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Application Slowdown Model: 
Quantifying and Controlling Impact of Interference at 

Shared Caches and Main Memory

Problem: 
Shared Resource Interference 
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Impact of 
Shared Resource Interference

2. Unpredictable application slowdowns
1. High application slowdowns

Application Slowdown Model (ASM)

Leveraging the Application Slowdown Model
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Our Goal

Provide high and predictable 
performance in the presence of 

shared resource interference

Our Approach

1. Build a model to estimate 
slowdowns

2. Leverage our model for slowdown-
aware resource management
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Observation: Proxy for Performance
For a memory bound application,  

Performance α Cache access rate

Challenge: Estimating Cache Access Rate Alone

Minimize memory bandwidth contention:
Using priority (Subramanian et al., HPCA 2013)
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Highest priority  Little interference
(almost as if application were run alone)

Enables estimation of miss service time 

Quantify shared cache capacity contention:
Using auxiliary tag stores (Pomerene et al., 1989)
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Auxiliary tag store counts #contention misses

From auxiliary tag store

when given high priority
Measured when given high 

priority

Cache Contention Cycles = #Contention Misses x          
Average Miss Service Time

Remove contention cycles when estimating CARAlone

Average error of ASM: 10%; Average error of previous models: 30%
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Slowdown-aware cache capacity partitioning

Previous work: Reduce miss counts; 
Our proposal: Reduce slowdowns

Slowdown-aware memory bandwidth partitioning
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Allocation memory bandwidth 
proportional to slowdowns

Coordinated Resource 
Allocation Schemes
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16-core system 100 workloads

Significant fairness benefits across 
different channel counts
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Providing 
Slowdown Guarantees

• Cache allocation with the goal of 
meeting a slowdown bound

• Allocate just enough cache space to 
critical application

• Allocate remaining cache space to 
other applications
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