
Exploiting Inter-Warp Heterogeneity 
to Improve GPGPU Performance

Rachata Ausavarungnirun

Saugata Ghose, Onur Kayiran, Gabriel H. Loh 

Chita Das, Mahmut Kandemir, Onur Mutlu



Overview of This Talk
• Problem: memory divergence

– Threads execute in lockstep, but not all threads hit in the cache

– A single long latency thread can stall an entire warp

• Key Observations:
– Memory divergence characteristic differs across warps

– Some warps mostly hit in the cache, some mostly miss

– Divergence characteristic is stable over time

– L2 queuing exacerbates memory divergence problem

• Our Solution: Memory Divergence Correction
– Uses cache bypassing, cache insertion and memory scheduling to 

prioritize mostly-hit warps and deprioritize mostly-miss warps

• Key Results: 
– 21.8% better performance and 20.1% better energy efficiency

compared to state-of-the-art caching policy on GPU

2



Outline

• Background

• Key Observations

• Memory Divergence Correction (MeDiC)

• Results

3



Latency Hiding in GPGPU Execution

4

Stall

Time

GPU Core

Active

GPU Core 
Status

Active

Warp A

Warp B

Warp C

Warp D

Lockstep
ExecutionThread



Problem: Memory Divergence

5

Cache Miss

Cache Hit

Warp A

Time

Cache Hit

Main Memory

Stall Time



Outline

• Background

• Key Observations

• Memory Divergence Correction (MeDiC)

• Results

6



Observation 1: Divergence Heterogeneity

7

Reduced
Stall Time

Cache Miss

Cache Hit

Mostly-hit warp Mostly-miss warp

Time

Key Idea: 
• Convert mostly-hit warps to 

all-hit warps
• Convert mostly-miss warps to 

all-miss warps

All-hit warp All-miss warp



Observation 2: Stable Divergence Char.

8

• Warp retains its hit ratio during a program 
phase

– Hit ratio  number of hits / number of access



Observation 2: Stable Divergence Char.

9

• Warp retains its hit ratio during a program 
phase

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

H
it

 R
at

io

Cycles

Warp 1 Warp 2 Warp 3 Warp 4 Warp 5 Warp 6

Mostly-hit

Balanced

Mostly-miss



Observation 3: Queuing at L2 Banks

10

Shared L2 Cache

Bank 0

Bank 1

Bank 2

Bank n

…
…

…
…

Request Buffers

Memory
Scheduler

To 
DRAM

45% of requests stall 20+ cycles at the L2 queue

Long queuing delays exacerbate the effect of 
memory divergence



Outline

• Background

• Key Observations

• Memory Divergence Correction (MeDiC)

• Results

11



Our Solution: MeDiC

12

• Key Ideas:

– Convert mostly-hit warps to all-hit warps

– Convert mostly-miss warps to all-miss warps

– Reduce L2 queuing latency

– Prioritize mostly-hit warps at the memory

– Maintain memory bandwidth



Warp-type-aware
Memory Scheduler

Memory Divergence Correction

W
a

rp
 Typ

e Id
en

tifica
tio

n
 Lo

g
ic

Memory
Request

Shared L2 
Cache

Bank 0

Bank 1

Bank 2

Bank n

To 
DRAM

N

Y

Low Priority

High Priority

Any Requests 
in High Priority

…
…

B
yp

a
ssin

g
 Lo

g
ic

Warp-type-aware Cache Bypassing
Mostly-miss, All-miss

Warp-type-aware Cache Insertion Policy
13

Memory Scheduler



Mechanism to Identify Warp Type

14

• Profile hit ratio for each warp

• Group warp into one of five categories

• Periodically reset warp-type

All-missMostly-missBalancedMostly-hitAll-hit

Higher Priority Lower Priority



Warp-type-aware Cache Bypassing

Warp-type-aware
Memory Scheduler

Warp-type-aware Cache Bypassing

W
a

rp
 Typ

e Id
en

tifica
tio

n
 Lo

g
ic

Memory
Request

Shared L2 
Cache

Bank 0

Bank 1

Bank 2

Bank n

To 
DRAM

N

Y

Low Priority

High Priority

Any Requests 
in High Priority

…
…

B
yp

a
ssin

g
 Lo

g
ic

Mostly-miss, All-miss

Warp-type-aware Cache Insertion Policy
15



Warp-type-aware Cache Bypassing

• Goal: 

– Convert mostly-hit warps to all-hit warps

– Convert mostly-miss warps to all-miss warps

• Our Solution:

– All-miss and mostly-miss warps  Bypass L2

– Adjust how we identify warps to maintain miss rate

• Key Benefits:

– More all-hit warps

– Reduce queuing latency for all warps

16



Warp-type-aware Cache Bypassing

Warp-type-aware
Memory Scheduler

Warp-type-aware Cache Insertion

W
a

rp
 Typ

e Id
en

tifica
tio

n
 Lo

g
ic

Memory
Request

Shared L2 
Cache

Bank 0

Bank 1

Bank 2

Bank n

To 
DRAM

N

Y

Low Priority

High Priority

Any Requests 
in High Priority

…
…

B
yp

a
ssin

g
 Lo

g
ic

Mostly-miss, All-miss

Warp-type-aware Cache Insertion Policy
17



Warp-type-aware Cache Insertion

• Goal: Utilize the cache well

– Prioritize mostly-hit warps

– Maintain blocks with high reuse

• Our Solution:

– All-miss and mostly-miss  Insert at LRU

– All-hit, mostly-hit and balanced  Insert at MRU

• Benefits:

– All-hit and mostly-hit are less likely to be evicted

– Heavily reused cache blocks from mostly-miss are 
likely to remain in the cache

18



Warp-type-aware Cache Bypassing

Warp-type-aware
Memory Scheduler

Warp-type-aware Memory Sched.

W
a

rp
 Typ

e Id
en

tifica
tio

n
 Lo

g
ic

Memory
Request

Shared L2 
Cache

Bank 0

Bank 1

Bank 2

Bank n

To 
DRAM

N

Y

Low Priority

High Priority

Any Requests 
in High Priority

…
…

B
yp

a
ssin

g
 Lo

g
ic

Mostly-miss, All-miss

Warp-type-aware Cache Insertion Policy
19



Not All Blocks Can Be Cached

• Despite best efforts, accesses from mostly-hit 
warps can still miss in the cache

– Compulsory misses

– Cache thrashing

• Solution: Warp-type-aware memory scheduler

20



Warp-type-aware Memory Sched.

• Goal: Prioritize mostly-hit over mostly-miss

• Mechanism: Two memory request queues

– High-priority  all-hit and mostly-hit

– Low-priority  balanced, mostly-miss and all-miss

• Benefits:

– Mostly-hit warps stall less

21



MeDiC: Example

22

Mostly-hit Warp

Mostly-miss Warp

All-hit Warp

All-miss Warp

DRAM Queuing Latency

Cache/Mem Latency

Bypass
Cache

Lower
queuing
latency

Lower
stall
time

Insert at
LRU

High
Priority

Insert at
MRU

Cache Queuing Latency



Outline

• Background

• Key Observations

• Memory Divergence Correction (MeDiC)

• Results

23



Methodology

• Modified GPGPU-Sim modeling GTX480

– 15 GPU cores

– 6 memory partition

– 16KB 4-way L1, 768KB 16-way L2

– Model L2 queue and L2 queuing latency

– 1674 MHz GDDR5

• Workloads from CUDA-SDK, Rodinia, Mars and 
Lonestar suites

24



Comparison Points
• FR-FCFS baseline [Rixner+, ISCA’00]
• Cache Insertion: 

– EAF [Seshadri+, PACT’12]
• Tracks blocks that are recently evicted to detect high reuse and 

inserts them at the MRU position
• Does not take divergence heterogeneity into account
• Does not lower queuing latency

• Cache Bypassing: 
– PCAL [Li+, HPCA’15]

• Uses tokens to limit number of warps that gets to access the L2 
cache  Lower cache thrashing

• Warps with highly reuse access gets more priority
• Does not take divergence heterogeneity into account

– PC-based and Random bypassing policy

25



0.5

1.0

1.5

2.0

2.5

Sp
e

e
d

u
p

 O
ve

r 
B

as
e

lin
e

Baseline EAF PCAL MeDiC

Results: Performance of MeDiC

26

21.8%

MeDiC is effective in identifying warp-type and 
taking advantage of divergence heterogeneity



Results: Energy Efficiency of MeDiC

27

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
. E

n
e

rg
y 

Ef
fi

ci
e

n
cy

Baseline EAF PCAL MeDiC

20.1%

Performance improvement outweighs the 
additional energy from extra cache misses



Other Results in the Paper

• Breakdowns of each component of MeDiC
– Each component is effective

• Comparison against PC-based and random cache 
bypassing policy
– MeDiC provides better performance

• Analysis of combining MeDiC+reuse mechanism
– MeDiC is effective in caching highly-reused blocks

• Sensitivity analysis of each individual components
– Minimal impact on L2 miss rate

– Minimal impact on row buffer locality

– Improved L2 queuing latency

28



Conclusion
• Problem: memory divergence

– Threads execute in lockstep, but not all threads hit in the cache

– A single long latency thread can stall an entire warp

• Key Observations:
– Memory divergence characteristic differs across warps

– Some warps mostly hit in the cache, some mostly miss

– Divergence characteristic is stable over time

– L2 queuing exacerbates memory divergence problem

• Our Solution: Memory Divergence Correction
– Uses cache bypassing, cache insertion and memory scheduling to 

prioritize mostly-hit warps and deprioritize mostly-miss warps

• Key Results: 
– 21.8% better performance and 20.1% better energy efficiency

compared to state-of-the-art caching policy on GPU

29



Exploiting Inter-Warp Heterogeneity 
to Improve GPGPU Performance

Rachata Ausavarungnirun

Saugata Ghose, Onur Kayiran, Gabriel H. Loh

Chita Das, Mahmut Kandemir, Onur Mutlu



Backup Slides

31



Queuing at L2 Banks: Real Workloads

32

0%

2%

4%

6%

8%

10%

12%

14%

16%

Fr
ac

t.
 o

f 
L2

 R
e

q
u

e
st

s

Queuing Time (cycles)

53.8%



Adding More Banks

33

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce 12 Banks 2 Ports 24 Banks 2 Ports

24 Banks 4 Ports 48 Banks 2 Ports

5%



0

5

10

15

20

25

30

35

40

Q
u

e
u

in
g 

La
te

n
cy

 (
cy

cl
es

) 

Baseline

WByp

MeDiC

88.5

Queuing Latency Reduction

34

69.8%



MeDiC: Performance Breakdown

35

0.5

1.0

1.5

2.0

2.5

S
p

e
e
d

u
p

 O
v
e
r 

B
a
s
e
li
n

e

WIP WMS WByp MeDiC



MeDiC: Miss Rate

36

0.0

0.2

0.4

0.6

0.8

1.0

L
2
 C

a
c
h

e
 M

is
s
 R

a
te

Baseline

Rand

WIP

MeDiC



MeDiC: Row Buffer Hit Rate

37

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
o

w
 B

u
ff

e
r 

H
it

 R
a
te

Baseline WMS MeDiC



MeDiC-Reuse

38

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

S
p

e
e

d
u

p
 O

v
e
r 

B
a
s

e
li

n
e MeDiC MeDiC-reuse



L2 Queuing Penalty

39

0

50

100

150

200

250

300

350

N
N

C
O

N
S

S
C

P

B
P

H
S

S
C

II
X

P
V

C

P
V

R

S
S

B
F

S

B
H

D
M

R

M
S

T

S
S

S
P

A
v
g

. 
 P

e
n

a
lt

y
 f

ro
m

 D
iv

e
rg

e
n

c
e

L2

L2 + DRAM

0

100

200

300

400

500

600

700

800

900

1,000

N
N

C
O

N
S

S
C

P

B
P

H
S

S
C

II
X

P
V

C

P
V

R

S
S

B
F

S

B
H

D
M

R

M
S

T

S
S

S
P

M
a
x

. 
 P

e
n

a
lt

y
 f

ro
m

 D
iv

e
rg

e
n

c
e

L2

L2 + DRAM



Divergence Distribution

40



Divergence Distribution

41



Stable Divergence Characteristics

42

• Warp retains its hit ratio during a program 
phase

• Heterogeneity

– Control Divergence

– Memory Divergence

– Edge cases on the data the program is operating on

– Coalescing

– Affinity to different memory partition

• Stability

– Temporal + spatial locality



Warps Can Fetch Data for Others

• All-miss and mostly-miss warps can fetch cache 
blocks for other warps

– Blocks with high reuse

– Shared address with all-hit and mostly-hit warps

• Solution: Warp-type aware cache insertion

43



Warp-type Aware Cache Insertion

44

A1 A2

A3 A4

B1 A5

A6 B2

L2 Cache

LRU

MRU

A7 B3 B2

Future Cache Requests

LRU

LRU

MRU MRU

MRU

A8 A9

LRU



Warp-type Aware Memory Sched.

45

Memory 
Scheduler

Main Memory

Memory Request Queue

Warp Type

Memory Request

All-hit, Mostly-hit Balanced, Mostly-miss, All-miss

FR-FCFS Scheduler

Low Priority Queue

FR-FCFS Scheduler

High Priority Queue


