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Abstract—We address the problem of blind identification of
multiuser multiple-input multiple-output (MIMO) finite-impulse
response (FIR) digital systems. This problem arises in spatial
division multiple access (SDMA) architectures for wireless com-
munications. We present aclosed-form, i.e., noniterative, consis-
tent estimator for the MIMO channel based only on second-
order statistics. To obtain this closed form we introduce spec-
tral/correlation asymmetry between the sources by filtering each
source output with adequate correlative filters. Our algorithm
uses the closed form MIMO channel estimate to cancel the
intersymbol interference (ISI) due to multipath propagation and
to discriminate between the sources at the wireless base station
receiver. Simulation results show that, for single-user channels,
this technique yields better channel estimates in terms of mean-
square error (MSE) and better probability of error than a well-
known alternative method. Finally, we illustrate its performance
for MIMO channels in the context of the global system for mobile
communications (GSM) system.

Index Terms—Blind channel identification, global system for
mobile communications (GSM), intersymbol interference,
MIMO, multipath propagation, SIMO, wireless digital
communications.

I. INTRODUCTION

W E study blind channel identification in the context
of digital multiple-input/multiple-output (MIMO) sys-

tems. This problem arises naturally in spatial division multiple
access (SDMA) architectures for wireless communications. In
SDMA, multiple users transmit simultaneously in time using
the same frequency narrowband channel, thus increasing the
cellular capacity without the need for additional RF spectrum
[1]. In code division multiple access (CDMA) systems, the
users also transmit simultaneously in time but each user’s
signal is spread over a larger frequency region.

Tonget al. [2] presented a major breakthrough for the blind
identification of digital single-input/multiple-output (SIMO)
systems, i.e., multichannel filters driven by a single digital
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source. They assume that the array at the base station cell
site receives anoversampledweighted linear superposition of
the emitted signal. Their algorithm exploits the cyclostationary
property associated with virtual channels created by temporal
and/or spatial oversampling of digital communications signals.
These authors derived aclosed-form(noniterative) asymp-
totically exact estimator, i.e., a consistent estimator, for the
SIMO channel which relies only onsecond-orderstatistics
of the received signals. When compared to other well-known
blind equalization methods, their approach exhibits two main
advantages, though at the expense of added computational
complexity.

• Because it is a closed-form algorithm, it does not suffer
from the irregular convergence properties [5] of most
adaptive iterative methods, such as the constant modulus
(CM) algorithms [3], [4]. This drawback is due to the
existence of many local minima attractors in the cost
functions. Also, the overall performance of gradient-
based optimization techniques strongly depends on the
learning rate parameter, usually chosen by a trial-and-
error procedure.

• Since only second-order statistics are involved, the ap-
proach in [2] is feasible with short data packets. This con-
trasts with high-order cumulants-based methods [6]–[8]
which require a significant amount of data in order to
attain equivalent results in terms of mean-square error
(MSE). In wireless radio communications, this is an im-
portant issue since only a few data samples are available
for processing during the time interval along which the
channel can be assumed time invariant.

After [2], many other closed-form approaches have been
proposed for the blind identification of digital SIMO-finite
impulse response (FIR) systems. Xuet al. [9] model the input
process as a deterministic signal and exploit special algebraic
properties of oversampled systems. Since no statistical model
is assumed, the algorithm works with a very small number
of data samples. Moulineset al. [10] take advantage of the
orthogonality between the signal and noise subspaces spanned
by the data covariance matrix. They exploit the structure of the
filtering matrix connecting the transmitted digital sequence to
the oversampled array outputs in order to significantly reduce
the number of estimated coefficients. The linear prediction
approach, introduced by Slock [11] and generalized by Abed-
Meraim et al. [12] and Gesbertet al. [13], exhibits robustness
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to channel order overestimation and is also second-order
statistics-based.

In addition to the identification of the channel, the task of
the SDMA receiver includes:

1) suppressing the intersymbol interference (ISI) induced
by the multipath propagation;

2) discriminating the signals transmitted by the sources
present in the cell.

These two goals may be accomplished once the time/space
channel is identified, although some approaches estimate di-
rectly the transmitted digital sequences, avoiding the channel
estimation. The iterative least squares with projection (ILSP)
and iterative least squares with enumeration (ILSE) algorithms
introduced by Talwaret al. [14], as well as the algorithms
in [15]–[19], exploit the finite alphabet property of the bi-
nary shift keying (BSK), phase shift keying (PSK), and
quadrature amplitude modulation (QAM) digital modulation
formats. Being iterative algorithms, global convergence is not
guaranteeda priori and several runnings starting from different
initializations may be required. For some of these algorithms,
this situation can occur even at high values of the signal-to-
noise ratio (SNR). The approach in [20] uses the geometrical
properties induced by the binary signal constellation but tends
to result in an identification scheme more sensitive to the
noise level. Papadiaset al. [21] extended the CM concept to
the multiuser situation. Being a gradient-based algorithm, it
shares the convergence and implementation problems already
discussed for the single-source case.

Liu et al. [9] and Abed-Meraimet al. [22] considered the
extension of closed-form SIMO system identification strate-
gies to the MIMO situation. Their algorithms solve only the
problem up to a unknown residual instantaneous mixing
matrix, where is the number of users. The general consensus
is that SIMO methods can perform blind equalization in a
MIMO environment eliminating the ISI [point 1) above], but
are unable to solve the second issue, i.e., the sources’ mixture
problem. With no additional information, an iterative sources’
separation algorithm such as the ILSP or algorithms based on
high-order statistics [23] must be used. Ding [24] has also
proposed a closed-form procedure which relies on previous
knowledge of the pulse-shaping filters. Ding’s method is a
semiblind procedure since prior knowledge of the shaping
filter used by each source is equivalent to knowing part of
the MIMO channel transfer function.

In this paper, we present aclosed-form second-order
statistics-based blind channel identification algorithm for
MIMO channels that yields asymptotically exact estimates of
the FIR communication MIMO channels. The method extends
that of Tonget al., which applies only to SIMO channels. Our
algorithm cancels the ISI and separates the sources, solving
problems 1) and 2) above.

We obtain a closed-form blind estimator for the MIMO
channel, and separate the sources, by introducingspectral
asymmetrybetween the sources through correlative coding.
Correlative coding or partial-response signaling schemes are
used in communication systems to attain the Nyquist capacity
upper bound for ideal bandlimited channels [25]. Basically, at

the transmitter, a correlative filter enables the overall system
impulse response to exhibit smoother rolloffs than Nyquist
pulse shaping. This results in communication systems less
sensitive to symbol clock timing errors. Since fractionally
spaced equalization (FSE), i.e., equalization based on signals
sampled faster than the data rate, exhibits robustness to symbol
clock jitter by itself, we use partial-response signaling with
a different objective, namely, to assigning distinct spectral
signatures to each user. As we show in the paper, the spectral
asymmetry thus introduced leads to a closed-form second-
order-based solution to the blind identification problem.

Our algorithm exhibits several relevant properties. As in
[2], the identification is exact if the second-order statistical
description of the output process is known exactly. In practice,
these statistics are consistently estimated from the available set
of observations. It is a full blind identification algorithm that
assumes no previous knowledge about the pulse-shaping filters
nor any other channel component. Hence, it is robust with
respect to any eventual mismatches. The penalty incurred by
our approach is not in terms of additional power or bandwidth
consumption nor synchronization between the sources, but
increased computational effort and an extra decoding delay due
to the controlled ISI introduced at the transmitter. This ISI is
removed at the receiver using maximum-likelihood sequence
estimation (MLSE) or Viterbi decoding [26]. In this paper, we
do not address the impact of our results in CDMA systems.

The paper is organized as follows. Section II introduces
the signal model and states the blind identification problem.
Section III establishes the framework of correlative coding for
the separation of the sources. It presents a theorem proved
in Appendix A which establishes that, under this framework,
the MIMO channel is uniquely determined (up to a phase
offset for each user) from thesecond-orderstatistics of its
outputs. Section IV describes the blind channel identification
algorithm. We discuss a computationally simpler variation of
this algorithm which is adequate in high SNR environments.
We present the technique that separates the sources and
recovers the transmitted sequences. Section V considers the
performance of our method. For single-users, the algorithm
outperforms that in [2]. For multiusers, since there is no
alternative closed-form, second-order-based blind scheme, we
illustrate with simulation studies its performance in the context
of the GSM system. Section VI concludes the paper.

II. PROBLEM FORMULATION

Notation: Throughout the paper, we adopt the following
notation. and denote, respectively, the set of in-
teger, real, and complex numbers. Matrices (capital letter)
and vectors are in boldface type. The set of all
matrices with complex entries is , and denotes
the set of -dimensional complex column vectors. For an
arbitrary matrix , its entry is denoted by , its
th row by , and its h column by and

denote, respectively, the range space and the null space
(kernel) of . The notations and
stand for transpose, complex conjugate, Hermitian, the Moore-
Penrose pseudoinverse, and the trace operator, respectively.
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The symbols and stand for the identity,
backward identity (ones in the antidiagonal), and forward-shift
(ones in the first lower diagonal) matrices, respectively. The
symbol represents theth column of the identity
matrix . Diagonal matrices with entries are
represented by . For a zero-mean wide sense
stationary scalar process , the autocorrelation function
is given by , and for a vector
process , the autocorrelation matrices of lagare defined
as . The -norm of a finite energy
continuous-time signal supported in a region is

(1)

For a discrete-time signal supported in , we use
the -norm

(2)

Additional notation is introduced as needed.
MIMO System: Problem Statement:Consider a generic
-input/ -output causal discrete-time noisy linear time-

invariant (LTI) digital MIMO system described by the
convolution equation

(3)

where is a column vector of system outputs,
is the FIR associated to the

th user , is the length of the impulse
response corresponding to theth user, is the signal
transmitted by the th user, and denotes additive
noise. Equation (3) can be compactly rewritten as

(4)

Here, the matrix , and
is the channel convolution matrix.

is the overall order of the system. The
vector is obtained by stacking the vectors

The input signals are taken
from a finite modulation-dependent alphabet In
SDMA communications, (4) models the complex baseband
transfer function between the information symbols emit-
ted by the sources and the oversampled array outputs (see
[2], [10], [19], and [24] for details); the matrix is fully
parameterized by the samples of the equivalentcomposite
transmitter/propagation/receiver FIR channels employed by
the users; and is sensor noise.

We study the blind identification of under the following
assumptions:

A1) The number of users is known and the channel
matrix is full-rank with . In practice, this as-
sumption is satisfied by properly dimensioning certain
physical parameters of the communication system such

as the number of antennas and/or the oversampling
factor (see [2], [19], and [22] for discussion of these
identifiability/implementation issues).

A2) The sources are uncorrelated and the noise process
is zero-mean, wide sense stationary, and statisti-

cally independent of , with known autocorrelation
matrices .

III. SPECTRAL DIVERSITY: CORRELATIVE FILTERS

Usually, the data sequences generated by the sources are
assumed to be zero-mean white random signals. For instance,
in most digital communications systems, those sequences con-
sist of independent and identically distributed (i.i.d.) symbols
extracted from a given constellation set, and thus their respec-
tive power spectral densities exhibit a similar flat pattern. That
is, even if the users exhibit diversity in the time and spatial
domains (in the sense of transmitting different time sequences
at distinct cell sites), they tend to remain indistinguishable
from thatstatisticaldomain point of view. The key idea in our
approach is to break this symmetry condition by judiciously
coloring the information sequences prior to transmission, thus
assigning distinct spectral patterns to the random processes
transmitted by the sources. This will permit the finding of a
closed-form solution for the identification problem considered
here.

Spectral Diversity: To introduce this additional degree of
diversity, we pass the white sequence generated by theth
user, say , through a correlative filter with impulse
response

(5)

and transmit the colored sequence .
Here, is the discrete-time impulse signal, the symbol

denotes the linear convolution operator, and the filter
coefficients are variables to be designed.
For mathematical convenience, the memory of the filters, i.e.,

in (5), is the same for all users, and is greater than or
equal to the memory of any FIR channel in the MIMO system,
i.e., . The delay spreads are
unknowna priori by the receiver. In many application scenar-
ios, it is possible to adequately overestimate these parameters
on the basis of previous field experiments. For example, in
the GSM mobile system, a typical multipath channel profile
is available for several environments (urban, hilly terrain,
etc.) [27] from which the maximum expected degree of ISI
is easily inferred. With this correlative preprocessing, the
autocorrelation function of the filtered process is

(6)

where and
denote, respectively, the power and the new correlation peak
appearing at indexes . Notice that we have assumed
that the input sequences of the correlative filters are white
with unit power. This entails no loss of generality since
absorbs any multiplicative factor. Also, for further reference,
the autocorrelation matrices of the process in (4) are, for
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, given by

(7)

Correlative Filters: We now consider the design of the
correlative filters. The goal is to induce distinct spectral
characteristics in the filtered processes without increasing the
transmitted power. Define the power spectral density (psd)
associated to theth user as

where denotes the Fourier operator. We design the
correlative filters by the following optimization problem: find

(8)

subject to the power constraint . The filters
in (8) maximize the distance between the users closest psd’s.
Since the Fourier operator is unitary,

; then, using (6) in (8), we can restate the
optimization problem as: subject to find

(9)

By symmetry, it is readily seen that a possible solution to
this optimization is given by

This solution distributes the correlation coefficients
in (6) uniformly around the circle of radius

in the complex plane.
No Mixing: We state our last assumption.

A3) The th user correlates its zero-mean unit-power sym-
bols so that (6) and (7) hold. The finite
alphabets and the correlative filters are known to the
receiver.

We now formulate an identifiability theorem based on the
framework established by A1)–A3). It asserts that, in a certain
sense, MIMO systems are uniquely defined by this set of
conditions.

Theorem 1: Consider the signal model in (4) and suppose
that A1)–A3) are satisfied. Then, each users’ convolution
matrix is uniquely determined up to a phase factor
by the output autocorrelation matrices and

. In other words, if is any
channel matrix inducing these same statistics, then

or, equivalently, .
Proof: See the Appendix.

The key point to emphasize is that the theorem establishes
the absence of a residual mixing matrix coupling the sources
together. Here, the residual ambiguity matrixis diagonal.
Therefore, not only are the sources resolved, but also, for
each user, the corresponding FIR coefficients in are
obtained. As it is well known, the remaining phase factors
cannot be resolved by just using second-order statistics, but
they are easily compensated at the receiver.

We could attempt applying Theorem 1 as the basis of a
moments matching identification strategy [28] by computing
a full-rank matrix such that the matrix equalities

(10)

(11)

(12)

are satisfied. The quantities on the left-hand side of (10)–(12)
can be estimated at the receiver by subtracting the noise
correlation matrix in

which can be estimated from the array output data using the
sample mean operator. Two main reasons prevent this from
being straightforward.

• The users’ delay spreads are not knowna priori and
thus the receiver is unable to construct the necessary
sources’ autocorrelation matrices [(7)]. One excep-
tion would be the case of digital communication scenarios
where the bandwidth of the information-bearing signals
is small when compared with the coherence bandwidth
of the propagation channels [25]. That is, the maximum
multipath delay is a negligible fraction of the sources’
signaling period, and thus the ISI effect is virtually
null. In these situations, always coincides with the
number of users since for all . Examples of
such coherent multipath environments include microcell
wireless systems or the Advanced Mobile Phone Systems
(AMPS) [29].

• Even if the delay spreads are known, it remains to
extract a least-squares solution of the optimization prob-
lem in (10). The equalities (10)–(12) could be translated
into an appropriate cost function, in turn minimized using
an iterative gradient-based technique. This approach is
outside of the main goal of this paper, which is to achieve
the blind identification of the MIMO channel based on
noniterative methods, and so it is not pursued further.

IV. BLIND CHANNEL IDENTIFICATION ALGORITHM

We develop the closed-form algorithm that estimates the
channel matrix . We refer to it as the XBM algorithm
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as opposed to the TXK algorithm [2]. The algorithm de-
termines each of the users’ channel matrices up to a
phase factor, so meeting the identifiability property of Theorem
1. However, the channel identification may require a larger
set of output autocorrelation matrices, not to exceed the set

. The exact
number of matrices used depends on the actual system’s delay
spreads. The nice structure of the sources’ autocorrelation
functions induced by the correlative filters with equal memory

plays a major role in the derivation of the algorithm. When
compared with TXK, XBM trades computational complexity
for a smaller mean-square error (MSE) of the estimates. XBM
is specially suited for implementation in parallel machines
which alleviates this concern. We will also describe a simpler
variation of XBM which decreases its computational cost and
is efficient at high SNR scenarios. Finally, we present an
equalization technique that uses the estimate of the channel
matrix . This technique separates the sources’ signals from
the observations and recovers the transmitted sequences.

A. The XBM Algorithm

The algorithm consists of four main steps.

1) Determination of the order of the system and esti-
mation of in the form , where is an

unitary mixing matrix.
2) Determination of each user’s delay spread, that is,

the parameters . From this, the matrix
will be partitioned into submatrices,

, where the th submatrix has
dimensions .

3) Determination of each of the submatrices . This
step can be optionally broken into parallel substeps,
each one leading to the computation of .

4) Determination of the MIMO channel matrix ,
where .

These four steps are detailed in the sequel. We derive the
algorithm based on the true second-order statistics of the
MIMO channel’s output. In practice, the corresponding sample
correlation matrices are employed.

Step 1: Determination of and .
The starting point is the estimation of the system’s order.

Given (4) and the assumptions A1)–A3), we have
. The order is determined from the spectrum

profile of after subtracting the noise autocorrelation
matrix . As

is the number of nonzero eigenvalues of .
In practice, a threshold test is applied. When the noise process
is modeled as spatio-temporal white Gaussian noise, i.e.,

, statistical
procedures based in information theory concepts, such as
the Aikaike information criterion (AIC) or the minimum
description length (MDL) test [30], are preferable.

Regardless of the approach chosen, a truncated eigenvalue
decomposition (EVD) leads to

(13)

where is an matrix with orthonormal columns and
is a diagonal matrix with nonzero entries. Since both terms

in (13) equal , an estimate can be obtained
from that factorization by setting . The unknown

is an unitary mixing matrix. For further reference, we
define the matrices

where the pseudo-inverse of is given by .
Step 2: Determination of .
This step determines the delay spreads of the users, i.e., the

coefficients which add up to . This is accomplished by
exploiting the structure of in (7). Recall that

Hence, in the matrix , the delay spread
appears as the algebraic multiplicity of the eigenvalue

. To access the eigenvalues of , we perform a Schur
decomposition

(14)

where is unitary and is upper-
triangular (both ). Although is not Hermitian, it is
a normal matrix (it commutes with its conjugate transpose)
and thus it turns out that in the Schur decomposition
(14) is diagonal [31], [32] (in practical applications, the
strictly upper diagonal entries are negligible). The spectrum
of is revealed in the diagonal of , and the delay
spreads are obtained by direct inspection by
counting the multiplicity of each eigenvalue. In practice, the
diagonal entries of will cluster around the theoretical values

and a decision rule must be employed. We
notice that for many sources in high noise scenarios, this
method may fail due to the possible overlap of the eigenvalues’
clusters. This topic deserves further investigation, a possible
approach being the redesign of the correlative filters.

Step 3: Determination of .
Additional information may be retrieved from the Schur

factorization (14) due to the diagonal nature of. Without
loss of generality, let the diagonal of be ordered as ,
see (7). Then we get . That is, the projector
associated to theth user, i.e., the orthogonal projector onto

, given by , is also available from
the Schur decomposition in (14). We compute each

in the residual unitary mixing matrix
. Focus on the th user, and consider the matrices

It is straightforward to verify that

for . Therefore, each column of
can be determined by intersecting the kernels of and
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. This can be accomplished [31] by calculating the right
singular vector corresponding to the minimum singular value
of the matrix

or equivalently, by extracting the eigenvector associated with
the minimum eigenvalue of the semipositive defi-
nite matrix . In either case, an estimate is
generated, i.e., a matrix is determined, where

contains (possibly distinct)
phase factors.

We now equalize the remaining phases in, i.e., we con-
dense the phase ambiguity in just one parameter, .
This will show that the algorithm verifies the identifiability
result expressed in Theorem 1 when using the exact process
correlation matrices. We exploit the shift property structure of

...
...

by defining the matrix

The first upper diagonal of contains information about two
consecutive phase ambiguity factors

for . This can be used to correct all phase
drifts from the last factor, by setting

(15)

where . It is straightforward to

verify that this results in an estimate , where
.

Step 4: Determination of .
Defining , the matrix

meets the theoretical identifiability result of Theorem 1. The
submatrices can be computed in parallel at the receiver

since no cross-related data is ever needed.
MIMO Blind Channel Identification:Table I summarizes

the MIMO blind channel identification algorithm. We
assume that there are data samples available, i.e.,

. The output correlation matrices
are replaced by their respective estimates

For simplicity, we assume that the noise process
is a spatio-temporal white Gaussian process,

. Notice that, for this case, the MDL criteria
also yields an estimate of , i.e., previous knowledge of this
system parameter is not required.

Variation: We discuss briefly a possible alternative to avoid
the Schur decomposition, step 2 in the algorithm of Table I,
necessary to estimate and the projector . It
consists in exploiting the concept of interpolating Lagrange
polynomials. Namely, if

(16)

is the Lagrange polynomial corresponding to theth user, then,
given the unitary structure of in

we conclude that the matrix polynomial
. This method is more sensitive to errors in the (sample)

estimate of than the Schur decomposition, since it
depends on the degree ofexactmatching between the (sample)
eigenvalues of and the expected ’s. This alternative is
best suited for higher SNR scenarios with large data sets. To
obtain each user delay spread, we use the consistent estimators

(17)

where denotes the integer nearest to , in
the Euclidean metric. Set and

. Also, let denote the set of -
dimensional positive integer column vectors and, for ,
let ; i.e.,

contains the vectors in which differ from
by 1 in one of its entries. For finite (large) data sets,
simulations studies showed that the most likely error event in
the estimates (17) corresponds to . We now describe
a method that overcomes such errors. It is based on the
following straightforward fact, for which we omit the proof.

Fact: Let . Let be a global
minimizer of the function

over the finite set
. Then, .
From (14), we see that ; thus,

, where . What the fact
emphasizes is thatis theonly zero of in the neighborhood

of . We exploit this result in the following manner. We
compute the vector of estimatesas in (17). We check if its
elements sum up to (estimated in Step 1). If not, we assume
that (most likely error event) and minimizeover the
set by an exhaustive search. The cardinality ofis upper-
bounded by , so this is not computationally expensive. This
yields the new vector of estimates. It will be seen in Section
V that this method allows for the substantial improvement of
the initial estimates in (17).
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TABLE I
MIMO XBM B LIND CHANNEL IDENTIFICATION ALGORITHM AS PRESENTED IN THE PAPER

B. Sources Separation and Equalization

Let be the MIMO channel
matrix. We estimate each source’s emitted sequence .
The extraction of the information symbols from
is straightforward and is efficiently carried out by an MLSE
approach [25], [26]. Notice that, due to the controlled ISI
introduced at the transmitter, the complexity of the detection
step increases since we need to use a Viterbi algorithm whose
trellis contains now at least states, where is
the cardinality of the modulation alphabet corresponding to
the user . We focus on the th user.

Sources’ Separation:The first step consists in isolating its
signal from the observations. This can be achieved by applying
an oblique projector to the data [33]. More specifically, let us
define

where , and is ob-
tained from by deleting the th submatrix, i.e.,

. As described in [33], nulls
every vector lying in and preserves those contained
in . Thus

where the new noise samples are defined by
, having autocorrelation matrices given by

. In practice, an estimate of is used so we

expect a residual interuser interference. In the performance
studies in Section V, it will be seen that the algorithm
effectively combats this residual crosstalk interference.

Sources’ Equalization:We now address the problem of
estimating under the Gaussian noise assumption. For
estimating , we exploit the fact that multiple delayed
replicas of this signal are available in the vector

. Thus, instead of
picking up just one element of as in [2], we
start by synchronizing the time-delayed signals in . This
produces data samples given by

(18)

where ( times), and theth element of
is . Thus, the entry of

equals the entry of . Estimation
of given (18) is a well-known studied problem in the
area of statistical signal processing [28]. It is equivalent to the
estimation of a dc-level in colored Gaussian noise, and the
minimum variance unbiased (MVU) estimator is given by

(19)

If the noise process is modeled as a spatio-temporal white
Gaussian process, then we have
and (19) simplifies to
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TABLE II
SIMO XBM BLIND CHANNEL IDENTIFICATION ALGORITHM AS DESCRIBED IN THE PAPER

where is a diagonal matrix having the same diagonal
entries as .

V. COMPUTER SIMULATIONS

We present two sets of simulations. In the first set, we
consider a SIMO channel and compare our XBM algorithm
with TXK [2]. This comparison is based on the mean-square
error of the channel matrix estimates and on the probability of
error at the receiver output. The second set of experiments
is performed in the context of the GSM system. We run
a Monte Carlo simulation over several randomly generated
MIMO channel matrices. We evaluate the resulting mean-
square error of the channel matrix estimates and the ability
of our method to discriminate the sources.

Single-User Context:In a single-source environment there
is no need for coloring the information sequence before trans-
mission since there are no multiple users to be discriminated.
Thus, the user transmits directly a sequence of i.i.d. unit-
power symbols randomly chosen in its modulation alphabet.
Adaptation of the XBM algorithm to the SIMO situation is
straightforward and consists basically in eliminating the Schur
decomposition step; see Table II.

We start by comparing the normalized error (NE)

achieved by the TXK and the XBM algorithms. Here,
denotes the Frobenius norm, which is an MSE-like norm.
We generated randomly SIMO channels, each
parameterized by an convolution matrix , where

and . The complex entries of each are
independent samples of a complex zero-mean normal random
variable with variance two. For each SIMO channel, a QAM16
input digital source is considered, and the channel output
is corrupted by spatio-temporal white Gaussian noise, i.e.,

. The noise power is adjusted for

Fig. 1. Normalized error of the TXK algorithm of Tong, Xu, and Kailath
(upper curve) and of the XBM algorithm of this paper (lower curve).

each SIMO channel in order to guarantee an SNR dB,
where the SNR is defined by

We used the MDL criteria [30] to estimate both the system’s
order and the noise variance . The identification of
each channel matrix is based on data samples.
Fig. 1 exhibits the results obtained. Observing this figure, we
conclude that XBM (lower curve) is clearly more robust than
the TXK algorithm (upper curve). In fact, the average of
the normalized error taken over the ensemble of the gener-
ated SIMO channels, mean , is smaller
than that achieved by the TXK algorithm, mean

. Moreover, the same conclusion applies with respect
to its variance, since we have and

.
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Fig. 2. Normalized root mean-square error of the TXK algorithm of Tong,
Xu, and Kailath (dashed line) and of the XBM (solid) algorithm of this paper
(solid line).

To obtain a more accurate performance analysis, we fixed
one of the generated scenarios and made the SNR vary
between dB and dB, in steps
of dB. For each SNR, statistically
independent trials were considered. In each trial, the channel
identification is based on data samples. Fig. 2 shows
the normalized root mean-square error (NRMSE)

for the two algorithms, where is the channel estimate at
the th run. The dashed and solid lines refer to the TXK and
XBM algorithms, respectively. As we see, smaller NRMSE’s
are produced by XBM for all the SNR’s considered. To com-
pare the combined identification and equalization capability
of the complete algorithm described in Section IV-B (also
referred for short as XBM), with the one in [2] (also referred
to as TXK), we determined the probability of error associated
with the reconstructed input signal sequence. In Fig. 3 the
dashed line refers to TXK and the solid line to XBM. For
each value of the SNR, the probability of error was determined
in the following manner. In each of the trials,
the channel’s estimate (based on the first samples)
was used to equalize the next new data samples
and the variance at the equalizer’s output was computed. The
probability of error was then evaluated on the basis of the
mean value of these variances. That is, for each
SNR, we have , where

is the mean variance over all trials, and

is the probability of error associated to the ML estimation of
a QAM16 symbol in zero-mean Gaussian noise with variance

Fig. 3. Probability of error of the TXK algorithm of Tong, Xu, and Kailath
(dashed line) and of the XBM algorithm of this paper (solid line).

Fig. 4. The output of the TXK equalizer of Tong, Xu, and Kailath.

[34]. As we see in Fig. 3, significant gains are obtained
through the entire range of SNR’s considered. Figs. 4 and 5
confirm these probability of error computations. They show the
spread of samples after equalization by the TXK
and the XBM algorithms, respectively. The figures are typical
of any one of the 500 simulated trials at SNR dB. As
we see, the channel is well equalized by the XBM algorithm,
whereas several decision errors are likely to occur at the TXK
equalizer’s output. The better performance of the XBM over
the TXK algorithm is perhaps best explained by the fact that,
in the former, the columns of the residual unitary matrix
are identified independently of each other, whereas, in the
latter, the estimation relies on a sequential unfolding of this
matrix starting from the last column. This process introduces
propagation errors which accumulate from column to column.

Multiple-User Context:To assess the performance of the
XBM algorithm in a multiuser environment, we considered

binary sources. For physical communication param-
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Fig. 5. The output of the XBM equalizer of this paper.

eters, we used typical values of the mobile GSM system.
Namely, the standardized impulse response corresponding to
the more hostile propagation environment [27] was chosen
to model the channel between each source and one antenna
element. This impulse response is specified by six delta
impulses modeling six equal-power independent Rayleigh-
fading paths. The delays associated to these paths range from

s to s in equal steps of s.
In addition to the amplitude random modulation, each path
is also randomly modulated in phase. The sources use the
symbol period s and transmit raised-cosine pulses

with 100% rolloff. It is readily seen that, with
these parameters, each system’s impulse response spans over

symbol’s intervals. At the base station, we assumed
an antenna array with sensors and an oversampling
factor of . This results in MIMO channel matrices
of dimension . Notice also
that each matrix contains samples of GSM
impulse responses. The correlative filters were designed as in
Section III, with . The system’s output is corrupted by
spatio-temporal white Gaussian noise.

We considered distinct scenarios . For each one,
the noise variance was chosen to fix the SNR dB. The
number of data samples used to estimate eachranges from

to in steps of .
For each , we ran a Monte Carlo simulation consisting of

independent trials. We computed the corresponding
NRMSE. Fig. 6 displays the average results over the
scenarios considered, which are monotonically decreasing.

We also evaluate the ability of XBM to discriminate among
the users. Recall that theth user’s signal is separated from
the observations by applying an oblique projector to the data
samples

(20)

The second term on the right-hand side of (20) measures the

Fig. 6. MIMO: normalized root mean-square error of the XBM algorithm
of this paper.

Fig. 7. MIMO: signal-to-interference ratios of User 1 (solid line), User 2
(dashed line), and User 3 (dashdot line).

residual user’s interference crosstalk. Its relative power can be
measured by the signal-to-interference ratio (SIR)

where we have defined . Fig. 7 shows the average
results obtained in terms of over the scenarios
simulated. The solid, dashed, and dotted lines refer to the
first, second, and third user, respectively. As seen, XBM
satisfactorily rejects interuser interference even for small data
blocks, e.g., observations.

The last set of simulations compares the performance of the
XBM algorithm with and without the variation discussed for
Step 2. Recall that the objective of the alternative algorithm is
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Fig. 8. MIMO: XBM original (solid line) and alternative (dashed line)
algorithms as presented in this paper.

to lower the computational burden in high SNR environments.
We have chosen one of the ten generatedGSM channel
matrices. The lengths of the data packets range from

to in steps of . For each ,
we ran independent trials at SNR dB. We
computed the NRMSE for both algorithms. Fig. 8 displays
the results obtained. The dashed and solid lines refer to the
XBM algorithm with and without the variation, respectively.
As expected, the alternative algorithm presents a higher error
in the estimate. Also, we have discarded the runs at which
the alternative method fails to correctly estimate the right
delay spreads of the users. This situation occurred for

and in 3.0, 1.5, 1.5, 1.0, and
1.0% of the runs, respectively (as compared to 11.0, 10.0, 7.5,
7.0, and 5.0% if the estimates in (17) were not subject to the
improvement discussed in Section IV-A).

VI. CONCLUSIONS

We derived XBM, a closed-form solution for the blind
identification of MIMO-FIR systems driven by digital sources.
It uses spectral diversity obtained by coloring the output
of each source prior to transmission. The receiver exploits
the spectral diversity to achieve the blind identification of
the unknown MIMO channel matrix. The algorithm is in
closed form, avoiding the convergence problems of iterative
approaches, and uses only second-order statistics, making it
suitable for wireless communications. The penalty is the added
computational complexity, which is mitigated by its paralleliz-
able structure. The algorithm separates the MIMO sources and
equalizes the corresponding channels. The approach is based
on synchronization of the replicas delayed by the multipath
and on their coherent recombination to attain higher SNR.

Computer simulations illustrated the good performance of
XBM. In the context of a single-user, when compared to
TXK, XBM produces smaller biases and variances in the
estimated channels, which results in a significant decrease
of the probability of error at the equalizer’s output. For
multiusers, XBM is asymptotically exact both in terms of the

mean-square error of the channels estimates and in its ability
in suppressing interuser interference crosstalk.

APPENDIX

PROOF OF THEOREM 1

Let be the output au-
tocorrelation matrices of a MIMO system parameterized by
the channel matrix . It is understood
that (4) models the system and conditions A1)–A3) hold. Let

be a channel matrix satisfying for
and , i.e., that (10)–(12) hold.

Since , the equality in (10) is just

and thus , where is an unitary
matrix. By using this representation in (11) and (12), and sum-
ming both sides of these two equalities, we have ,
where
is a block diagonal matrix, and .
Due to its structure, is also a nonderogatory matrix [32]
(the linear dimension of every eigenspace is one). Since
commutes with , there exists a polynomial such that

[32]. Thus, is also a
block diagonal matrix, where theth block on the diagonal
is given by . Notice that each is by itself
an unitary matrix. It is straightforward to verify that
every power of is a lower-triangular Toeplitz matrix, i.e.,
it can be written as

...
...

.. .
. . .

Since this structure is preserved under scalar multiplications
and matrix additions, we conclude that each has that same
structure. Using the fact that is also a unitary matrix, it
follows that . Therefore, , and
Theorem 1 is proved.
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José M. F. Moura (S’71–M’75–SM’90–F’94) re-
ceived the engenheiro electrotécnico degree in 1969
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