
Application-to-Core Mapping Policies
to Reduce Memory Interference in Multi-Core Systems

Reetuparna Das∗ Rachata Ausavarungnirun† Onur Mutlu† Akhilesh Kumar‡ Mani Azimi‡
∗University of Michigan †Carnegie Mellon University ‡Intel Labs
reetudas@umich.edu rachata, onur@cmu.edu akhilesh.kumar, mani.azimi@intel.com

Abstract

How applications running on a many-core system are mapped
to cores largely determines the interference between these ap-
plications in critical shared resources. This paper proposes
application-to-core mapping policies to improve system per-
formance by reducing inter-application interference in the on-
chip network and memory controllers. The major new ideas of
our policies are to: 1) map network-latency-sensitive applica-
tions to separate parts of the network from network-bandwidth-
intensive applications such that the former can make fast
progress without heavy interference from the latter, 2) map
those applications that benefit more from being closer to the
memory controllers close to these resources. Our evaluations
show that both ideas significantly improve system throughput,
fairness and interconnect power efficiency.

Categories and Subject Descriptors: C.1.2[Computer Sys-
tems Organization] Multiprocessors; Interconnection architec-
tures; C.1.4[Parallel Architectures] Distributed architectures
General Terms: Design, Algorithms, Performance
Keywords: Multicore, scheduling, interconnect, memory

1. INTRODUCTION

One important use of multi-core systems is to concurrently
run many diverse applications. Managing critical shared re-
sources, such as the on-chip network (NoC), among co-scheduled
applications is a fundamental challenge. In a large many-core
processor, which core is selected to execute an application could
have a significant impact on system performance because it af-
fects contention and interference among applications. Perfor-
mance of an application critically depends on how its network
packets interfere with other applications’ packets in the inter-
connect and memory, and how far away it is executing from
shared resources such as memory controllers.
While prior research (e.g., [9, 14, 13]) tackled the problem

of how to map tasks/threads within an application onto cores,
the interference behavior between applications in the NoC is
less well understood. Current operating systems are unaware
of the on-chip interconnect topology and application interfer-
ence characteristics at any instant of time, and employ naive
methods while mapping applications to cores. For instance,
Linux 2.6.x [1] assigns a static numbering to cores and chooses
the numerically-smallest core when allocating an idle core to an
application. This leads to an application-to-core mapping that
is oblivious to application characteristics and inter-application
interference, causing two major problems.
First, overall performance degrades when applications that

interfere significantly with each other get mapped to closeby
cores. Second, an application may benefit significantly from
being mapped to a core that is close to a shared resource (e.g.,
a memory controller), yet it can be mapped far away from that
resource (while another application that does not benefit from
being close to the resource is mapped closeby the resource),
reducing system performance. To solve these two problems, in
this work, we develop intelligent application-to-core mapping
policies that are aware of application characteristics and on-
chip interconnect topology.

Copyright is held by the author/owner(s).
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
ACM 978-1-4503-1182-3/12/09.

2. OVERVIEW OF MAPPING POLICIES

Our policies are built upon two major observations. First,
we observe some applications are more sensitive to interference
than others: when interfered with, network-sensitive applica-
tions slow down more significantly than others [3]. Thus, sys-
tem performance can be improved by separating (i.e., mapping
far away) network-sensitive applications from aggressive appli-
cations that have high demand for network bandwidth.
Second, an application that is both memory-intensive and

network-sensitive gains more performance from being close to
a memory controller than one that does not have either of the
properties (as the former needs fast, high-bandwidth memory
access). Thus, system performance can be improved by map-
ping such applications to cores close to memory controllers.
We sketch our proposed mapping schemes with illustrations.

Detailed descriptions of our policies can be found in a technical
report [5]. Figure 1(a) shows the logical layout of a many-core
processor interconnected with an 8x8 mesh NoC. Corner tiles
consist of the memory controllers (triangles). Every other tile
consists of a core, L1 cache and L2 cache bank. We divide the
8x8 mesh into four 4x4 clusters (marked by dotted lines).

1. Clustering In our policies, cores are clustered into sub-
networks to reduce interference between applications mapped
to different clusters. Applications mapped to a cluster pre-
dominantly access the memory controller within that cluster
(and share the L2 cache slices within that cluster). To enable
this, the system software’s page mapping policies should be
changed [5]. Clustering not only reduces interference between
applications mapped to different clusters, but also 1) reduces
overall congestion in the network, 2) reduces average distance
packets traverse to get to the memory controllers or shared
caches. Our results show most of the NoC packets of an appli-
cation can be restricted to the application’s cluster, with our
page mapping algorithm, called Cluster-CLOCK [5].

2. Mapping Policy between Clusters An important
question is which applications should be mapped to which clus-
ters, as the answer affects which applications contend with each
other. To illustrate the importance of this, Figure 1(b), (c), (d)
show three possible application-to-core mappings. Each core
tile in the figure is shaded according to the network intensity
of the application: a darker tile corresponds to an application
with a higher L1 misses per thousand instructions (MPKI), i.e.,
a more network-intensive one. Figure 1(b) shows a possible
random mapping of applications to clusters (called RND). This
mapping is exemplary of policies usually employed in existing
general-purpose systems. Unfortunately, it does not take into
account 1) how applications mapped to the same cluster would
interfere with each other, 2) balance of network and memory
load across clusters, and as a result leads to high contention
and relatively low system performance.
Figure 1(c) illustrates an example of a balanced mapping

(called BL), which equally divides the network load among clus-
ters. The idea is to distribute applications to clusters such that
the sum of MPKIs in each cluster is similar across clusters. BL
can achieve better performance than RND as it more effectively
utilizes NoC and memory bandwidth. However, we find BL is
not the best-performing mapping because it can map network-
sensitive applications to the same cluster as network-intensive
ones, leading to significant interference against, and thus slow-
downs for, network-sensitive applications.



Figure 1: Visual examples of clustering and different inter-cluster and intra-cluster mapping policies

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

n
o

rm
. 
s
y
s
te

m
 p

e
rf

o
rm

a
n

c
e

(n
o

rm
. 
w

e
ig

h
te

d
 s

p
e

e
d

u
p

)

BASE CLUSTER+RND A2C

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg
s
y
s
te

m
 u

n
fa

ir
n
e

s
s

(m
a
x
. 
s
lo

w
d
o

w
n

) 

BASE CLUSTER+RND A2C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

n
o

rm
. 
N

o
C

 p
o

w
e

r

BASE CLUSTER+RND A2C

Figure 2: (a) System performance (b) system unfairness and (c) interconnect power of A2C for 128 workloads

Our proposal, Balanced mapping with Reduced Interference
(BLRI) is shown in Figure 1(d). BLRI attempts to protect
interference-sensitive applications from others by assigning them
their own cluster (the top left cluster) while trying to pre-
serve load balance in the rest of the network (i.e., among more
network-intensive applications). BLRI can improve performance
significantly because it can keep the slowdowns of the most
latency-sensitive applications under control.

3. Mapping Policy within a Cluster After mapping ap-
plications to different clusters, a question remains: which core
within a cluster should an application be mapped to? Fig-
ure 1(e) shows two possible intra-cluster mappings for a sin-
gle cluster. Random mapping is not the best as it is agnostic
to application characteristics. In contrast, our proposed map-
ping (Radial), places applications radially in concentric circles
around the memory controller in decreasing order of a met-
ric that considers both network-intensity and network sensi-
tivity of an application. Darker (inner and closer) tiles repre-
sent network-intensive and interference-sensitive applications;
lighter (outer and farther) tiles represent lower intensity ap-
plications with low sensitivity. We found the former type of
applications benefit from being close to the memory controller,
and this policy therefore improves performance.

Putting It All Together Our final policy, A2C, operates
periodically by invoking the above three steps in order. It uses
BLRI mapping across clusters and Radial mapping within a
cluster. Our technical report [5] provides the policy details,
examines tradeoffs, and describes implementation issues.

3. EVALUATION

We evaluate A2C using an instruction-trace-driven, cycle-
level x86 CMP simulator [3, 4, 5] that models cores (with
limited instruction window), interconnect, and memory. Our
baseline configuration has 60 cores and 4 memory controllers
connected with a 2D, 8x8 mesh NoC. We also use a detailed
functional model for virtual memory management to study page
access and page fault behavior of our workloads. The baseline
page allocation and replacement policy is CLOCK [10]. We
use our Cluster-CLOCK policy [5] to enforce clustering, which
slightly reduces the page fault rate (an effect not included in
performance results presented below).
We evaluate three systems: 1) the baseline with random

mapping of applications to cores without clustering (BASE), 2)
our enhanced system using clustering and Cluster-CLOCK, and
random mapping of applications to cores (CLUSTER+RND),
3) our final system with A2C. We evaluate 128 multipro-
grammed workloads of 35 diverse applications. Workloads are
categorized into four groups based on their network intensity
measured in terms of last-level cache MPKI.
Figures 2(a) and 2(b) respectively show system performance

(higher is better) and system unfairness [11] (lower is better).
Solely using clustering (CLUSTER+RND) improves weighted
speedup by 9.3% over the baseline (BASE). A2C improves
weighted speedup by 16.7% over the baseline, while reducing
unfairness by 22%. Figure 2(c) shows the normalized average
interconnect power consumption (lower is better). Clustering
reduces power consumption by 31.2% over baseline; A2C by
52.3%. The clustering of traffic to memory controllers, reduced
inter-application interference with A2C, and mapping network-
intensive applications close to memory controllers altogether
largely reduce the average hop count, and hence the energy
spent in moving data over the interconnect.

4. CONCLUSION

We showed that mapping applications to cores in a man-
ner that is aware of applications’ characteristics significantly
improves system performance, fairness, and energy-efficiency.
Our policies are synergistic with interference reduction meth-
ods in NoC (e.g., [3, 7, 4, 16, 8]) and memory (e.g., [12, 2, 6,
15]), and we intend to examine this interaction in future work.

References

[1] Linux source code (version 2.6.39). http://www.kernel.org.
[2] M. Awasthi et al. Handling the problems and opportunities posed

by multiple on-chip memory controllers. In PACT-19, 2010.
[3] R. Das et al. Application-Aware Prioritization Mechanisms for

On-Chip Networks. In MICRO-42, 2009.
[4] R. Das et al. Aergia: Exploiting packet latency slack in on-chip

networks. In ISCA-37, 2010.
[5] R. Das et al. Application-to-core mapping policies to reduce

interference in on-chip networks. In Carnegie Mellon SAFARI
Technical Report No. 2011-001, 2011.

[6] E. Ebrahimi et al. Fairness via source throttling: A configurable
and high-performance fairness substrate for multi-core memory
systems. In ASPLOS-XV, 2010.

[7] B. Grot et al. Preemptive Virtual Clock: A Flexible, Efficient, and
Cost-effective QOS Scheme for Networks-on-a-Chip. In
MICRO-42, 2009.

[8] B. Grot et al. A QoS-Enabled On-Die Interconnect Fabric for
Kilo-Node Chips. IEEE Micro, May/June 2012.

[9] J. Hu et al. Energy-aware mapping for tile-based NoC architectures
under performance constraints. In ASPDAC, 2003.

[10] S. Jiang et al. CLOCK-Pro: an effective improvement of the
CLOCK replacement. In USENIX, 2005.

[11] Y. Kim et al. ATLAS: A scalable and high-performance scheduling
algorithm for multiple memory controllers. In HPCA-16, 2010.

[12] Y. Kim et al. Thread cluster memory scheduling: Exploiting
differences in memory access behavior. In MICRO-43, 2010.

[13] T. Lei and S. Kumar. A two-step genetic algorithm for mapping
task graphs to a network on chip architecture. In Euromicro, 2003.

[14] S. Murali and G. D. Micheli. Bandwidth-constrained mapping of
cores onto NoC architectures. In DATE, 2004.

[15] S. Muralidhara et al. Reducing memory interference in multi-core
systems via application-aware memory channel partitioning. In
MICRO-44, 2011.

[16] G. Nychis et al. Next generation on-chip networks: What kind of
congestion control do we need? In HotNets-9, 2010.


