Exploiting Inter-Warp Heterogeneity
to Improve GPGPU Performance

Rachata Ausavarungnirun

Saugata Ghose, Onur Kayiran, Gabriel H. Loh
Chita Das, Mahmut Kandemir, Onur Mutlu

SAFARI Carnegie Mellon
AM Di‘,l PENN%%T

Overview of This Talk

* Problem: memory divergence
— Threads execute in lockstep, but not all threads hit in the cache
— Assingle long latency thread can stall an entire warp

* Key Observations:
— Memory divergence characteristic differs across warps
— Some warps mostly hit in the cache, some mostly miss
— Divergence characteristic is stable over time
— L2 queuing exacerbates memory divergence problem
* Our Solution: Memory Divergence Correction

— Uses cache bypassing, cache insertion and memory scheduling to
prioritize mostly-hit warps and deprioritize mostly-miss warps

* Key Results:

— 21.8% better performance and 20.1% better energy efficiency
compared to state-of-the-art caching policy on GPU

SAFARI

Outline

* Background

e Key Observations

 Memory Divergence Correction (MeDiC)
* Results

SAFARI

Latency Hiding in GPGPU Execution

Time @PU Core
Status
Warp A
Warp B
Active Warp C
Warp D
Lockstep
Stall Thread Execution
Active
\ 4

SAFARI

Problem: Memory Divergence

Warp A
EREEERREN
P
Cache Hit
Stall Time
Time
N
Main Memory
B Cache Miss
B cCache Hit
A 4

SAFARI

Outline

* Background
* Key Observations
 Memory Divergence Correction (MeDiC)

e Results

SAFARI

Observation 1: Divergence Heterogeneity

Maskihivavprp MadHnivdsvavprp
‘LIIIAlllj Y
Reduced
Time Stall Time
______ \ . A A A A A A A A
Key Idea:
B cacheMiss o Convert mostly-hit warps to
B Ccache Hit all-hit warps
J * Convert mostly-miss warps to

all-miss warps

7

SAFARI

Observation 2: Stable Divergence Char.

* Warp retains its hit ratio during a program
phase

— Hit ratio 2 number of hits / number of access

SAFARI

Observation 2: Stable Divergence Char.

Hit Ratio

* Warp retains its hit ratio during a program
phase

— Warp 1 Warp 2 - Warp 3 —Warp4 —Warp 5 —-Warp 6

"""" N e =

O 9 Mostly- hlt‘ e e — ._../.— —_—— .
0.8 k_ o c— ——n ../.. — ._.:_.:- Jpu—
0.7 - = - e PE—
Y A
0.5 %200 ®
04 Balancgd
0.3
0.2 —
01 | —1
0.0 Mostly-miss
& \Qé' @é' q/gé' q(?é' %QQ*' rg)é' VQQ*' gpé' (OQQ*' éoé' @é' ({{DGL— «Qé' «@*' %QQ*' cg§’ QQQ*' ogoé' N

Observation 3: Queuing at L2 Banks

Request Buffers

Bank 0

Bank 1

Bank 2

Memory ‘ To
DRAM

Scheduler

Bank n

Shared L2 Cache

45% of requests stall 20+ cycles at the L2 queue

Long queuing delays exacerbate the effect of

memory divergence
SAFARI 0

Outline

* Background

e Key Observations

 Memory Divergence Correction (MeDiC)
* Results

SAFARI

11

Our Solution: MeDiC

* Key ldeas:
— Convert mostly-hit warps to all-hit warps
— Convert mostly-miss warps to all-miss warps
— Reduce L2 queuing latency
— Prioritize mostly-hit warps at the memory
— Maintain memory bandwidth

SAFARI

12

Memory Divergence Correction

Memory
Request

21607 uonvaifiauapy adA diop

SAFARI

Mechanism to ldentify Warp Type

* Profile hit ratio for each warp
* Group warp into one of five categories

All-hit Mostly-hit Balanced Mostly-miss All-miss
\4 YVYVY YYVYVYVYVYY VYVYYVYYVYVYYVY

Higher Priority Lower Priority

* Periodically reset warp-type
SAFARI v

Warp-type-aware Cache Bypassing

SAFARI

Warp-type-aware Cache Bypassing

* Goal:
— Convert mostly-hit warps to all-hit warps

— Convert mostly-miss warps to all-miss warps

* Our Solution:

— All-miss and mostly-miss warps = Bypass L2

— Adjust how we identify warps to maintain miss rate
e Key Benefits:

— More all-hit warps

— Reduce queuing latency for all warps

SAFARI .

Warp-type-aware Cache Insertion

SAFARI

Warp-type-aware Cache Insertion

* Goal: Utilize the cache well
— Prioritize mostly-hit warps
— Maintain blocks with high reuse

e Our Solution:

— All-miss and mostly-miss = Insert at LRU
— All-hit, mostly-hit and balanced - Insert at MRU

* Benefits:
— All-hit and mostly-hit are less likely to be evicted

— Heavily reused cache blocks from mostly-miss are
likely to remain in the cache

SAFARI -

Warp-type-aware Memory Sched.

SAFARI

Not All Blocks Can Be Cached

* Despite best efforts, accesses from mostly-hit
warps can still miss in the cache

— Compulsory misses
— Cache thrashing

* Solution: Warp-type-aware memory scheduler

SAFARI ’

Warp-type-aware Memory Sched.

* Goal: Prioritize mostly-hit over mostly-miss
* Mechanism: Two memory request queues
— High-priority = all-hit and mostly-hit
— Low-priority =2 balanced, mostly-miss and all-miss

* Benefits:
— Mostly-hit warps stall less

SAFARI -

MeDiC: Example

Mostly-miss Warp All-miss Warp

Bypass

======m Cache Queuing Latency Cache Lower

' I queuing
memssss DRAM Queuing Latency # latency

——— Cache/Mem Latency Insert at I

LRU

Mostly-hit Warp pign All-hit Warp

Prlorlty

Insert at
Lower
stall
time

SAFARI hd v

Outline

* Background

* Key Observations

 Memory Divergence Correction (MeDiC)
* Results

SAFARI

23

Methodology

 Modified GPGPU-Sim modeling GTX480
— 15 GPU cores
— 6 memory partition
— 16KB 4-way L1, 768KB 16-way L2

— Model L2 queue and L2 queuing latency
— 1674 MHz GDDR5

 Workloads from CUDA-SDK, Rodinia, Mars and
Lonestar suites

SAFARI

Comparison Points

* FR-FCFS baseline [Rixner+, ISCA’00]

e Cache Insertion:
— EAF [Seshadri+, PACT'12]

* Tracks blocks that are recently evicted to detect high reuse and
inserts them at the MRU position

* Does not take divergence heterogeneity into account
* Does not lower queuing latency

e Cache Bypassing:
— PCAL [Li+, HPCA'15]

* Uses tokens to limit number of warps that gets to access the L2
cache = Lower cache thrashing

* Warps with highly reuse access gets more priority
* Does not take divergence heterogeneity into account

— PC-based and Random bypassing policy
SAFARI -

Results: Performance of MeDiC

e M Baseline (1 EAF lm PCAL Bl MeDiC
L2
£
Q20 -
@
E 21.8
>1.5—
O
S
-cl.oq I Illllllllllllllll I|I|I|
()}
2 I
v 0.5 4
S L8 S R B cg,csz &

MeDiC is effective in identifying warp-type and

taking advantage of divergence heterogeneity
SAFARI *

Results: Energy Efficiency of MeDi

C

W Baseline 1 EAF W PCAL Wl MeDiC

.y
o
|

S
o U o »nn o u
|

Norm. Energy Efficiency

o
o
|

D e Q Q & o \E < & 5 e > N A Q

&
Performance improvement outweighs the

20.

additional energy from extra cache misses

SAFARI

27

1%

Other Results in the Paper

* Breakdowns of each component of MeDiC
— Each component is effective

* Comparison against PC-based and random cache
bypassing policy
— MeDiC provides better performance

* Analysis of combining MeDiC+reuse mechanism
— MeDiC is effective in caching highly-reused blocks

* Sensitivity analysis of each individual components
— Minimal impact on L2 miss rate
— Minimal impact on row buffer locality
— Improved L2 queuing latency

SAFARI

Conclusion

* Problem: memory divergence
— Threads execute in lockstep, but not all threads hit in the cache
— Assingle long latency thread can stall an entire warp

* Key Observations:
— Memory divergence characteristic differs across warps
— Some warps mostly hit in the cache, some mostly miss
— Divergence characteristic is stable over time
— L2 queuing exacerbates memory divergence problem

* Our Solution: Memory Divergence Correction

— Uses cache bypassing, cache insertion and memory scheduling to

prioritize mostly-hit warps and deprioritize mostly-miss warps

* Key Results:

— 21.8% better performance and 20.1% better energy efficiency
compared to state-of-the-art caching policy on GPU

SAFARI

29

Exploiting Inter-Warp Heterogeneity
to Improve GPGPU Performance

Rachata Ausavarungnirun

Saugata Ghose, Onur Kayiran, Gabriel H. Loh
Chita Das, Mahmut Kandemir, Onur Mutlu

SAFARI Carnegie Mellon
AM Di‘,l PENN%%T

Backup Slides

SAFARI

Queuing at L2 Banks: Real Workloads

L6o; 53:8%

14% A

12% -

10% A

8% -

6%

o I

2% I

0% - | | | | I.--—|—|

9 O O O 9 DO DO D DO D
p%%«q\/(/b%« P Y P D A D S

Q" QO ® O . S
wv%%oossgosoeo
N7 RV DT ROT AP ADT AV AN AOT AD

Fract. of L2 Requests

Queuing Time (cycles)

SAFARI v

Adding More Banks

v 1.6
o W 12 Banks 2 Ports [0 24 Banks 2 Ports
g 1.4 - M 24 Banks 4 Ports MW 48 Banks 2 Ports
L
O 1.2 -
E %
a 1.0 -
©
208 -
©
£ 0.6 A
o
2 0.4 -

0.2 A

0.0 -

s C,O@ S5 £ L &P F© @é’ &

SAFARI -

Queuing Latency Reduction

= N N w w NN
ol o ol o ol o
! ! ! ! !

Queuing Latency (cycles)
H
o

]
&

o ol
|

SAFARI

88.5

B Baseline
OWBYyp
B MeDiC
0 I ‘] | 1
S Q Q S O I
Ooé ,-OO D s S A

%

34

MeDiC: Performance Breakdown

O
D I
&)
M |
[]
o
y - |
m
W |
[]
V)
M |
=
H |
Q
W |
[]
L0 < L0 < L0
Q\ (Q\ — — o

aullaseg 19nQO dnpaadsg

35

SAFARI

Rate

1SS

M

MeDi

B Baseline
O Rand

mWIP
m MeDiC

1.0

g
0.0 A

N
o

ayey SSIN 8YoeD g

0.4

©
o

0.

36

SAFARI

Row Buffer Hit Rate

MeDi

1.0

|

|

|
Q

D|
Q
=
|

|

|

|

<2 |
=
=

O - |

|

|

Q - |
=
@
2]

@© |
m
(|

|

|

|

_ _ _ _ _ _

9. 0 ™~ © l N

o o o o o o

arey 1IH Jayng moy

37

SAFARI

MeDiC-Reuse

N
N

B MeDiC B MeDiC-reuse

Speedup Over Baseline
L
N M (e} (0] (@)

L
o
I

o
0

SAFARI

38

L2 Queuing Penalty

dOS
SNOD
NN

1,000

900 { mL2
800 -
700 1515 + prRAM
600 -
500 A
400 -
300 1
200 1
100 -
0 4

aouablianig wouj Aljeusad “xXen

dSSS
1SIN
diNd

S44

=

K

m— 1S

_ =
M dAd
OAd

OL2 + DRAM

m2

350

0 i

T
o
Lo

300 -
250 A
200 A
150 -
100 -

aouabianig wolj Aljeusad ‘BAY

SAFARI

Divergence Distribution

Application AH MH BL MM AM
1 Nearest Neighbor (NN) [48] 19% 79 % 1% 09% | 0.1%
2 C”"V(‘g‘é“ﬁ?g)s[ngﬁrable % | 1% | 8% | 1% | 7%
3 Scalar Product (SCP) [48] 0.1% | 0.1% | 0.1% | 0.7% | 99%
4 Back Propagation (BP) [6] 10% 27% 48 % 6% 9%
5 Hotspot (HS) [6] 1% 29% 69 % 0.5% | 0.5%
6 Streamcluster (SC) [6] 6% 02% | 0.5% | 0.3% 93%
7 Inverted Index (IIX) [17] 71% 5% 8% 1% 15%
8 | Page View Count (PVC) [17] 4% 1% 42 % 20% 33%
9 Page View Rank (PVR) [17] 18% 3% 28% 4% 47 %

SAFARI v

Divergence Distribution

Application AH MH BL MM | AM
10 Similarity Score (SS) [17] 67 % 1% 11% 1% 20%
Breadth-First

11 Search (BFS) [4] 40% 1% 20% 13% | 26%
Barnes-Hut N-body

12 Simulation (BH) [4] 84 % 0% 0% 1% 15%

Delaunay Mesh

13 Refinement (DMR) [4] 81% 3% 3% 1% 12%
Minimum Spanning

14 Tree (MST) [4] 53% 12% 18% 2% 15%

15 | Survey Propagation (SP) [4] | 41% 1% 20% 14% | 24%

SAFARI

41

Stable Divergence Characteristics

* Warp retains its hit ratio during a program
phase

* Heterogeneity
— Control Divergence
— Memory Divergence
— Edge cases on the data the program is operating on
— Coalescing
— Affinity to different memory partition

e Stability
— Temporal + spatial locality

SAFARI

Warps Can Fetch Data for Others

* All-miss and mostly-miss warps can fetch cache
blocks for other warps

— Blocks with high reuse
— Shared address with all-hit and mostly-hit warps

* Solution: Warp-type aware cache insertion

SAFARI b

Warp-type Aware Cache Insertion

Future Cache Requests

el = @] 3 = [B
MRU mm LRU

1 |3
m B2 MRU

L2 Cache

SAFARI

Warp-type Aware Memory Sched.

Memory Request

Warp Type
All-hit, Mostly-hit ' ‘ ’ Balanced, Mostly-miss, All-miss
High Priority Queue Me Juésindganaty Queue
- - -

FR-FCFS Scheduler AL FR-FCFS Scheduler
hedul

Main Memory

SAFARI v

