
Application-aware Prefetch Prioritization in On-chip Networks

Nachiappan Chidambaram Nachiappan† Asit K. Mishra§ Mahmut Kandemir†

Anand Sivasubramaniam† Onur Mutlu‡ Chita R. Das†

†The Pennsylvania State University §Intel Corp. ‡ Carnegie Mellon University
{nachi, kandemir, anand, das}@cse.psu.edu {asit.k.mishra@intel.com} {onur@cmu.edu}

ABSTRACT

Data prefetching is an effective technique for hiding memory la-
tency. When issued prefetches are inaccurate, performance can
degrade. Prior research provided solutions to deal with inaccu-
rate prefetches at the cache and memory levels, but not in the in-
terconnect of a large-scale multiprocessor system. This work in-
troduces application-aware prefetch prioritization techniques to
mitigate the negative effects of prefetching in a network-on-chip
(NoC) based multicore system. The idea is to rank prefetches
from different applications based on their potential utility for
the application and propensity to cause interference to other ap-
plications. Our evaluation shows that this approach provides
significant performance improvements over a baseline that does
not distinguish between prefetches from different applications.
Categories and Subject Descriptors: C.1.2[Computer

Systems Organization] Multiprocessors; Interconnection archi-
tectures; General Terms: Design, Performance Keywords:

Interconnect, Multicore, Prefetching

1. INTRODUCTION

Memory access latency is a major limiter of computer system
performance. A widely-used technique to tolerate this latency
is prefetching, a method that predicts the memory accesses that
will be made by a processor and fetches the data before it is
requested by the processor. This technique has been shown to
be very effective when prefetch accuracy, coverage and timeliness
are reasonably high [10]. Unfortunately, not all prefetch requests
are accurate (or, useful, i.e., will be needed by the processor).
An inaccurate prefetch request wastes system resources (such as
memory and interconnect bandwidth, cache space) and degrades
performance by delaying demand or useful prefetch requests.
As recent work has shown, uncontrolled aggressive prefetching
can be ineffective in bandwidth-limited and cache-space-limited
multi-core systems [8, 3, 4] because it causes significant interfer-
ence between cores in shared caches and main memory.
A critical shared resource in scalable multi-core systems is

the on-chip interconnect/network (NoC), which is the commu-
nication substrate that connects the cores and caches, carry-
ing private-cache-miss traffic and coherence traffic (requests and
responses). Inaccurate prefetch requests waste NoC resources
(bandwidth, buffers, etc) and delay other requests while travers-
ing the NoC. In fact, we find that aggressive prefetching can
cause significant congestion in the NoC and the resulting uncon-
trolled interference between applications significantly degrades
overall system performance in some workloads.
While previous works [8, 7, 10, 3, 4] developed techniques to al-

leviate the negative effects of aggressive prefetching in caches and
memory controllers via intelligent prioritization or prefetcher
throttling mechanisms, little work considered such effects in the

Copyright is held by the author/owner(s).
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
ACM 978-1-4503-1182-3/12/09.

NoC. Our goal in this work is to examine the effects of aggressive
prefetching in NoC-based multi-core systems and develop tech-
niques to mitigate the negative effects of prefetching in the NoC.
To this end, we propose an application-aware prefetch prioritiza-
tion mechanism for NoC routers that differentiates between the
prefetches from different applications and prioritizes prefetches
from those applications where prefetching 1) is more likely to
improve the performance of the application, 2) is likely to not
cause significant interference to other applications.

2. MOTIVATION

Aggressive prefetching in an NoC-based system can cause net-
work congestion because the prefetcher can inject a significant
number of inaccurate prefetches into the network. These inac-
curate prefetches can delay not only demand requests but also
useful prefetch requests. To investigate the effect of aggressive
prefetching in an NoC-based multicore system, we implemented
a version of the aggressive, state-of-the-art stream prefetcher de-
scribed in [10] on a 64-core 2D mesh based NoC.1

Figure 1(a), (b), (c) show respectively the prefetch accuracy,
network latency increase due to prefetching, and IPC delta with
the prefetcher over no prefetching across a set of multipro-
grammed workloads. Each workload consists of 64 concurrently-
executed copies of a SPEC 2006 benchmark. Results are aver-
aged across all SPEC workloads, but the figure shows a subset.
Overall, with an average prefetch accuracy of 43%, we see an av-
erage network latency increase of 170% due to a 45% increase in
network traffic (not shown). Although the prefetcher improves
average performance, we find it degrades performance by more
than 10% on 8 of the 26 evaluated workloads.
We find two major problems contribute to the performance

degradation: 1) prefetch requests are sometimes prioritized over
demands in NoC routers (our baseline does not distinguish be-
tween them), 2) useless or less beneficial prefetch requests for
one application are sometimes prioritized over useful or more
beneficial prefetch requests for another in NoC routers.
Previous works [8, 7, 4] tackled the first problem: they de-

veloped policies to adaptively prioritize between prefetch and
demand requests in memory controllers and caches such that
likely-inaccurate prefetch requests do not get prioritized over
demand requests. In our evaluations, we find that prioritizing
demands over prefetches in the network (as done in [9]) pro-
vides better performance than treating prefetches and demands
equally (shown as Demand-first in Figure 2). Adapting previ-
ous dynamic prioritization policies [8, 7, 4] to the NoC context
can provide even better performance, but we leave this to future
work as our goal is to focus on the second problem above.
To our knowledge, previous works did not tackle the second

problem: different applications’ prefetch requests have differ-
ent impact on application performance and system performance.

1Our baseline uses the standard XY-routing algorithm, has 4
memory controllers located at the corners, and does not differ-
entiate between prefetch and demand requests in the routers.



0

20

40

60

80

100

P
re

fe
tc

h
 A

cc
. (

%
)

0

50

100

150

200

250

300

%
 I

n
cr

ea
se

 i
n

 

N
et

w
o

rk
 L

a
te

n
cy

-25

0

25

50

75

100

125

%
 I

n
cr

ea
se

 i
n

 I
P

C(a) (b) (c)

Figure 1: (a) Prefetch accuracy, (b) network latency increase due to prefetching, (c) IPC delta due to prefetching.

The major question we aim to answer is: how should prefetch

requests of different applications be prioritized in the network

routers?

3. MECHANISM

Ideally, one would like to prioritize prefetches of those appli-
cations that benefit the most from prefetching and do not cause
harm to other applications due to prefetching. Again, ideally,
one would like to deprioritize the prefetches of those applica-
tions that benefit the least from prefetching but cause signifi-
cant performance degradation to other applications due to their
prefetches. We observe that the benefit an application gains
from prefetching and the harm it causes due to prefetching can
be approximated by observing two metrics for the application:
prefetch accuracy and prefetch count.
Our policy is based on two insights. First, an application that

has high prefetch accuracy is more likely to benefit from prefetch-
ing because its prefetches are more likely to be useful. Second,
an application that injects fewer prefetches into the network is
less likely to harm other applications because its prefetches are
less likely to interfere with other applications’ requests.
Using these two insights, we develop a mechanism that catego-

rizes applications into four categories, either statically or dynam-
ically, based on whether the application’s 1) prefetch accuracy is
high or low, and 2) prefetch count is high or low. Prefetches from
those applications with high prefetch accuracy but low prefetch
count are given the highest priority because such applications are
the most likely to benefit from prefetching and the least likely
to harm others due to prefetching. Conversely, prefetches from
those applications with low prefetch accuracy and high prefetch
count are given the least priority. In-between these two ex-
tremes, applications with high accuracy and high prefetch count
are given priority over those with low accuracy and low prefetch
count. If two applications happen to be in the same category,
their prefetches are prioritized using the default prioritization
policy of the router (e.g., age-based or round-robin).
Static vs. Dynamic: An application’s prefetch accuracy

and prefetch count category can be estimated statically or dy-
namically. In the static version of our policy, a profile run de-
termines in which of the four categories an application falls. In
the dynamic version, hardware collects these metrics periodically
and at the end of a period (i.e., time quantum) assigns each ap-
plication to one of the four categories. For the next quantum,
the network routers use the assigned category of an application
to appropriately prioritize prefetches from that application.
Results: Figure 2 shows the performance improvement of

our static and dynamic application-aware prefetch prioritiza-
tion mechanisms (AppAware-S and AppAware-D, respectively)
over the baseline system that uses round-robin prioritization in
routers, as described in [1]. In our mechanisms, demands are al-
ways prioritized over prefetches. For comparison, we also show
the performance improvement with two different policies: 1) one
that only prioritizes demands over prefetches but employs round-
robin prioritization across different prefetches (Demand-first),

and 2) an unimplementable policy in which prefetch requests
never contend with each other or with demands, which provides
an upper bound on what is achievable with our techniques. The
results are averaged across 12 heterogeneous multiprogrammed
workloads, where each workload consists of a combination of dif-
ferent SPEC benchmarks running together. We show five repre-
sentative workloads in the figure.

0

10

20

30

40

50

WL-1 WL-2 WL-3 WL-4 WL-5 AVG.

%
 I

n
cr

ea
se

 i
n

 

W
ei

g
h

te
d

 S
p

ee
d

u
p

Demand-first AppAware-S AppAware-D Ideal

82%

Figure 2: Performance of app-aware prefetch prioritization.

Figure 2 leads to three major conclusions: 1) Application-
aware prioritization among prefetches, static or dynamic, pro-
vides significant performance improvement over policies that do
not distinguish between prefetches, 2) Our dynamic policy per-
forms better than the static one as it can adapt to changes in ap-
plication and prefetcher phase behavior (improving performance
by 9% over Demand-first), 3) Although our mechanism bridges
more than one third of the gap between Demand-first and Ideal,
there is still significant performance to be gained by eliminating
the negative effects of prefetching in the NoC.

4. CONCLUSIONS

We showed differentially prioritizing between prefetches from
different applications in an NoC based system significantly im-
proves system performance. Our future work includes analyzing
our techniques and combining them with other application-aware
prioritization techniques in NoC routers (e.g., [1, 5, 2, 6]).

References
[1] R. Das et al. Application-Aware Prioritization Mechanisms for

On-Chip Networks. In MICRO-42, 2009.

[2] R. Das et al. Aergia: Exploiting packet latency slack in on-chip
networks. In ISCA-37, 2010.

[3] E. Ebrahimi et al. Coordinated control of multiple prefetchers in
multi-core systems. In MICRO-42, 2009.

[4] E. Ebrahimi et al. Prefetch-aware shared-resource management for
multi-core systems. In ISCA-38, 2011.

[5] B. Grot et al. Preemptive Virtual Clock: A Flexible, Efficient, and
Cost-effective QOS Scheme for Networks-on-a-Chip. In MICRO-42,
2009.

[6] B. Grot et al. A QoS-Enabled On-Die Interconnect Fabric for
Kilo-Node Chips. IEEE Micro, May/June 2012.

[7] C. J. Lee et al. Improving memory bank-level parallelism in the
presence of prefetching. In MICRO-42, 2009.

[8] C. J. Lee et al. Prefetch-aware memory controllers. IEEE

Transactions on Computers, 2011.

[9] J. Lee et al. Exploiting mutual awareness between prefetchers and
on-chip networks in multi-cores. In Poster Session, PACT, 2011.

[10] S. Srinath et al. Feedback directed prefetching: Improving the
performance and bandwidth-efficiency of hardware prefetchers. In
HPCA-13, 2007.


