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Overview of This Talk
• Problem: memory divergence

– Threads execute in lockstep, but not all threads hit in the cache

– A single long latency thread can stall an entire warp

• Key Observations:
– Memory divergence characteristic differs across warps

– Some warps mostly hit in the cache, some mostly miss

– Divergence characteristic is stable over time

– L2 queuing exacerbates memory divergence problem

• Our Solution: Memory Divergence Correction
– Uses cache bypassing, cache insertion and memory scheduling to 

prioritize mostly-hit warps and deprioritize mostly-miss warps

• Key Results: 
– 21.8% better performance and 20.1% better energy efficiency

compared to state-of-the-art caching policy on GPU
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Outline

• Background

• Key Observations

• Memory Divergence Correction (MeDiC)

• Results
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Latency Hiding in GPGPU Execution
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Problem: Memory Divergence
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Observation 1: Divergence Heterogeneity
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Observation 2: Stable Divergence Char.
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• Warp retains its hit ratio during a program 
phase

– Hit ratio  number of hits / number of access



Observation 2: Stable Divergence Char.
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• Warp retains its hit ratio during a program 
phase
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Observation 3: Queuing at L2 Banks
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Outline
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• Results

11



Our Solution: MeDiC
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• Key Ideas:

– Convert mostly-hit warps to all-hit warps

– Convert mostly-miss warps to all-miss warps

– Reduce L2 queuing latency

– Prioritize mostly-hit warps at the memory

– Maintain memory bandwidth
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Mechanism to Identify Warp Type
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• Profile hit ratio for each warp

• Group warp into one of five categories

• Periodically reset warp-type
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Warp-type-aware Cache Bypassing

Warp-type-aware
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Warp-type-aware Cache Bypassing

• Goal: 

– Convert mostly-hit warps to all-hit warps

– Convert mostly-miss warps to all-miss warps

• Our Solution:

– All-miss and mostly-miss warps  Bypass L2

– Adjust how we identify warps to maintain miss rate

• Key Benefits:

– More all-hit warps

– Reduce queuing latency for all warps
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Warp-type-aware Cache Bypassing
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Warp-type-aware Cache Insertion

• Goal: Utilize the cache well

– Prioritize mostly-hit warps

– Maintain blocks with high reuse

• Our Solution:

– All-miss and mostly-miss  Insert at LRU

– All-hit, mostly-hit and balanced  Insert at MRU

• Benefits:

– All-hit and mostly-hit are less likely to be evicted

– Heavily reused cache blocks from mostly-miss are 
likely to remain in the cache
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Warp-type-aware Cache Bypassing
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Not All Blocks Can Be Cached

• Despite best efforts, accesses from mostly-hit 
warps can still miss in the cache

– Compulsory misses

– Cache thrashing

• Solution: Warp-type-aware memory scheduler
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Warp-type-aware Memory Sched.

• Goal: Prioritize mostly-hit over mostly-miss

• Mechanism: Two memory request queues

– High-priority  all-hit and mostly-hit

– Low-priority  balanced, mostly-miss and all-miss

• Benefits:

– Mostly-hit warps stall less
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MeDiC: Example
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Methodology

• Modified GPGPU-Sim modeling GTX480

– 15 GPU cores

– 6 memory partition

– 16KB 4-way L1, 768KB 16-way L2

– Model L2 queue and L2 queuing latency

– 1674 MHz GDDR5

• Workloads from CUDA-SDK, Rodinia, Mars and 
Lonestar suites
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Comparison Points
• FR-FCFS baseline [Rixner+, ISCA’00]
• Cache Insertion: 

– EAF [Seshadri+, PACT’12]
• Tracks blocks that are recently evicted to detect high reuse and 

inserts them at the MRU position
• Does not take divergence heterogeneity into account
• Does not lower queuing latency

• Cache Bypassing: 
– PCAL [Li+, HPCA’15]

• Uses tokens to limit number of warps that gets to access the L2 
cache  Lower cache thrashing

• Warps with highly reuse access gets more priority
• Does not take divergence heterogeneity into account

– PC-based and Random bypassing policy
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21.8%

MeDiC is effective in identifying warp-type and 
taking advantage of divergence heterogeneity



Results: Energy Efficiency of MeDiC
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Other Results in the Paper

• Breakdowns of each component of MeDiC
– Each component is effective

• Comparison against PC-based and random cache 
bypassing policy
– MeDiC provides better performance

• Analysis of combining MeDiC+reuse mechanism
– MeDiC is effective in caching highly-reused blocks

• Sensitivity analysis of each individual components
– Minimal impact on L2 miss rate

– Minimal impact on row buffer locality

– Improved L2 queuing latency
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Conclusion
• Problem: memory divergence

– Threads execute in lockstep, but not all threads hit in the cache

– A single long latency thread can stall an entire warp

• Key Observations:
– Memory divergence characteristic differs across warps

– Some warps mostly hit in the cache, some mostly miss

– Divergence characteristic is stable over time

– L2 queuing exacerbates memory divergence problem

• Our Solution: Memory Divergence Correction
– Uses cache bypassing, cache insertion and memory scheduling to 

prioritize mostly-hit warps and deprioritize mostly-miss warps

• Key Results: 
– 21.8% better performance and 20.1% better energy efficiency

compared to state-of-the-art caching policy on GPU
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Backup Slides
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Queuing at L2 Banks: Real Workloads
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Adding More Banks
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MeDiC: Performance Breakdown
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MeDiC: Miss Rate
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MeDiC: Row Buffer Hit Rate
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MeDiC-Reuse
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L2 Queuing Penalty
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Divergence Distribution
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Divergence Distribution

41



Stable Divergence Characteristics
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• Warp retains its hit ratio during a program 
phase

• Heterogeneity

– Control Divergence

– Memory Divergence

– Edge cases on the data the program is operating on

– Coalescing

– Affinity to different memory partition

• Stability

– Temporal + spatial locality



Warps Can Fetch Data for Others

• All-miss and mostly-miss warps can fetch cache 
blocks for other warps

– Blocks with high reuse

– Shared address with all-hit and mostly-hit warps

• Solution: Warp-type aware cache insertion
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Warp-type Aware Cache Insertion
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Warp-type Aware Memory Sched.
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