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Non-volatile memories combine

characteristics of memory and storage




PERSISTENT MEMORY
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Provides an opportunity to manipulate

persistent data directly




CHALLENGE: CRASH CONSISTENCY

Persistent Memory System

System crash can result in

permanent data corruption in NVM



CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Heaps srios11;, BPFS 1sosp0s;, MINEMOSYNE iaspiosiay

AtomicBegin {

Insert a new node;
} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers




OUR APPROACH: ThyNVM
Goal:

Software transparent consistency in
persistent memory systems




ThyNVM: Summary

—

A new hardware-based
checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM

with zero cost consistency
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CRASH CONSISTENCY PROBLEM

Add a node to a linked list

2. Link to prea 1. Link to next

System crash can result in

iInconsistent memory state
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CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Heaps srios11;, BPFS 1sosp0s;, MINEMOSYNE iaspiosia

... - - -
Example Code

update a node In a persistent hash table

vold hashtable update (hashtable t* ht,
~voilid *key, void *data)
{

list t* chain = get chain(ht, key);

palr t* pair; -

palr t updatePair;

updatePair.first = key;

palr = (pair t*) list find(chain,
— &updatePair) ;

palr—->second = data;
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CURRENT SOLUTIONS

volid TMhashtable update (TMARCGDECL
hashtable t* ht, void *key, void*data)

{

list t* chain = get chain (ht, key);

palr t* pair; N

palir t updatePair;

updatePair.first = key;

palir = (pair t*) TMLIST FIND (chain,
&updatePalr);

palr—->second = data;



CURRENT SOLUTIONS

Manual declaration of persistent components

oid TMhashtable update (TMARCGDECL
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CURRENT SOLUTIONS

Manual declaration of persistent components

oid TMhashtable update (TMARCGDECL
get chain(ht, key)

Need a new implementation



CURRENT SOLUTIONS

Manual declaration of persistent components

oid TMhashtable update (TMARCGDECL
get chain(ht, key)

Need a new implementation

TMLIST FIND

Third party code
can be inconsistent



CURRENT SOLUTIONS

Manual declaration of persistent components

oid TMhashtable update (TMARCGDECL

get chain(ht, key)
Need a new implementation

TMLIST FIND

Prohibited Third party code
Operation can be inconsistent

Burden on the programmers
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OUR GOAL

Software transparent consistency

in persistent memory systems

 Execute legacy applications
* Reduce burden on programmers

 Enable easier integration of NVM



NO MODIFICATION
IN THE CODE

void hashtable update(hashtable t* ht,
{ void *key, void ¥data)

List_t* chain = get_chain(ht, key);

pair_t* pair;

pair _t updatePair;

updatePair.first = key;

pair = (pair_t*) list _find(chain,
&updatePair) ;

gair—>second = data;



RUN THE EXACT SAME CODE...

void hashtable update (hashtable t* ht,
void *key, void *data) {
list t* chain = get chain(ht, key);
pair t* pair;
pair t updatePair;

updatePair.first = key;

pair = (pair t*) list find(chain,
&updatePair) ;

pair->second = data;

}
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PersistentiVMlemory System

Software transparent

memory crash consistency




ThyNVM APPROACH

Periodic checkpointing of data
| managed by hardware ‘

time
m Checkpointing Running Checkpointing
— —

‘ Epoch 0 ‘ Epoch 1 \

Transparent to application and system




CHECKPOINTING OVERHEAD

1. Metadata overhead
Metadata Table

Working location | Checkpoint location

Xl
YI

*

2. Checkpointing latency



1. METADATA AND
CHECKPOINTING GRANULARITY

Working location Checkpoint location
X X’

Y Y

B
BB rAGE B CACHE BLOCK
HE

PAGE BLOCK
GRANULARITY GRANULARITY

One Entry Per Page One Entry Per Block
Small Metadata Huge Metadata

J
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2. LATENCY AND LOCATION
DRAM-BASED WRITEBACK

2. Update the
metadata table
LY 1. \Writeback data |k
from DRAM

NVM

Long Iatency of writing back data to NVM



2. LATENCY AND LOCATION
NVM-BASED REMAPPING

2. Update the
metadata table
Y new location

Short latency in NVM-based remapping



ThyNVM KEY MECHANISMS

Checkpointing granularity
 Small granularity: large metadata
 Large granularity: small metadata

Latency and location
 Writeback from DRAM: long latency
e Remap in NVM: short latenc

Based on these we propose two key

NEERIHUE

1. Dual granularity checkpointing
2. Overlap of execution and checkpointing



1. DUAL GRANULARITY CHECKPOINTING

Page Writeback Block Remapping
in DRAM in NVM
m l
GOOD FOR GOOD FOR
STREAMING WRITES RANDOM WRITES

High write locality pages in DRAM,

low write locality pages in NVM




2. OVERLAPPING
CHECKOINTING AND EXECUTION

Epoch O Epoch 1 ‘

Checkpointing

Epoch 0
Epoch 1
Epoch 2

—>

Hides the long latency of Page Writeback
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METHODOLOGY

Cycle accurate x86 simulator Gem5

Comparison Points:
Ideal DRAM: DRAM-based, no cost for consistency
— Lowest latency system

Ideal NVM: NVM-based, no cost for consistency
— NVM has higher latency than DRAM

Journaling: Hybrid, commit dirty cache blocks
— Leverages DRAM to buffer dirty blocks

Shadow Paging: Hybrid, copy-on-write pages
— Leverages DRAM to buffer dirty pages



ADAPTIVITY TO ACCESS PATTERN
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" Journaling is better for Random and

Shadow paging is better for Sequential
ThyNVM adapts to both access patterns




OVERLAPPING
CHECKPOINTING AND EXECUTION

RANDOM SEQUENTIAL
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Can spend 35-45% of the execution
on checkpointing

Stalls the application for a negligible time




PERFORMANCE OF LEGACY CODE

B |deal DRAM ¥ Ideal NVM N ThyNVM
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Normalized IPC

gcc bwaves milc leslie. soplex Gems Ibm omnet

Within -4.9%/+2.7% of an
idealized DRAM/NVM system

Provides consistency without

significant performance overhead
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ThyNVM
G T T S
A new hardware-based
checkpointing mechanism,
with no programming effort
 Checkpoints at multiple granularities to
minimize both latency and metadata

 Overlaps checkpointing and execution

 Adapts to DRAM and NVM characteristics
Can enable widespread adoption

of persistent memory




Available at
http://persper.com/thynvm
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