
Gather-Scatter DRAM
In-DRAM Address Translation to Improve the

Spatial Locality of Non-unit Strided Accesses

Vivek Seshadri
Thomas Mullins, Amirali Boroumand, Onur Mutlu,

Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry

Executive summary

• Problem: Non-unit strided accesses
– Present in many applications

– In-efficient in cache-line-optimized memory systems

• Our Proposal: Gather-Scatter DRAM
– Gather/scatter values of strided access from multiple chips

– Ideal memory bandwidth/cache utilization for power-of-2 strides

– Requires very few changes to the DRAM module

• Results
– In-memory databases: the best of both row store and column store

– Matrix multiplication: Eliminates software gather for SIMD optimizations

2

Strided access pattern

3

Physical layout of the data structure (row store)

Record 1

Record 2

Record n

In-Memory

Database

Table

Field 1 Field 3

Shortcomings of existing systems

4

Cache Line

Data unnecessarily
transferred on the

memory channel

and stored in on-

chip cache

High latency

Wasted bandwidth

Wasted cache space

High energy

Prior approaches

Improving efficiency of fine-grained memory accesses

• Impulse Memory Controller (HPCA 1999)

• Adaptive/Dynamic Granularity Memory System (ISCA 2011/12)

Costly in a commodity system

• Modules that support fine-grained memory accesses

– E.g., mini-rank, threaded-memory module

• Sectored caches

5

Goal: Eliminate inefficiency

6

Cache Line

Can we retrieve a only useful data?

Gather-Scatter DRAM

(Power-of-2 strides)

DRAM modules have multiple chips

7

All chips within a “rank” operate in unison!

READ addr

Cache Line

?
Two Challenges!

Data

Cmd/Addr

Challenge 1: Chip conflicts

8

Data of each cache line is spread across all the chips!

Cache line 0

Cache line 1

Useful data mapped to only two chips!

Challenge 2: Shared address bus

9

All chips share the same address bus!

No flexibility for the memory controller to

read different addresses from each chip!

One address bus for each chip is costly!

Gather-Scatter DRAM

10

Column-ID-based data shuffling

(shuffle data of each cache line differently)

Pattern ID – In-DRAM address translation

(locally compute column address at each chip)

Challenge 1: Minimizing chip conflicts

Challenge 2: Shared address bus

Column-ID-based data shuffling

11

Cache Line

Stage 1

Stage 2

Stage 3

Stage “n” enabled only if

nth LSB of column ID is set

DRAM Column Address

1 0 1

C
h

ip
 0

C
h

ip
 1

C
h

ip
 2

C
h

ip
 3

C
h

ip
 4

C
h

ip
 5

C
h

ip
 6

C
h

ip
 7

(implemented in the memory controller)

Effect of data shuffling

12

Chip conflicts Minimal chip conflicts!

Col 0
Col 1
Col 2
Col 3

C
h

ip
 0

C
h

ip
 1

C
h

ip
 2

C
h

ip
 3

C
h

ip
 4

C
h

ip
 5

C
h

ip
 6

C
h

ip
 7

C
h

ip
 0

C
h

ip
 1

C
h

ip
 2

C
h

ip
 3

C
h

ip
 4

C
h

ip
 5

C
h

ip
 6

C
h

ip
 7

Before shuffling After shuffling

Can be retrieved in a single command

Gather-Scatter DRAM

13

Column-ID-based data shuffling

(shuffle data of each cache line differently)

Pattern ID – In-DRAM address translation

(locally compute the column address at each chip)

Challenge 1: Minimizing chip conflicts

Challenge 2: Shared address bus

Per-chip column translation logic

14

READ addr, pattern

cmd
addr

pattern

CTL

AND

pattern

chip ID

addrcmd =

READ/WRITE

output address

XOR

Gather-Scatter DRAM (GS-DRAM)

15

32 values contiguously stored in DRAM (at the start of a DRAM row)

read addr 0, pattern 0 (stride = 1, default operation)

read addr 0, pattern 1 (stride = 2)

read addr 0, pattern 3 (stride = 4)

read addr 0, pattern 7 (stride = 8)

End-to-end system support for GS-DRAM

16

Memory

controller

Cache

Data

Store

Tag

Store

P
a

tt
e

rn
 I

D

CPU

New instructions:

pattload/pattstore

GS-DRAM

misscacheline(addr), patt

DRAM column(addr), patt

pattload reg, addr, patt

Support for coherence of

overlapping cache lines

Methodology

• Simulator

– Gem5 x86 simulator

– Use “prefetch” instruction to implement pattern load

– Cache hierarchy

• 32KB L1 D/I cache, 2MB shared L2 cache

– Main Memory: DDR3-1600, 1 channel, 1 rank, 8 banks

• Energy evaluations

– McPAT + DRAMPower

• Workloads

– In-memory databases

– Matrix multiplication

17

In-memory databases

18

Layouts Workloads

Row Store

Column Store

GS-DRAM

Transactions

Analytics

Hybrid

Workload

• Database
– 1 table with million records

– Each record = 1 cache line

• Transactions
– Operate on a random record

– Varying number of read-only/write-only/read-write fields

• Analytics
– Sum of one/two columns

• Hybrid
– Transactions thread: random records with 1 read-only, 1

write-only

– Analytics thread: sum of one column

19

Transaction throughput and energy

20
0

5

10

15

20

25

30

0

10

20

30

40

50

60

T
h

ro
u

g
h

p
u

t
(m

il
li

o
n

s/
se

co
n

d
)

E
n

e
rg

y
(m

J
fo

r
1

0
0

0
0

 t
ra

n
s.

)

Row Store GS-DRAMColumn Store

3X

Analytics performance and energy

21

Row Store GS-DRAMColumn Store

0.0

0.5

1.0

1.5

2.0

2.5

0

20

40

60

80

100

120

E
xe

cu
ti

o
n

 T
im

e
(m

S
e

c)

E
n

e
rg

y
 (

m
J)

2X

Hybrid Transactions/Analytical Processing

22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Analytics

0

5

10

15

20

25

30

Transactions

E
xe

cu
ti

o
n

T
im

e
(m

S
e

c)

T
h

ro
u

g
h

p
u

t
(m

il
li

o
n

s/
se

co
n

d
)

Row Store GS-DRAMColumn Store

Conclusion

• Problem: Non-unit strided accesses

– Present in many applications

– In-efficient in cache-line-optimized memory systems

• Our Proposal: Gather-Scatter DRAM

– Gather/scatter values of strided access from multiple chips

– Ideal memory bandwidth/cache utilization for power-of-2 strides

– Low DRAM Cost: Logic to perform two bitwise operations per chip

• Results

– In-memory databases: the best of both row store and column store

– Many more applications: scientific computation, key-value stores

23

Gather-Scatter DRAM
In-DRAM Address Translation to Improve the

Spatial Locality of Non-unit Strided Accesses

Vivek Seshadri
Thomas Mullins, Amirali Boroumand, Onur Mutlu,

Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry

Backup

25

Maintaining Cache Coherence

• Restrict each data structure to only two patterns

– Default pattern

– One additional strided pattern

• Additional invalidations on read-exclusive

requests

– Cache controller generates list of cache lines

overlapping with modified cache line

– Invalidates all overlapping cache lines

26

Hybrid Transactions/Analytical Processing

27

0

5

10

15

20

25

30

w/o Pref. Pref.

0

2

4

6

8

10

w/o Pref. Pref.

E
xe

cu
ti

o
n

T
im

e
(m

S
e

c)

T
h

ro
u

g
h

p
u

t
(m

il
li

o
n

s/
se

co
n

d
)

Row Store GS-DRAMColumn Store

21

Transactions Analytics

Transactions Results

28

0

2

4

6

8

10

1-0-1 2-1-2 0-2-2 2-4-2 5-0-1 2-0-4 6-1-2 4-2-2

E
xe

cu
ti

o
n

 t
im

e
 f

o
r

1
0

0
0

0

tr
a

n
s.

