
Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, Onur Mutlu

Carnegie Mellon University, Intel Labs, University of Virginia

Application Slowdown Model:
Quantifying and Controlling Impact of Interference at

Shared Caches and Main Memory

Problem:
Shared Resource Interference

0

1

2

3

4

5

6

leslie3d
(core 0)

gcc (core
1)

S
lo

w
d

o
w

n
0

1

2

3

4

5

6

leslie3d
(core 0)

mcf (core
1)

S
lo

w
d

o
w

n

gcc

(core 1)

mcf

(core 1)

Impact of
Shared Resource Interference

2. Unpredictable application slowdowns
1. High application slowdowns

Application Slowdown Model (ASM)

Leveraging the Application Slowdown Model

Main
Memory

Shared
Cache

CoreCore

CoreCore

Our Goal

Provide high and predictable
performance in the presence of

shared resource interference

Our Approach

1. Build a model to estimate
slowdowns

2. Leverage our model for slowdown-
aware resource management

Slowdown=
Performance

Alone

Performance
Shared

Slowdown=
Cache Access Rate

Alone
(CAR

Alone
)

Cache Access Rate
Shared

(CAR
Shared

)

1

1.2

1.4

1.6

1.8

2

2.2

1 1.2 1.4 1.6 1.8 2 2.2

Sl
o

w
d

o
w

n

Shared Cache Access Rate Alone/
Shared Cache Access Rate Shared

astar

lbm

bzip2

Observation: Proxy for Performance
For a memory bound application,

Performance α Cache access rate

Challenge: Estimating Cache Access Rate Alone

Minimize memory bandwidth contention:
Using priority (Subramanian et al., HPCA 2013)

Request Buffer State

Main
Memory

1. Run alone
Time units Service order

Main
Memory

12

Request Buffer State

Main
Memory

2. Run with another application

Main
Memory

123

Request Buffer State

Main
Memory

3. Run with another application: highest priority

Main
Memory

123

3

Time units Service order

Time units Service order

Highest priority  Little interference
(almost as if application were run alone)

Enables estimation of miss service time

Quantify shared cache capacity contention:
Using auxiliary tag stores (Pomerene et al., 1989)

Main
Memory

Shared
Cache

Auxiliary
Tag Store

Priority

Core

Core

Auxiliary
Tag Store

Auxiliary tag store counts #contention misses

From auxiliary tag store

when given high priority
Measured when given high

priority

Cache Contention Cycles = #Contention Misses x
Average Miss Service Time

Remove contention cycles when estimating CARAlone

Average error of ASM: 10%; Average error of previous models: 30%

Main
Memory

Shared
Cache

Core

Core

Slowdown-aware cache capacity partitioning

Previous work: Reduce miss counts;
Our proposal: Reduce slowdowns

Slowdown-aware memory bandwidth partitioning

Main
Memory

Shared
Cache

Core

Core

Allocation memory bandwidth
proportional to slowdowns

Coordinated Resource
Allocation Schemes

Main
Memory

Shared
Cache

CoreCore

CoreCore

16-core system 100 workloads

Significant fairness benefits across
different channel counts

4

5

6

7

8

9

10

11

1 2

Fa
ir

n
es

s
(L

o
w

er
 is

 b
et

te
r)

Number of Channels

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2

P
er

fo
rm

an
ce

Number of Channels

FRFCFS-NoPart

FRFCFS+UCP

TCM+UCP

PARBS+UCP

ASM-Cache-Mem

Providing
Slowdown Guarantees

• Cache allocation with the goal of
meeting a slowdown bound

• Allocate just enough cache space to
critical application

• Allocate remaining cache space to
other applications

0

0.5

1

1.5

2

2.5

3

3.5

4

h264ref mcf sphinx3 soplex

Sl
o

w
d

o
w

n

Naive-QoS

ASM-QoS-2.5

ASM-QoS-3

ASM-QoS-3.5

ASM-QoS-4

