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Executive summary

• Problem: Non-unit strided accesses
– Present in many applications

– In-efficient in cache-line-optimized memory systems

• Our Proposal: Gather-Scatter DRAM
– Gather/scatter values of strided access from multiple chips

– Ideal memory bandwidth/cache utilization for power-of-2 strides

– Requires very few changes to the DRAM module

• Results
– In-memory databases: the best of both row store and column store

– Matrix multiplication: Eliminates software gather for SIMD optimizations
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Strided access pattern
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Shortcomings of existing systems
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Prior approaches

Improving efficiency of fine-grained memory accesses

• Impulse Memory Controller (HPCA 1999)

• Adaptive/Dynamic Granularity Memory System (ISCA 2011/12)

Costly in a commodity system

• Modules that support fine-grained memory accesses

– E.g., mini-rank, threaded-memory module

• Sectored caches
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Goal: Eliminate inefficiency
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DRAM modules have multiple chips
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All chips within a “rank” operate in unison!
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Challenge 1: Chip conflicts
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Data of each cache line is spread across all the chips!

Cache line 0

Cache line 1

Useful data mapped to only two chips!



Challenge 2: Shared address bus
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All chips share the same address bus!

No flexibility for the memory controller to 

read different addresses from each chip!

One address bus for each chip is costly!



Gather-Scatter DRAM
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Column-ID-based data shuffling

(shuffle data of each cache line differently)

Pattern ID – In-DRAM address translation

(locally compute column address at each chip)

Challenge 1: Minimizing chip conflicts

Challenge 2: Shared address bus



Column-ID-based data shuffling

11

Cache Line

Stage 1

Stage 2

Stage 3

Stage “n” enabled only if 

nth LSB of column ID is set

DRAM Column Address

1 0 1

C
h

ip
 0

C
h

ip
 1

C
h

ip
 2

C
h

ip
 3

C
h

ip
 4

C
h

ip
 5

C
h

ip
 6

C
h

ip
 7

(implemented in the memory controller)



Effect of data shuffling
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Chip conflicts Minimal chip conflicts!
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Gather-Scatter DRAM
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Column-ID-based data shuffling

(shuffle data of each cache line differently)

Pattern ID – In-DRAM address translation

(locally compute the column address at each chip)

Challenge 1: Minimizing chip conflicts

Challenge 2: Shared address bus



Per-chip column translation logic
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Gather-Scatter DRAM (GS-DRAM)
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32 values contiguously stored in DRAM (at the start of a DRAM row)

read addr 0, pattern 0 (stride = 1, default operation) 

read addr 0, pattern 1   (stride = 2) 

read addr 0, pattern 3   (stride = 4) 

read addr 0, pattern 7 (stride = 8) 



End-to-end system support for GS-DRAM
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Methodology

• Simulator

– Gem5 x86 simulator

– Use “prefetch” instruction to implement pattern load

– Cache hierarchy

• 32KB L1 D/I cache, 2MB shared L2 cache

– Main Memory: DDR3-1600, 1 channel, 1 rank, 8 banks

• Energy evaluations

– McPAT + DRAMPower

• Workloads

– In-memory databases

– Matrix multiplication
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In-memory databases
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Workload

• Database
– 1 table with million records

– Each record = 1 cache line

• Transactions
– Operate on a random record

– Varying number of read-only/write-only/read-write fields

• Analytics
– Sum of one/two columns

• Hybrid
– Transactions thread: random records with 1 read-only, 1 

write-only

– Analytics thread: sum of one column
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Transaction throughput and energy
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Analytics performance and energy
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Hybrid Transactions/Analytical Processing
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Conclusion

• Problem: Non-unit strided accesses

– Present in many applications

– In-efficient in cache-line-optimized memory systems

• Our Proposal: Gather-Scatter DRAM

– Gather/scatter values of strided access from multiple chips

– Ideal memory bandwidth/cache utilization for power-of-2 strides

– Low DRAM Cost: Logic to perform two bitwise operations per chip

• Results

– In-memory databases: the best of both row store and column store

– Many more applications: scientific computation, key-value stores
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Backup
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Maintaining Cache Coherence

• Restrict each data structure to only two patterns

– Default pattern

– One additional strided pattern

• Additional invalidations on read-exclusive 

requests

– Cache controller generates list of cache lines 

overlapping with modified cache line

– Invalidates all overlapping cache lines
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Hybrid Transactions/Analytical Processing
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Transactions Results
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