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Overview of This Talk

* Problem: memory divergence
— Threads execute in lockstep, but not all threads hit in the cache
— Assingle long latency thread can stall an entire warp

* Key Observations:
— Memory divergence characteristic differs across warps
— Some warps mostly hit in the cache, some mostly miss
— Divergence characteristic is stable over time
— L2 queuing exacerbates memory divergence problem
* Our Solution: Memory Divergence Correction

— Uses cache bypassing, cache insertion and memory scheduling to
prioritize mostly-hit warps and deprioritize mostly-miss warps

* Key Results:

— 21.8% better performance and 20.1% better energy efficiency
compared to state-of-the-art caching policy on GPU
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Latency Hiding in GPGPU Execution
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Problem: Memory Divergence
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Observation 1: Divergence Heterogeneity
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Observation 2: Stable Divergence Char.

* Warp retains its hit ratio during a program
phase

— Hit ratio 2 number of hits / number of access
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Observation 2: Stable Divergence Char.

Hit Ratio

* Warp retains its hit ratio during a program
phase

— Warp 1 Warp 2 - Warp 3 —Warp4 —Warp 5 —-Warp 6

"""" N e =

O 9 Mostly- hlt‘ e e — ._../.— —_—— .
0.8 k_ o c— ——n ../.. — ._.:_.:- Jpu—
0.7 - = - e PE—
Y A
0.5 %200 ®
04 Balancgd
0.3
0.2 —
01 | —1
0.0 Mostly-miss
& \Qé' @é' q/gé' q(?é' %QQ*' rg)é' VQQ*' gpé' (OQQ*' éoé' @é' ({{DGL— «Qé' «@*' %QQ*' cg§’ QQQ*' ogoé' N



Observation 3: Queuing at L2 Banks
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45% of requests stall 20+ cycles at the L2 queue

Long queuing delays exacerbate the effect of

memory divergence
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Our Solution: MeDiC

* Key ldeas:
— Convert mostly-hit warps to all-hit warps
— Convert mostly-miss warps to all-miss warps
— Reduce L2 queuing latency
— Prioritize mostly-hit warps at the memory
— Maintain memory bandwidth
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Memory Divergence Correction
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Mechanism to ldentify Warp Type

* Profile hit ratio for each warp
* Group warp into one of five categories

All-hit Mostly-hit Balanced Mostly-miss All-miss
\4 YVYVY YYVYVYVYVYY VYVYYVYYVYVYYVY

Higher Priority Lower Priority

* Periodically reset warp-type
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Warp-type-aware Cache Bypassing
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Warp-type-aware Cache Bypassing

* Goal:
— Convert mostly-hit warps to all-hit warps

— Convert mostly-miss warps to all-miss warps

* Our Solution:

— All-miss and mostly-miss warps = Bypass L2

— Adjust how we identify warps to maintain miss rate
e Key Benefits:

— More all-hit warps

— Reduce queuing latency for all warps
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Warp-type-aware Cache Insertion
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Warp-type-aware Cache Insertion

* Goal: Utilize the cache well
— Prioritize mostly-hit warps
— Maintain blocks with high reuse

e Our Solution:

— All-miss and mostly-miss = Insert at LRU
— All-hit, mostly-hit and balanced - Insert at MRU

* Benefits:
— All-hit and mostly-hit are less likely to be evicted

— Heavily reused cache blocks from mostly-miss are
likely to remain in the cache
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Warp-type-aware Memory Sched.
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Not All Blocks Can Be Cached

* Despite best efforts, accesses from mostly-hit
warps can still miss in the cache

— Compulsory misses
— Cache thrashing

* Solution: Warp-type-aware memory scheduler
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Warp-type-aware Memory Sched.

* Goal: Prioritize mostly-hit over mostly-miss
* Mechanism: Two memory request queues
— High-priority = all-hit and mostly-hit
— Low-priority =2 balanced, mostly-miss and all-miss

* Benefits:
— Mostly-hit warps stall less
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MeDiC: Example
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Methodology

 Modified GPGPU-Sim modeling GTX480
— 15 GPU cores
— 6 memory partition
— 16KB 4-way L1, 768KB 16-way L2

— Model L2 queue and L2 queuing latency
— 1674 MHz GDDR5

 Workloads from CUDA-SDK, Rodinia, Mars and
Lonestar suites
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Comparison Points

* FR-FCFS baseline [Rixner+, ISCA’00]

e Cache Insertion:
— EAF [Seshadri+, PACT'12]

* Tracks blocks that are recently evicted to detect high reuse and
inserts them at the MRU position

* Does not take divergence heterogeneity into account
* Does not lower queuing latency

e Cache Bypassing:
— PCAL [Li+, HPCA'15]

* Uses tokens to limit number of warps that gets to access the L2
cache = Lower cache thrashing

* Warps with highly reuse access gets more priority
* Does not take divergence heterogeneity into account

— PC-based and Random bypassing policy
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Results: Performance of MeDiC
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taking advantage of divergence heterogeneity
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Results: Energy Efficiency of MeDi
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Other Results in the Paper

* Breakdowns of each component of MeDiC
— Each component is effective

* Comparison against PC-based and random cache
bypassing policy
— MeDiC provides better performance

* Analysis of combining MeDiC+reuse mechanism
— MeDiC is effective in caching highly-reused blocks

* Sensitivity analysis of each individual components
— Minimal impact on L2 miss rate
— Minimal impact on row buffer locality
— Improved L2 queuing latency
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Conclusion

* Problem: memory divergence
— Threads execute in lockstep, but not all threads hit in the cache
— Assingle long latency thread can stall an entire warp

* Key Observations:
— Memory divergence characteristic differs across warps
— Some warps mostly hit in the cache, some mostly miss
— Divergence characteristic is stable over time
— L2 queuing exacerbates memory divergence problem

* Our Solution: Memory Divergence Correction

— Uses cache bypassing, cache insertion and memory scheduling to

prioritize mostly-hit warps and deprioritize mostly-miss warps

* Key Results:

— 21.8% better performance and 20.1% better energy efficiency
compared to state-of-the-art caching policy on GPU
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Queuing at L2 Banks: Real Workloads
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Adding More Banks
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Queuing Latency Reduction
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MeDiC: Performance Breakdown
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Row Buffer Hit Rate

MeDi

1.0

|

|

|
Q

D|
Q
=
|

|

|

|

<2 |
=
=

O - |

|

|

Q - |
=
@
2]

@© |
m
(|

|

|

|

_ _ _ _ _ _

9. 0 ™~ © l N

o o o o o o

arey 1IH Jayng moy

37

SAFARI



MeDiC-Reuse
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L2 Queuing Penalty
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Divergence Distribution

# Application AH MH BL MM AM
1 Nearest Neighbor (NN) [48] 19% 79 % 1% 09% | 0.1%
2 C”"V(‘g‘é“ﬁ?g)s[ngﬁrable % | 1% | 8% | 1% | 7%
3 Scalar Product (SCP) [48] 0.1% | 0.1% | 0.1% | 0.7% | 99%
4 Back Propagation (BP) [6] 10% 27% 48 % 6% 9%
5 Hotspot (HS) [6] 1% 29% 69 % 0.5% | 0.5%
6 Streamcluster (SC) [6] 6% 02% | 0.5% | 0.3% 93%
7 Inverted Index (IIX) [17] 71% 5% 8% 1% 15%
8 | Page View Count (PVC) [17] 4% 1% 42 % 20% 33%
9 Page View Rank (PVR) [17] 18% 3% 28% 4% 47 %
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Divergence Distribution

# Application AH MH BL MM | AM
10 Similarity Score (SS) [17] 67 % 1% 11% 1% 20%
Breadth-First

11 Search (BFS) [4] 40% 1% 20% 13% | 26%
Barnes-Hut N-body

12 Simulation (BH) [4] 84 % 0% 0% 1% 15%

Delaunay Mesh

13 Refinement (DMR) [4] 81% 3% 3% 1% 12%
Minimum Spanning

14 Tree (MST) [4] 53% 12% 18% 2% 15%

15 | Survey Propagation (SP) [4] | 41% 1% 20% 14% | 24%

SAFARI
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Stable Divergence Characteristics

* Warp retains its hit ratio during a program
phase

* Heterogeneity
— Control Divergence
— Memory Divergence
— Edge cases on the data the program is operating on
— Coalescing
— Affinity to different memory partition

e Stability
— Temporal + spatial locality
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Warps Can Fetch Data for Others

* All-miss and mostly-miss warps can fetch cache
blocks for other warps

— Blocks with high reuse
— Shared address with all-hit and mostly-hit warps

* Solution: Warp-type aware cache insertion
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Warp-type Aware Cache Insertion
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Warp-type Aware Memory Sched.

Memory Request
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