickemeyer and Vassiliadis 1993].
However, RFVP focuses approximation only on the small subset of loads that are
bothperformance-critical and safe to approximate. Thus, due to the small fraction of

6We study the effects of RFVP on single-core CPUs that are more latency sensitive in Section 7.
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Fig. 9. Fraction of load instructions that receive exact and approximate values during execution for three
different drop rates: 12.5%, 25%, and 50%.

Fig. 10. Effect of drop rate on RFVP’s (a) speedup, (b) energy reduction, and (c) quality degradation.

loads predicted with approximate values, RFVP leads to low quality degradations (as
we explain in Figure 10(c)).

Quality trade-offs with drop rate. Drop rate is RFVP’s knob for navigating quality
trade-offs. It dictates the fraction of the value-predicted approximate load cache misses
that are also dropped. For example, with a 12.5% drop rate, RFVP drops one out of eight
approximate load cache-misses. We examine the effect of this knob on performance,
energy, and quality by sweeping the drop rate from 12.5% to 90%. Figure 10 illustrates
the effect of drop rate on speedup (Figure 10(a)), energy reduction (Figure 10(b)), and
quality degradation (Figure 10(c)).

As the drop rate increases, so do the performance and energy benefits. However, the
benefits come with some cost in output quality. The average speedup ranges from 1.07×
with a 12.5% drop rate, to as much as 2.1× with a 90% drop rate. Correspondingly, the
average energy reduction ranges from 1.05× to 1.7× and the average quality degrada-
tion ranges from 6.5% to 31%.
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Figure 10(c) shows that, in all but one case, quality degradation increases slowly and
steadily as the drop rate increases. The clear exception is stringmatch. This application
searches a file with a large number of strings to find the lines that contain a search
word. This application’s input dataset contains only English words with very low value
locality. The application outputs the indices of the matching lines, which have a very
low margin for error. Either the index is correctly identified or the output is wrong. The
quality metric is the percentage of the correctly identified lines. During search, even
if a single character is incorrect, the likelihood of matching the words and identifying
the correct lines is low.

Even though stringmatch shows 61% speedup and 44% energy reduction with a 25%
drop rate, the corresponding quality loss of 60% is not acceptable. In fact, stringmatch
is an example of an application that cannot benefit from RFVP due to its low error
tolerance.

As Figure 10 shows, each application tolerates the effects of RFVP approxima-
tion differently. For some applications, such as gaussian and fastwalsh, as the rate of
approximation (drop rate) increases, speedup, energy reduction and quality loss grad-
ually increase. In other applications, such as matrixmul and similarityscore, the perfor-
mance and energy benefits increase sharply while the quality degradation increases
gradually. For example, in similarityscore, increasing the drop rate from 25% to 50%
yields a jump in speedup (from 28% to 59%) and energy reduction (from 10% to 57%),
while quality loss rises by only 2%.

We conclude that RFVP provides high performance and energy-efficiency benefits at ac-
ceptable quality-loss levels (as shown in Figure 10), for applications whose performance
is most sensitive to memory bandwidth (as shown in Figure 1).

RFVP with a different base predictor. RFVP can employ a variety of base predic-
tors. There is a trade-off between the simplicity of the predictor and the performance
and energy reduction that it can provide. We study the performance and the energy
reduction with three different base predictors for a given quality loss: (1) Zero-Value,
(2) Last-Value, and (3) Two-Delta predictors. For each predictor, we pick the drop rate
that leads to less than 10% quality loss. Figure 11 shows the speedup and energy reduc-
tion of using different predictors with RFVP for 10% quality loss. Using a Zero-Value
predictor shows almost no speedup and energy reduction benefit, because simply pre-
dicting zero leads to significant quality degradation beyond the target of 10%. Only in
fastwalsh and heartwall does RFVP with the Last-Value predictor provide almost sim-
ilar improvements as our Two-Delta predictor. In these two applications, the majority
of the loads are floating point and the Two-Delta predictor falls back to the simple
Last-Value predictor. In the remaining applications, our predictor that uses the two-
delta algorithm provides significantly higher benefits. These benefits are achieved with
reasonably low area overhead, as discussed earlier.

Design space exploration and Pareto analysis. The two main design parameters
of our GPU value predictor are: (1) the number of predictors per warp and (2) the
number of entries in each predictor. We vary these two parameters to explore the
design space of the GPU predictor and perform a Pareto analysis to find the best
configuration. Figure 12shows the result of this design-space exploration. The x-axis
captures the complexity of the predictor in terms of size (in kilobytes). The y-axis is
the Normalized Energy×Normalized Delay×Error across all the GPU applications. The
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Fig. 11. Effect of different value predictors on RFVP’s (a) speedup and (b) energy reduction, with 10%
quality loss.

Fig. 12. GPU value predictor design-space exploration and Pareto analysis for RFVP. The point (xE,yTh)
represents a configuration with y predictors per warp and each with x entries. All the predictors are 4-way
set associative. The predictor configuration of (192E,2Th), which is our default configuration, is the most
Pareto-optimal design point. In this graph, lower and left is better. The normalization baseline is our GPU
system without RFVP.

normalization baseline is our GPU system without RFVP. This product simultaneously
captures the three metrics of interest: performance, energy, and quality. The optimal
predictor minimizes both size (left on the x-axis), energy dissipation, execution delay,
and error (lower on the y-axis). In Figure 12, (xE,yTh) represents a configuration
with y predictors per warp and each with x entries. All the predictors are 4-way set
associative.

In Figure 12, the knee of the curve is the most cost-effective point. This Pareto-optimal
design is the (192E,2Th) configuration, which requires 14KB of storage, and is our default
configuration.

This design-space exploration shows that the number of entries in the prediction
table has a clear effect on the potential benefits of RFVP. Increasing the number of
entries from 32 to 192 provides 1.4× improvement in Normalized Energy× Normalized
Delay × Error. More entries lower the chance of destructive aliasing in the prediction
table that leads to the frequent eviction of value history from the prediction tables.
However, adding more predictors per warp beyond a certain point does not provide any
significant benefit in terms of improving the output quality, and instead wastes area
and reduces the energy saving. With fewer predictors, RFVP relies more on the value
locality across the threads, which is the common case in GPU applications [Samadi
et al. 2014; Arnau et al. 2014].

Cache sensitivity study. We compare the benefits of RFVP with the benefits that
can be achieved with simply enlarging the caches by same amount as the RFVP pre-
dictor size. Similar to other works [Rogers et al. 2012; Bakhoda et al. 2009], we do
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Table III. Evaluated CPU Applications, Input Data, and Quality Metrics

Exploiting value similarity in GPU applications enables RFVP to use a smaller predictor
without significant degradation in output quality. Thus, a 14KB predictor per each SM,
which is the Pareto-optimal design, exploits value similarity and produces significant
gains in performance and energy saving while maintaining high output quality.

not recompile the source code for different cache sizes. We found that, for the studied
applications, the increased L1 size in each SM results in 4% performance improvement
and 1% energy savings on average. The increased L2 size yields only 2% performance
improvement and 1% energy savings, on average. RFVP provides significantly higher
benefits with the same overhead by trading output quality for performance and energy
improvements.

Comparison with loop perforation. With 10% quality loss, loop perfora-
tion [Sidiroglou-Douskos et al. 2011] provides 18% average speedup (max 25%) and
19% average energy reduction (max 28%). In contrast, RFVP provides 36% average
speedup and 27% average energy reduction. Our results are on par with previous stud-
ies on loop perforation in GPUs [Samadi et al. 2013]. Loop perforation leads to lower
performance because simply skipping loop iterations leads to significant output quality
loss that limits the use of loop perforation.

7. EFFECT OF RFVP ON CPU-BASED SYSTEMS

To understand the effectiveness of RFVP in a system in which latency is the primary
concern, we investigate the integration of RFVP in a single-core CPU system.

7.1. Methodology

Applications. As Table III shows, we evaluate RFVP for CPUs using an approximable
subset of SPEC CFP 2000/2006. The applications come from the domains of scientific
computing and optimization. As the work in Sethumadhavan et al. [2012] discusses,
the CFP2000/2006 benchmarks have some natural tolerance to approximation. When
these floating-point applications discretize continuous-time inputs, the resulting data
is naturally imprecise. We compile the benchmarks using gcc version 4.6 with -O3 to
enable compiler optimizations.

Quality metrics. As discussed later, our subset of the SPEC applications produce
numerical outputs. Therefore, we use NRMSE (see Section 5.1) to measure quality loss.
For swim, the output consists of all diagonal elements of the velocity fields of a fluid
model. In fma3d , the outputs are position and velocity values for 3D solids. In bwaves,
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Table IV. Simulated CPU Microarchitectural Parameters

Processor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store Queue: 48-entry/32-entry, ROB Entries:
128, Issue Queue Entries: 36, INT/FP Physical Registers: 256/256, Branch Predictor: Tournament 48KB, BTB
Sets/Ways: 1024/4, RAS Entries: 64, Dependence Predictor: 4096-entry Bloom Filter, ITLB/DTLB Entries:
128/256; L1: 32KB I$, 32KB D$, 64B line, 8-Way, Latency: 2 cycles; L2: 2MB, 64B line, 8-Way, Latency: 20
cycles; Memory Latency: 200 cycles

the outputs define the behavior of blast waves in 3D viscous flow. The cactusADM
benchmark outputs a set of coordinate values for space–time in response to matter
content. The soplex benchmark solves a linear programming problem and outputs the
solution. Finally, GemsFDTD outputs the radar cross-section of a perfectly conducting
object using the Maxwell equations.

Load identification. We use an approach similar to the one we used in our GPU
evaluation to identify the loads that are both performance-critical and safe to approx-
imate. We use Valgrind with the Cachegrind tool [Nethercote and Seward 2007] for
final quality of result evaluation. We modify Cachegrind to support RFVP. Valgrind is
fast enough to run our applications until completion with SPEC reference datasets.

Cycle-level simulations. We implement RFVP in the MARSSx86 cycle-level sim-
ulator [Patel et al. 2011]. The baseline memory system includes a 32KB L1 cache, a
2MB LLC, and external memory with 200-cycle access latency. In modern processors,
the LLC size is often 2MB × number of cores. Thus, we use a 2MB LLC for our single-
core experiments. Furthermore, the simulations accurately model port and intercon-
nect contention at all levels of the memory hierarchy. The core model follows the Intel
Nehalem microarchitecture [Molka et al. 2009]. Because simulation until completion is
impractical for SPEC applications with reference datasets, we use Simpoint [Hamerly
et al. 2004] to identify the representative application phases. We perform all the mea-
surements for the same amount of work in the application using markers in the code.
Table IV summarizes the microarchitectural parameters for our simulated CPU. As in
GPU evaluations, we run each application 10 times with different input datasets and
report the average.

Energy modeling and overheads. We use McPAT [Li et al. 2009] and CACTI
[Muralimanohar et al. 2007] to measure energy benefits while considering all the
overheads associated with RFVP. The caching overheads are incorporated into the
statistics that Marssx86 produces for McPAT. As in our GPU evaluations, we estimate
the prediction table overhead using CACTI version 6.5, and extract the arithmetic
operations overhead from McPAT. The energy evaluations use a 45nm process, 0.9Vdd
and 3.0GHz core clock frequency.

7.2. Results

Figure 13 shows the speedup, energy reduction, and quality degradation with RFVP.
The baseline is the CPU system with no RFVP. Our proposed RFVP technique aims to
mitigate the long memory-access latencies in a CPU. Thus, RFVP predicts all missing
approximate load requests but does not drop any of them. We experimented with drop-
ping requests in the CPU experiments. However, there was no significant benefit since
these single-threaded CPU workloads are not sensitive to the off-chip communication
bandwidth.

As Figure 13 shows, RFVP provides 9.7% average speedup and 6.2% energy reduction
with a single-core CPU. The average quality loss is 0.9%.

While RFVP’s benefits on the CPU system are lower than its benefits on the GPU
system, the output quality degradations on the CPU system are also comparatively

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 62, Publication date: January 2016.



RFVP: Rollback-Free Value Prediction with Safe-to-Approximate Loads 62:21

Fig. 13. Effect of RFVP in a single-core CPU: (a) speedup, (b) energy reduction, and (c) quality degradation.

Table V. L2 MPKI Comparison with and without RFVP on the CPU System

low. The GPU applications in our workload pool are more amenable to approximation
than the CPU applications. That is, a larger fraction of the performance-critical loads
are safe to approximate in GPU workloads. Nevertheless, Figure 13 shows that one
CPU application (bwaves) still gains 19% speedup and 16% energy reduction with only
1.8% quality degradation.

To better understand RFVP’s performance and energy benefits on the CPU system,
we examine MPKI reduction in the L2 cache, and present the results in Table V.
RFVP reduces MPKI by enabling the core to continue without stalling for memory to
supply data. Usually, a larger reduction in MPKI leads to larger benefits. For example,
for bwaves, the L2 MPKI reduces from 11.6 to 2.2, leading to 19% speedup and 16%
energy reduction.

To understand the low quality degradations of the CPU applications with RFVP, we
also study the distribution of the fraction of the load values that receive approximate
and precise values during execution. The trends are similar to the ones that we observed
for the GPU experiment (see Figure 9). In the CPU case, on average, only 1.5% of all
the dynamic loads receive imprecise values.

Due to the overall low rate at which load instructions return imprecise data to the CPU,
the applications experience low quality degradation in the final output. In fact, RFVP on
a CPU system achieves performance and energy gains that are one order of magnitude
greater than the quality loss.

The value prediction accuracy in the CPU system is on par with prior work [Ceze
et al. 2006; Goeman et al. 2001; Eickemeyer and Vassiliadis 1993] and the GPU system.
Once again, RFVP focuses approximation on the safe-to-approximate loads that do not
significantly degrade the output quality. These results show that RFVP effectively
mitigates the long memory-access latency with a low degradation in output quality.
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8. RELATED WORK

To our knowledge, this article is the first work that: (1) provides a mechanism for
approximate value prediction for load instructions in GPUs, (2) enables memory band-
width savings by enabling the dropping value-predicted memory requests at acceptable
output quality loss levels, and (3) develops a new multiple-value prediction mechanism
for GPUs that enables the prediction of entire cache lines.

Next, we discuss related works in (1) approximate computing, (2) value prediction,
and (3) load value approximation.

General-purpose approximate computing. Recent work explored a variety of
approximation techniques. However, approximation techniques that tackle memory
subsystem performance bottlenecks are lacking. This article defines a new technique
that mitigates the memory subsystem bottlenecks of long access latency and limited
off-chip bandwidth.

EnerJ [Sampson et al. 2011] is a language for approximate computing. Its correspond-
ing architecture, Truffle [Esmaeilzadeh et al. 2012a], leverages voltage overscaling,
floating-point bitwidth reduction, and reduced DRAM refresh. We borrow the program-
ming constructs and ISA augmentation approach from EnerJ and Truffle, respectively.
However, we define our own novel microarchitectural approximation technique. EnerJ
and Truffle reduce energy consumption in CPUs, while we improve both performance
and energy efficiency in GPUs as well as CPUs. The work in Sampson et al. [2013] and
Liu et al. [2011] design approximate DRAM and Flash storage blocks. Flikker [Liu
et al. 2011] reduces the DRAM refresh rate when approximate data is stored in
main memory. The work in Arnau et al. [2014] uses hardware memoization to reduce
redundant computation in GPUs. However, while this work eliminates execution
within the SMs, it still requires data inputs to be read from memory. Some bandwidth
savings may arise by eliminating these executions, but our work fundamentally differs
in that it attacks the bandwidth bottleneck directly by eliminating memory traffic. The
work in Sampson et al. [2013] uses faulty flash blocks for storing approximate data to
prolong its lifetime. This work also aims to improve the density and access latency of
flash memory using multilevel cells with small error margins. Luo et al. [2014] describe
a heterogeneous-reliability memory system in which a part of memory is unreliable
and thus can output approximate data. They show that such a memory system can lead
to significant cost savings, but do not optimize performance. The technique in Sartori
and Kumar [2013] exploits approximation to mitigate branch and memory divergence
in GPUs. In the case of branch divergence, the authors force all the threads to execute
the most popular path. In the case of memory divergence, they force all the threads to
access the most commonly demanded memory block. Their work is agnostic to cache
misses and does not leverage value prediction or drop memory requests. In contrast,
our new approximation technique predicts the value of the approximate loads that miss
in the cache without ever recovering from the misprediction. Further, we reduce the
bandwidth demand and memory contention by dropping a fraction of the approximate
load requests after predicting their value. Our approach can be potentially combined
with many of the described prior works on approximation [Luo et al. 2014; Arnau et al.
2014; Sampson et al. 2013; Liu et al. 2011; Sidiroglou-Douskos et al. 2011], since it
entirely focuses on mitigating memory latency and bandwidth bottlenecks.

Value prediction. RFVP takes inspiration from prior work that explores exact value
prediction [Perais and Seznec 2014; Collange et al. 2010; Zhou and Conte 2005; Mutlu
et al. 2005, 2003; Goeman et al. 2001; Thomas and Franklin 2001; Sazeides and Smith
1997; Lipasti et al. 1996; Eickemeyer and Vassiliadis 1993]. However, our work funda-
mentally differs from traditional value prediction techniques because it does not check
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for mispredictions and does not recover from them. Furthermore, we drop a fraction
of the load requests to reduce off-chip memory traffic. Among these techniques, Zhou
and Conte [2005] and Mutlu et al. [2005] use value prediction to speculatively prefetch
cache misses that are normally serviced sequentially. They used value prediction to
break dependence chains where one missing load’s address depends on the previous
missing load’s value. However, they do not allow the speculative state to contaminate
the microarchitectural state of the processor or the memory. Since their technique
initiates only prefetches, they do not need to recover from value mispredictions. Our
technique, however, is not used for prefetch requests. Instead, the predictor directly
feeds the predicted value to the processor as an approximation of the load value, taking
advantage of the error tolerance of applications.

Load value approximation. In our previous work [Thwaites et al. 2014], we in-
troduced the RFVP technique for a conventional CPU processor to lower the effective
memory-access latency. Later, in a concurrent effort, San Miguel et al. [2014] proposed
a technique that uses value prediction without checks for misprediction to address the
memory-latency bottleneck in CPU-based systems. San Miguel et al. [2014] corrobo-
rated our reported results in Thwaites et al. [2014]. Our work here differs from our
previous work [Thwaites et al. 2014] and the concurrent work [San Miguel et al. 2014]
as follows: (1) we develop techniques for GPU processors, targeting the memory band-
width bottleneck rather than latency, showing that RFVP is an effective approach for
mitigating both latency and bandwidth bottlenecks; (2) we utilize the value similarity
of accesses across adjacent threads in GPUs to develop a low-overhead, multivalue
predictor capable of producing values for many simultaneously missing loads as they
execute in lock step in GPU cores; and (3) we drop a portion of cache-miss load requests
to fundamentally reduce the memory bandwidth demand in GPUs.

9. CONCLUSIONS

This article introduces Rollback-Free Value Prediction (RFVP) and demonstrates its
effectiveness in tackling two major memory system bottlenecks: (1) limited off-chip
bandwidth and (2) long memory-access latency. RFVP predicts the values of safe-to-
approximate loads only when they miss in the cache and drops a fraction of them
without checking for mispredictions or recovering from them. Additionally, we utilize
programmer annotations to guarantee safety, while our compilation workflow applies
approximation only to the most performance-critical cache-missing loads and main-
taining high output quality.

We develop a lightweight and fast-learning prediction mechanism for GPUs, which
is capable of (1) predicting values in an entire cache line and (2) adapting to rapidly
changing value patterns between individual loads with low hardware overhead.

RFVP uses predicted values both to hide the memory latency and ease bandwidth
limitations. The drop rate is a knob that controls the trade-off between quality of re-
sults and performance/energy gains. Our extensive evaluation shows that RFVP, when
used in GPUs, yields significant performance improvements and energy reductions for
a wide range of quality-loss levels. As the acceptable quality loss increases, the ben-
efits of RFVP increase. Even at a modest 1% acceptable quality loss, RFVP improves
performance and reduces energy consumption by more than 20% in some applications.
We also evaluate RFVP’s latency benefits for a single-core CPU. The results show per-
formance improvements and energy reductions for a wide variety of applications with
quality loss less than 1%. These results confirm that RFVP is a promising technique
to tackle the memory bandwidth and latency bottlenecks in applications that exhibit
some level of error tolerance.
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Fig. 14. Code examples from some of the evaluated benchmarks. The gray shaded variables are the variables
that are annotated by the programmer. The underlined variables are the safe-to-approximate loads that can
be value-predicted by RFVP.

APPENDIX

A.1. Code Examples from Approximate Benchmarks

Figure 14 shows code examples from some of our studied applications to provide in-
sights into where source of RFVP’s benefits are coming from. The gray shaded variables
are marked by the programmer. Similar to other works [Park et al. 2015; Sampson et al.
2011], we rely on the programmer to annotate the safe-to-approximate variables. The
compilation workflow automatically infers the safe-to-approximate loads (as described
in Section 3). In Figure 14, we show the safe-to-approximate loads with underlines.
These code examples show that safe-to-approximate loads are mostly array elements
and can access both integer and floating-point datatypes. However, in some scenar-
ios, it might not be safe to approximate array elements. In Figure 14(d), we observe
that the elements of array d_iS are used as index of array d_c. Thus, it is not safe to
approximate the loads from this array.
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