Distributed Decision in Sensor Networks

José M. F. Moura

Department of Electrical and Computer Engineering Carnegie Mellon University http://www.ece.cmu.edu/~moura

Work with: Saeed Aldosari, Elijah Liu

IBM Watson Research Center Hawthorne NY March 23/ 2004

DARPA DSO ACMP Integrated and Sensing Program ARO grant NSF Integrated Sensing Computation and Networked Systems for Decision and Action

•What about sensor networks:

–Ad-hoc wireless networks? <=== constraints</p>

•Design issues:

-Inference: decentralized detection

Structure of detector

Performance of detector

≻Tradeoffs

-Combine data from many sensors:

-Fast fusion algorithms

•Integrated technology: inexpensive sensors, deployable, multiple modalities (EM, acoustic, IR, magnetic, ...)

•Survey large areas: environmental, security, surveillance, ...

•Many sensors/ many targets: global through local

- Distributed, Heterogeneous, Autonomous
- Resource starved: rate constraint
- Network as sensor: design with tradeoffs

- Main issues:
 - Detection: optimal algorithms and performance
 - Fusion: fast inference algorithms
- Constraints:
 - Common access channel rate constraint
- Tradeoffs:
 - Number of sensors
 - Number of bits per sensor
 - SNR

Sensor Networks: Optimal Detection

- Decentralized detection:
 - **Performance:** min P_e under rate constraint R
 - Decentralized detection:
 - Tradeoffs: *R* = *N* x b: *N*, b, SNR
 - Optimal detector:
 - Global fusion rule
 - Local thresholds
 - Probability of error


```
Parallel Architecture
```

Optimal detector: Hard combinatorial problem

Asymptotic analysis: how good are the results for finite N; how large does N need to be (SNR dependence)

Numerical optimization: fusion rule intuitively pleasing generalization of majority rule for binary quantization

Decentralized Detection: Model

- Source H:
 - Binary Hypothesis H_0 vs. H_1
 - Prior probabilities: $\pi_0\,$, π_1
- Observations y_0, y_1, \dots, y_N :
 - Conditionally independent given ${\it H}$
 - Identically distributed: $f_i(y) = f(y \mid \boldsymbol{H}_i)$
 - Monotone likelihood ratio $f_1(y) / f_0(y)$
- Compression:
 - *b* bits per measurement
 - Observation space: $y_n \in \mathbb{R}$
 - Classification space: $u_n \in U = \{0, 1, \dots, L-1\}$
 - $\gamma_b^n: \mathbb{R} \to \mathbb{U}$, $|\mathbb{U}| = L = 2^b$
- Communication: Error-free, Bandwidth=*R* bits/sec
- Fusion: γ^0 : $\mathsf{U}^N \to \{0,1\}$

Electrical & Computer

Standard model: Sandell & Tenney 81, Tsitsiklis 85

Optimized Decentralized Detection

- Local classifiers: $\gamma_b^1, \gamma_b^2, \dots, \gamma_b^N$
- Conditional independ. + Monotone likelihood ratio
 - Gauss case, in general: N [L(L-1)/2] thresholds
 - Experiments for b=2: optimizing L(L-1)/2 thresholds/local sensor always converges to simpler one with (L-1)/sensor \Rightarrow N(L-1) thresholds
 - \Rightarrow Optimal classifiers scalar quantizers:

$$u = \begin{cases} 0 & -\infty < y < \lambda_1 \\ 1 & \lambda_1 < y < \lambda_2 \\ \vdots & \vdots \\ L - 1 & \lambda_{L-1} < y < \infty \end{cases}$$

- Each classifier characterized by threshold vector: $\mathbf{\lambda} = (\lambda_1, \lambda_2, \dots, \lambda_{L-1})$

N local classifiers with possibly different λ

- Optimal thresholds λ ? Optimal fusion γ^0 ?

Unquantized vs Quantized Local Decision

- Assuming everything else is fixed, $b \uparrow \Rightarrow P_e(b) \downarrow$ and $P_e(b) \ge P_e(\infty)$
- Problem: b = ? s.t. $P_e(b) \approx P_e(\infty)$
- Difficulty: $P_e(b)$ is hard to evaluate (dependent on fusion rule γ^0)
- Asymptotic analysis: Assume $N \to \infty$
 - $P_e(b,N) \rightarrow 0$ exponentially fast as $N \rightarrow \infty$
 - The rate of decay is given by:

$$C_b = -\lim_{N \to \infty} \frac{1}{N} \log P_e(b, N)$$

- Assuming everything else is fixed: $b \uparrow \Rightarrow C_b \uparrow$ and $C_b \leq C_{\infty}$
- Problem: b = ? s.t. $C_b \approx C_\infty$

Design optimal detector and study $P_e(b)$ as function of b

Optimization

• Chernoff Information:

$$C_{\infty} = -\min_{0 \le s \le 1} \log \int_{-\infty}^{\infty} [f_0(y)]^s [f_1(y)]^{1-s} dy$$
$$C_b(\mathbf{\lambda}, s) = -\log \sum_{u=0}^{L-1} [\Pr(u \mid H_0)]^s [\Pr(u \mid H_1)]^{1-s}$$

Objective function:

$$V_b(\mathbf{\lambda}, s) = \log[1 - C_b(\mathbf{\lambda}, s) / C_\infty]$$

Optimization: Assume identical local detectors (negligible loss when $N \rightarrow \infty$

 $\min_{\boldsymbol{\lambda},s} V_b(\boldsymbol{\lambda},s) \text{ subject to: } \lambda_1 < \lambda_2 < \cdots < \lambda_{L-1} \text{ and } 0 \leq s \leq 1$

• Alternatively: let
$$\delta = (\delta_1, \delta_2, \dots, \delta_{L-2})$$
, where $\delta_1 = \lambda_1$, and

$$\delta_k = \lambda_k - \lambda_{k-1}, k = 2, 3, \dots L - 2$$

 $\min_{\boldsymbol{\delta},s} V_b(\boldsymbol{\lambda},s) \text{ subject to: } \delta_k > 0, k = 2, 3, \dots, L-2 \text{ and } 0 \le s \le 1$

•Asymptotic analysis abstracts out fusion rule

Local Thresholds Algorithm

- Optimization : *L*-Dimensional & nonlinear $L = 2^b$
- Algorithm: Gradient-descent
- Initialization: α_i : convergence vs. speed
- Stopping: $\Delta_i < \varepsilon, \ i = 1, 2, \dots, L$

Results : Unquantized vs Quantized

• Observation model: under H_i : $y = m_i + n$ E[n] = 0, $Var[n] = \sigma^2$

 m_i are constants representing the signal mean

- Case Studies:
 - Noise distributions: Gauss, Laplace, Logistic
 - No. of bits: 1 to 8 bits/sample
 - SNR: 0 to 20dB

$$\begin{split} f_{\rm logistic}(y) &= \frac{e^{-(y-m)/\rho}}{\rho \left[1 + e^{-(y-m)/\rho}\right]^2}, \ \rho = \frac{\sqrt{3}}{\pi} \sigma \\ \\ f_{\rm Laplace}(y) &= \frac{1}{2\vartheta} e^{-|y-m|/\vartheta}, \ \vartheta = \frac{1}{\sqrt{2}} \sigma \end{split}$$

Results : Unquantized vs Quantized

Results : Unquantized vs Quantized

Conclusions: Unquantized vs Quantized

- $C_b \to C_\infty$ exponentially fast as $b \uparrow$ \Rightarrow Little gain if we go to higher number of bits b.
- Threshold distribution:
 is such that threshold points are concentrated around the boundary between f₀(y) and f₁(y) (area where it is most hard to discriminate between H₀ and H₁).
- In all cases studied, *s* converges to 0.5
- For high b, the ratio C_b / C_∞ is less sensitive to SNR when the noise Gaussian.

Fusion Rule

- Asymptotic studies abstracts the role of the fusion rule \Rightarrow consider finite number of sensors N
- In general, for finite N, optimal local classifiers $\gamma_b^1, \gamma_b^1, \dots \gamma_b^N$ might not be identical $\Rightarrow (L-1)N$ thresholds

• No. of possible fusion rules:
$$2^{L^N} = 2^{2^{Nt}}$$

u_1	u_2	•••	u_N	\tilde{H}
0	0	•••	0	h_1
0	0	• • •	1	h_2
•	• •	•••	• • •	
L-1	L-1	• • •	L-1	h_{L^N}

Total

Bits

2N Binary vs N Quaternary Sensors

2N Binary vs N Quaternary Sensors

Finite N Sensors vs Asymptotic Analysis

Performance Analysis: Finite large *N*

Lugannani-Rice approximation: $(P_e^{LR} - P_e^{exact})/P_e^{exact} \times 100$

Performance Analysis

Lugannani-Rice approximation:

Network as Sensor: Detection

- <u>Fusion rule</u>: majority-rule
- <u>Under MAC constraint:</u> R = N x b
 - Prefer quaternary over binary sensors if SNR 1.5 to 2 dB larger for quaternary sensors
- $P_e \to 0$ exponentially fast as $N \to \infty$
- The rate of decay $\widehat{C}_b(N)$ approaches that predicted by asymptotic studies C_b as $N \to \infty$
- Convergence rate of $\widehat{C}_b(N) \to C_b$ depends on system parameters, especially SNR: slower at lower SNR
- <u>Slow</u> convergence \Rightarrow very large number of sensors N is required to approach asymptotes (over thousands)
- <u>Local detectors tradeoffs:</u> How many levels of quantization of local decisions
 - Few bits/ decision at high SNR
 - More bits/ decision at low SNR usually 1 to 2 bits more than at low SNR
 - Asymptotic analysis may lead to wrong decisions at low SNR

Fast Fusion: Fast Sum-Product

$$p(T_1 \mid S_1, S_2, S_3) = \sum_{T_2, T_3} p(T_1, T_2, T_3 \mid S_1, S_2, S_3)$$

- •Map fusion of N sensors detecting K targets on bipartite graph
 •Fuse sensor soft info. with sum-product algorithm
 •Message flow alg.
- •Compute marginals from 1D marginals

Message updating rules of sum-product algorithm

Fast Fusion: Fast Sum-Product

•Fast implementation of sum-product algorithm:

- •Divide and conquer, divide and multiply (reduce complexity by K/2)
- •Approximate sensors soft info. by sums of Gauss
- •Propagate means and covariances
- •Convergence: if covariances converge, means converge to their correct values
- •Fast algorithm: scenarios with hundreds of sensors and hundreds of targets

Fast Fusion: Convergence of Variances

Fig. 3. Sensor Network of General Topology

$$\begin{pmatrix} C_1^{(k+1)}, \dots, C_n^{(k+1)} \end{pmatrix} = \left(\mathcal{F}_1\left(\left\{C_j^{(k)}\right\}_{j \neq 1}\right), \dots, \mathcal{F}_n\left(\left\{C_j^{(k)}\right\}_{j \neq n}\right) \right)$$
$$= \mathcal{F}\left(C_1^{(k)}, \dots, C_n^{(k)}\right) .$$
(14)

Theorem 1. The operator \mathcal{F} possesses a fixed point in \mathcal{D}^n . Furthermore, denoting this fixed point by (C_1^*, \ldots, C_n^*)

$$\lim_{k \to \infty} \mathcal{F}^k\left(C_1^{(0)}, \dots, C_n^{(0)}\right) = (C_1^*, \dots, C_n^*)$$
(15)

for all positive-definite diagonal matrices $C_1^{(0)}, \ldots, C_n^{(0)}$.

Fast Fusion: Convergence of Means

$$M_{i}^{(k+1)} = \mathcal{H}_{i} \left(\left\{ M_{j}^{(k)}, C_{j}^{(k)} \right\}_{j \neq i} \right)$$

$$A_{\Sigma_{i}, \{D_{j}\}_{j \neq i}} = \left(\Sigma_{i}^{-1} + \sum_{j \neq i} \xi_{i} \left(\lambda_{ij} \left(D_{j}^{-1} \right) \right) - \sum_{j \neq i} \xi_{i} \left(\lambda_{ij} \left(I_{0} \right) \right) \right)^{-1} . \quad (11)$$

$$T_{\Sigma_{1}, \dots, \Sigma_{n}} = \left(\begin{array}{ccc} 0 & \mathcal{O}_{1*} & \cdots & \cdots & \mathcal{O}_{1*} \\ \mathcal{O}_{2*} & 0 & \mathcal{O}_{2*} & \cdots & \mathcal{O}_{2*} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathcal{O}_{(n-1)*} & \ddots & \mathcal{O}_{(n-1)*} & 0 & \mathcal{O}_{(n-1)*} \\ \mathcal{O}_{n*} & \cdots & \mathcal{O}_{n*} & \mathcal{O}_{n*} & 0 \end{array} \right) . \quad (18)$$

Each block matrix Θ_{i*} in $T_{\Sigma_1,...,\Sigma_n}$ takes the form of

$$\Theta_{i*} = \Omega \left(A_{C_i^*, \{C_j^*\}_{j \neq i}}^{-1} \tau_i (A_{\Sigma_i, \{C_j^*\}_{j \neq i}}) - I_i \right) , \qquad (19)$$

where the matrix $A_{\Sigma_i, \{C_j^*\}_{j \neq i}}$ is defined as before in (11) and the matrix $A_{C_i^*, \{C_j^*\}_{j \neq i}}^{-1}$ is defined as

$$\sum_{j=1}^{n} \tau_i \left((C_j^*)^{-1} \right) - \sum_{j=1, j \neq i}^{n} \tau_i \left(\lambda_{ij}(I_0) \right) \; .$$

Fast Fusion: Convergence of Means

Theorem 2. If $\rho(T_{\Sigma_1,\ldots,\Sigma_n}) < 1$, then \exists vectors M_1^*,\ldots,M_n^* such that, for any $M_1^{(0)},\ldots,M_n^{(0)}$ and any $C_1^{(0)},\ldots,C_n^{(0)} \in \mathcal{D}$,

i. the sequence $(M_1^{(k)}, \ldots, M_n^{(k)})$ converges to (M_1^*, \ldots, M_n^*) .

ii. the estimated means for the marginal densities obtained from the message statistics are the true marginal means.

Lemma 9 If $\max_{i \in \{1,\ldots,n\}} \rho(\Theta_{i*}) < \frac{1}{n-1}$, then $\rho(T_{\Sigma_1,\ldots,\Sigma_n}) < 1$.

$\left(1\right)$	1		1	$_1$	١	$\left(1 \right)$	0		0	0)	
1	1	1		1		0	1	0		0	
:	÷	·	÷	÷	-	:	÷	·	÷	÷	
1		1	1	1		0		0	1	0	
$\begin{pmatrix} 1 \end{pmatrix}$	1		1	1)		0	0		0	1)	
Ĺ		'n		/		<u>`</u>		'n			,

$$\rho(T_{\Sigma_1,\dots,\Sigma_n}) = \rho\left((\Theta_{1*}\oplus\dots\oplus\Theta_{n*})\cdot\left(\widetilde{I}\otimes I_\Omega\right)\right) \\
\leq \rho(\Theta_{1*}\oplus\dots\oplus\Theta_{n*})\cdot\rho\left(\widetilde{I}\otimes I_\Omega\right) \\
= \max_{i\in\{1,\dots,n\}}\rho(\Theta_{i*})\cdot\rho\left(\widetilde{I}\right)\rho(I_\Omega) \\
= \max_{i\in\{1,\dots,n\}}\rho(\Theta_{i*})\cdot(n-1).$$

Fast Fusion: Convergence of Means

Lemma 11 If $\Sigma_1 = \ldots = \Sigma_n = \Sigma$, then the sequence of covariance matrics converge to a unique fixed point (C, \ldots, C) in \mathcal{D}^n and $C \leq \delta(\Sigma)$. Moreover, $\rho(T_{\Sigma_1, \ldots, \Sigma_n}) < 1$.

Proposition 2 For any symmetric matrix $\Sigma > 0$ such that $\Sigma^{-1} - (n-1)I_0 > 0$, if $\Sigma_i = (\Sigma^{-1} + \gamma_i I_0)^{-1}$ for i = 1, ..., n then $(\Sigma_1, ..., \Sigma_n) \in C$ for all $\sum_{i=1}^n \gamma_i = 0$ and $-\frac{1 - (n-1)\lambda_{max}(\Sigma)}{\lambda_{max}(\Sigma)} < \gamma_1, ..., \gamma_n < \frac{1 - (n-1)\lambda_{max}(\Sigma)}{\lambda_{max}(\Sigma)}$.

Figure 7: Effect of the Proximity of the Spectral Radius to One

Conclusions

- •Sensor networks:
 - -Optimal design: tough combinatorial problem
 - -Decentralized detection (parallel network):
 - Surprising fusion rule: majority rule
 - Tradeoffs under rate constraint:
 - ✓N versus b as a function of SNR: may prefer N/2 w/
 - b=2, rather than N and b=1 if more reliable sensors (1.5 dB)
- •Fusion:
 - -Sum product algorithm
 - -Convergence: under appropriate initial conditions on covariances, means converge to correct means
 - □This generalizes to arbitrary sensor network configurations result of Rusmevichientong and Van Roy (Feb 01) for a fully connected graph and 2 factor nodes

