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Abstract—We address the problem of blind identification of source. They assume that the array at the base station cell
multiuser multiple-input multiple-output (MIMO) finite-impulse  sjte receives anversampledveighted linear superposition of
response (FIR) digital systems. This problem arises in spatial o omitted signal. Their algorithm exploits the cyclostationary

division multiple access (SDMA) architectures for wireless com- . . -
munications. We present aclosed-form i.e., noniterative, consis- Property associated with virtual channels created by temporal

tent estimator for the MIMO channel based only on second- and/or spatial oversampling of digital communications signals.
order statistics. To obtain this closed form we introduce spec- These authors derived @losed-form(noniterative) asymp-

tral/correlation asymmetry between the sources by filtering each totically exact estimator, i.e., a consistent estimator, for the

source output with adequate correlative filters. Our algorithm . . -
uses the closed form MIMO channel estimate to cancel the SIMO channel which relies only osecond-orderstatistics

intersymbol interference (ISI) due to multipath propagation and ©f the received signals. When compared to other well-known
to discriminate between the sources at the wireless base stationblind equalization methods, their approach exhibits two main
receiver. Simulation results show that, for single-user channels, advantages, though at the expense of added computational
this technique yields better channel estimates in terms of mean- complexity.

square error (MSE) and better probability of error than a well- o ) )
known alternative method. Finally, we illustrate its performance * Because it is a closed-form algorithm, it does not suffer

for MIMO channels in the context of the global system for mobile from the irregular convergence properties [5] of most
communications (GSM) system. adaptive iterative methods, such as the constant modulus
Index Terms—Blind channel identification, global system for (CM) algorithms [3], [4]. This drawback is due to the
mobile communications (GSM), intersymbol interference, existence of many local minima attractors in the cost
MIMO, ~multipath  propagation, SIMO, wireless  digital functions. Also, the overall performance of gradient-

communications. based optimization techniques strongly depends on the

learning rate parameter, usually chosen by a trial-and-
[. INTRODUCTION error procedure.

E study blind channel identification in the context * Since only second-order statistics are involved, the ap-
of digital multiple-input/multiple-output (MIMO) sys- proach in [2] s feasible with short data packets. This con-
tems. This problem arises naturally in spatial division multiple ~ trasts with high-order cumulants-based methods [6]-{8]
access (SDMA) architectures for wireless communications. In  Which require a significant amount of data in order to
SDMA, multiple users transmit simultaneously in time using  attain equivalent results in terms of mean-square error
the same frequency narrowband channel, thus increasing the (MSE). In wireless radio communications, this is an im-
cellular capacity without the need for additional RF spectrum Portant issue since only a few data samples are available
[1]. In code division multiple access (CDMA) systems, the for processing during the time interval along which the
users also transmit simultaneously in time but each user's channel can be assumed time invariant.
signal is spread over a larger frequency region. After [2], many other closed-form approaches have been
Tonget al.[2] presented a major breakthrough for the blinggroposed for the blind identification of digital SIMO-finite
identification of digital single-input/multiple-output (SIMO)impulse response (FIR) systems. ¥ual. [9] model the input
systems, i.e., multichannel filters driven by a single digitgrocess as a deterministic signal and exploit special algebraic
properties of oversampled systems. Since no statistical model
Manuscript received August 26, 1997; revised April 13, 1998. This worls assumed, the algorithm works with a very small number
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to channel order overestimation and is also second-ordee transmitter, a correlative filter enables the overall system

statistics-based. impulse response to exhibit smoother rolloffs than Nyquist
In addition to the identification of the channel, the task giulse shaping. This results in communication systems less

the SDMA receiver includes: sensitive to symbol clock timing errors. Since fractionally
1) suppressing the intersymbol interference (1SI) inducépaced equalization (FSE), i.e., equalization based on signals
by the multipath propagation; sampled faster than the data rate, exhibits robustness to symbol

2) discriminating the signals transmitted by the sourc&OCK jitter by itself, we use partial-response signaling with

present in the cell. a different objective, namely, to assigning distinct spectral

These two goals may be accomplished once the time/SIO‘%%natures to each user. As we show in the paper, the spectral
asymmetry thus introduced leads to a closed-form second-

hannel is identifi Ithough som roach im I2 . N .
channel is ident _ed, a_t 'ough some approaches estimate grsger-based solution to the blind identification problem.
rectly the transmitted digital sequences, avoiding the channe . o . .

Our algorithm exhibits several relevant properties. As in

estimation. The iterative least squares with projection (ILSPQ

. . : : ; J the identification is exact if the second-order statistical
and iterative least squares with enumeration (ILSE) algorith Sscription of the outout process is known exactly. In practice
introduced by Talwaret al. [14], as well as the algorithms P putp y.np ’

. : ;- . these statistics are consistently estimated from the available set
in [15]-[19], exploit the finite alphabet property of the bi, f observations. It is a full blind identification algorithm that

nary shift keymg (BSK), pha_se shift key_mg (PSK), a}missumes no previous knowledge about the pulse-shaping filters
quadrature amplitude modulation (QAM) digital modulanorp]or any other channel component. Hence, it is robust with
formats. Being iterative algorithms, global convergence is nPéspect to any eventual mismatches. The p;enalty incurred by
guaranteea priori and several runnings starting from di1‘feren[)ur approach is not in terms of additional power or bandwidth
initializations may be required. For some of these algorith onsumption nor synchronization between the sources, but

this situation can occur even at high values of the signal-tjreased computational effort and an extra decoding delay due
noise ratio (SNR). The approach in [20] uses the geometriggly,o controlled IS introduced at the transmitter. This ISI is

properties induced by the binary signal constellation but tenlg,qyeq at the receiver using maximum-likelihood sequence
to .result in an |d§ntlflcat|on scheme more sensitive t0 th&timation (MLSE) or Viterbi decoding [26]. In this paper, we
noise level. Papadiast al. [21] extended the CM concept 10y, not address the impact of our results in CDMA systems.
the multiuser situation. Being a gradient-_based algorithm, it the paper is organized as follows. Section Il introduces
shares the convergence and implementation problems alregqy signal model and states the blind identification problem.
discussed for the single-source case. Section Il establishes the framework of correlative coding for

Liu et al. [9] and Abed-Meraimet al. [22] considered the the separation of the sources. It presents a theorem proved
extension of closed-form SIMO system identification stratgn Appendix A which establishes that, under this framework,
gies to the MIMO situation. Their algorithms solve only thghe MIMO channel is uniquely determined (up to a phase
problem up to a unknow#? x P residual instantaneous mixingoffset for each user) from theecond-orderstatistics of its
matrix, whereP is the number of users. The general consensggtputs. Section IV describes the blind channel identification
is that SIMO methods can perform blind equalization in gigorithm. We discuss a computationally simpler variation of
MIMO environment eliminating the ISI [point 1) above], butthis algorithm which is adequate in high SNR environments.
are unable to solve the second issue, i.e., the sources’ mixtwe present the technique that separates the sources and
problem. With no additional information, an iterative sourcesecovers the transmitted sequences. Section V considers the
separation algorithm such as the ILSP or algorithms based g#tformance of our method. For single-users, the algorithm
high-order statistics [23] must be used. Ding [24] has alstperforms that in [2]. For multiusers, since there is no
proposed a closed-form procedure which relies on previogkernative closed-form, second-order-based blind scheme, we
knowledge of the pulse-shaping filters. Ding’s method is iflustrate with simulation studies its performance in the context
semiblind procedure since prior knowledge of the shaping the GSM system. Section VI concludes the paper.
filter used by each source is equivalent to knowing part of
the MIMO channel transfer function.

In this paper, we present alosed-form second-order Il. PROBLEM FORMULATION

statistics-based blind channel identification algorithm for Notation: Throughout the paper, we adopt the following
MIMO channels that yields asymptotically exact estimates @btation. Z,R, and C denote, respectively, the set of in-
the FIR communication MIMO channels. The method extemﬂ@ger, real, and complex numbers. Matrices (capital letter)
that of Tonget al,, which applies only to SIMO channels. Ourand vectors are in boldface type. The set of all x »
algorithm cancels the ISI and separates the sources, solvingtrices with complex entries i€”*™, and C™ denotes
problems 1) and 2) above. the set ofn-dimensional complex column vectors. For an
We obtain a closed-form blind estimator for the MIMQarbitrary matrix 4, its (¢, ) entry is denoted byA(i, j), its
channel, and separate the sources, by introdusipectral ith row by A(4,-), and itsjh column by A(-,j). R(A) and
asymmetrybetween the sources through correlative coding/(A) denote, respectively, the range space and the null space
Correlative coding or partial-response signaling schemes gkernel) of A. The notations(-)T, (-)*, ()", ()#, and tr(-)
used in communication systems to attain the Nyquist capac#tand for transpose, complex conjugate, Hermitian, the Moore-
upper bound for ideal bandlimited channels [25]. Basically, &enrose pseudoinverse, and the trace operator, respectively.



1508 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 8, OCTOBER 1998

The symbolsl,,, B,,, and K,, stand for then x n identity, as the number of antennas and/or the oversampling
backward identity (ones in the antidiagonal), and forward-shift factor (see [2], [19], and [22] for discussion of these
(ones in the first lower diagonal) matrices, respectively. The identifiability/implementation issues).

symbol e;,,, represents theth column of then x n identity A2) The sources are uncorrelated and the noise process
matrix I,,. Diagonal matrices with entriesy,---, Ay are w(k) is zero-mean, wide sense stationary, and statisti-
represented byliag[Ay, - - -, Ax]. FOr a zero-mean wide sense cally independent o$(%), with known autocorrelation
stationary scalar process(k), the autocorrelation function matrices Ry ().

is given by r,() = E{z(k)z(k — [)*}, and for a vector
processe(k), the autocorrelation matrices of ldgre defined m
asRy (1) = E{x(k)x(k—1)}. The Ly-norm of a finite energy
continuous-time signaj(¢) supported in a regiod C R is Usually, the data sequences generated by the sources are
12 assumed to be zero-mean white random signals. For instance,
. 2 gt (1) in most digital communications systems, those sequences con-
loll> = T la(2)] ) sist of independent and identically distributed (i.i.d.) symbols
)

. SPECTRAL DIVERSITY: CORRELATIVE FILTERS

extracted from a given constellation set, and thus their respec-
tive power spectral densities exhibit a similar flat pattern. That
is, even if the users exhibit diversity in the time and spatial
)1/2 domains (in the sense of transmitting different time sequences

For a discrete-time signal(!) supported in/ C Z, we use
the I>-norm

(2) at distinct cell sites), they tend to remain indistinguishable
from thatstatisticaldomain point of view. The key idea in our
approach is to break this symmetry condition by judiciously
coloring the information sequences prior to transmission, thus
assigning distinct spectral patterns to the random processes
transmitted by the sources. This will permit the finding of a
closed-form solution for the identification problem considered

llgllz = <Z lg(D)?

I

Additional notation is introduced as needed.

MIMO System: Problem Statementonsider a generic
P-input/N-output causal discrete-time noisy linear time
invariant (LTI) digital MIMO system described by the
convolution equation

here.
P oLyl Spectral Diversity: To introduce this additional degree of
(k) =YY hp()sp(k — 1) +w(k) (3) diversity, we pass the white sequence generated byptime
p=1 1=0 user, sayu,(k) € A, through a correlative filter with impulse

where z(k) € CV is a column vector of system outputs/€SPONs€

h,(D): 1 =0,1,---,L, — 1} is the FIR associated to the _ B

;{atﬁq(u)ser (h,() € CNZS, Lp}is the length of the impulse (k) = ¢p(0)3() + cp(Le)o(k — L) ®)

response corresponding to thid user,sp(k2 € Cisthe signal gnd transmit the colored sequensg(k) = (¢, ® ap)(k).

transmitted by theth user, andw(k) € C™ denotes additive pere, s(k) is the discrete-time impulse signal, the symbol

noise. Equation (3) can be compactly rewritten as ® denotes the linear convolution operator, and the filter
r coefficients{c,(0), ¢,(L.)} C C are variables to be designed.

z(k) = ZHpsp(k) +w(k) = Hs(k) +w(k). (4) For mathematical convenience, the memory of the filters, i.e.,

p=1 L. in (5), is the same for all users, and is greater than or

Here, theN x L, matrix H,, = [h,(0)---hy(L, — 1)], and ﬁg?aifozthilgf{?i%; f.ér‘?lLF,i?_ Cpr?en ﬁg]ytzzr'\élg\égsgféem’

1]:{_5 ng:_ ’ H_: ]LIS Tzeﬂi\; Evirgnagrr:jeelrCgfn;/r?elu;';;er?natq_);eunknowna priori by the receiver. In many application scenar-
=L +--- P . " ) .

. . . i0s, it is possible to adequately overestimate these parameters
vector s(k) is obtained by stacking thé’ vectorss,(k) = P g y P

(5, (k) - -+, (k — L, + 1)]7. The input signals,, (k) are taken on the basis of previous field experiments. For example, in

from a finite modulation-dependent alphabd;, C C. In the GSM mobile system, a typical multipath channel profile

o is, available for several environments (urban, hilly terrain,
SDMA communications, (4) models the complex basebarég ( y

transfer function between the information symbgJék) emit- isc.e)agszir] _fr(f)m V\(/jhlcyv_metrrpammun? te_xpected degre_e of ,:ﬁl
e by th sutces and the oversampled artay outputs (REZS METE WA 100 conelave preprocessing,
[2], [10], [19], and [24] for details); the matri is fully . P
parameterized by the samples of the equivaleminposite . — p* 2 _
transmitter/propagation/receiver FIR channels employed by oy (D) = bt Le) o3 6(0) + 6L~ Le) ©)
the users; andv[k] is sensor noise. where 62 = |c,(0)]2 + |ep(Le)? and 1, = ¢,(0)*cp(Le)
We study the blind identification off under the following denote, respectively, the power and the new correlation peak
assumptions: appearing at indexes-L.. Notice that we have assumed
Al) The numberP of users is known and th&¥ x L channel that the input sequences of the correlative filters are white
matrix H is full-rank with NV > L. In practice, this as- with unit power. This entails no loss of generality sinHe
sumption is satisfied by properly dimensioning certaiabsorbs any multiplicative factor. Also, for further reference,
physical parameters of the communication system sutite autocorrelation matrices of the proceég) in (4) are, for



XAVIER et al. BLIND CHANNEL IDENTIFICATION AND SOURCE SEPARATION IN SDMA SYSTEMS 1509

[ > L., given by Ry(L.+1). In other words, ifH = [H, H, --- Hp] is any
channel matrix inducing these same statistics, then
RS(O) :diag[o—%Ileo—gle )y O—%ILP]

7 — — Jiae[ei01 Jo2 Jjbp
Rs(D) :diag[anlL_lLCﬂ?QKlL_chy"'77PKIL_PLC] 7) H=H®O,0 =diag[e’ I, Iy, &P 1]
or, equivalently,H, = H,c/%.
Correlative Filters: We now consider the design of the Proof: See the Appendix.
Corl‘elative fi|terS. The goal iS to induce diStinCt SpeCtl’a| The key point to emphasize iS that the theorem estab”shes
characteristics in the filtered processes without increasing i@ absence of a residual mixing matrix coupling the sources
transmitted power. Define the power spectral density (ps@yether. Here, the residual ambiguity matéXxis diagonal
associated to theth user as Therefore, not only are the sources resolved, but also, for
o (f) = Firs (1)} each user, thg _corresponding FIR coeffi'ci.entng(l) are
o +'OOSP : obtame(lj). As |t||s (;/vebll I_<notwn,_ the rema(;nlng phatlsfT IgctoLst
cannot be resolve ust using second-order statistics, bu
= > e, (e, fel=(-1/2.1/2) they are easily compgnjsated at S3he receiver.
f=moe We could attempt applying Theorem 1 as the basis of a
where F{-} denotes the Fourier operator. We design tH@0oments matching identification strategy [28] by computing
correlative filters by the following optimization problem: fing@ full-rank ¥ x L matrix H such that the matrix equalities

H __ H
[6(0),é1(Lo). -+ ép(0), ep(Lo)]* HE5(0)H" = HR5(O)H" (10)
= argmax min [|I';, — ', IE; HRg(L.)H :HRS(Lc)H ) (11)
(e (Lo)ep(0),cp (LT €C2P PR HRg(L.+1)H" =HRg(L. +1)H" (12)
(8)

are satisfied. The quantities on the left-hand side of (10)—(12)
subject to the power constraiit{|s,(k)|?} = 1. The filters can be estimated at the receiver by subtracting the noise
in (8) maximize the distance between the users closest psdstrelation matrixRe; (1) in
Since the Fourier operatof{-} is unitary, ||, —I'; |2 =
|75, — 75,]l2; then, using (6) in (8), we can restate the Rg(l) = HRs(DH" + Ryy(1),  1=0,L., Loy

optimization problem as: subject =1, find . ) .
P P : ttﬁ which can be estimated from the array output data using the

[61(0),61(Lc),~~~,ép(0),ép(Lc)]T sample mean operator. Two main reasons prevent this from
N being straightforward.
B [e1 (o),q(Lp),.?ff’:?(f;ip(@)vecw * The users’ delay spreads, are not knowra priori and
cmin |02 — 022 + |, — 0|2 ©) thus the receiver |s_unable_to construct the necessary
p#q T 1 v sources’ autocorrelation matricé (1) [(7)]. One excep-

tion would be the case of digital communication scenarios
where the bandwidth of the information-bearing signals
is small when compared with the coherence bandwidth

By symmetry, it is readily seen that a possible solution to
this optimization is given by

) (0) =1//2 of th_e propagati(_)n channgl_s [25]. That is, the maximum

P 1 multipath delay is a negligible fraction of the sources’

ep(Le) = = @D/ signaling period, and thus the ISI effect is virtually
V2 null. In these situations/ always coincides with the

number of users’ since L, = 1 for all p. Examples of
such coherent multipath environments include microcell
wireless systems or the Advanced Mobile Phone Systems
(AMPS) [29].

» Even if the delay spreadg, are known, it remains to
extract a least-squares solution of the optimization prob-
lem in (10). The equalities (10)—(12) could be translated
into an appropriate cost function, in turn minimized using
an iterative gradient-based technique. This approach is

We now formulate an identifiability theorem based on the  tside of the main goal of this paper, which is to achieve
framework established by A1)-A3). It asserts that, in a certain e plind identification of the MIMO channel based on

sense, MIMO systems are uniquely defined by this set of ngpjterative methods, and so it is not pursued further.
conditions.

Theorem 1: Consider the signal model in (4) and suppose
that A1)-A3) are satisfied. Then, each users’ convolution
matrix H, is uniquely determined up to a phase factor We develop the closed-form algorithm that estimates the
by the output autocorrelation matricd®y;(0), R(L.), and channel matrixHH. We refer to it as the XBM algorithm

This solution distributes the correlation coefficients =
cp(0) e, (L.) in (6) uniformly around the circle of radius
r = 1/2 in the complex plane.

No Mixing: We state our last assumption.

A3) The pth user correlates its zero-mean unit-power sym-
bols a,(k) € A, so that (6) and (7) hold. The finite
alphabets and the correlative filters are known to the
receiver.

IV. BLIND CHANNEL IDENTIFICATION ALGORITHM



1510 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 8, OCTOBER 1998

as opposed to the TXK algorithm [2]. The algorithm dewhereV is an N x L matrix with orthonormal columns and
termines each of the users’ channel matridés up to a A is a diagonal matrix with nonzero entries. Since both terms
phase factor, so meeting the identifiability property of Theorem (13) equalHH*, an estimatéd, = HQ' can be obtained

1. However, the channel identification may require a largéiom that factorization by settindgl, = V A. The unknown

set of output autocorrelation matrices, not to exceed the set _

{Re(0), Ri(L.), Re(L + 1), -+, Re(L. + L)}. The exact Q=[@Q @& - Q

number of matrices used depends on the actual system’s de#ayin L. x L unitary mixing matrix. For further reference, we
spreads. The nice structure of the sources’ autocorrelati@fine the matrices

functions induced by the correlative filters with equal memory e S -

L. plays a major role in the derivation of the algorithm. When M =H{ (Rg(l) — Bw(1))HT ™ = QRs(1)Q

compared with TXK, XBM trades computational complexit
for a smaller mean-square error (MSE) of the estimates. XB
is specially suited for implementation in parallel machines

) . . : . . This step determines the delay spreads of the users, i.e., the
which alleviates this concern. We will also describe a S|mpI%r P ysp

- . . : ffici L,, which L. This i lish
variation of XBM which decreases its computational cost argiglolﬁliﬁgtfhg ;/»\[Irulgtuidg; p( Lto) in (7|§ I;eicéfmgtls ey
S c .

is efficient at high SNR scenarios. Finally, we present an

equalization technique that uses the estimate of the channel Rg(L.) =diaglmIr,,melr,, - ,nplL.]
matrix H. This technique separates the sources’ signals fr
the observations and recovers the transmitted sequences.

ere the pseudo-inverse &, is given by H? = A1V,
Step 2: Determination ofL1, Lo, -+, Lp.

olqgence, in the matrbdM ;. = QRs(L.)Q", the delay spread
L, appears as the algebraic multiplicity of the eigenvalue
7. TO access the eigenvalues &f;,_, we perform a Schur
A. The XBM Algorithm decomposition

The algorithm consists of four main steps. M, = urvt (14)

1) Determination of the ordeL of the system and esti-
mation of H in the form Hy, = HQ", where@ is an
L x L unitary mixing matrix.

2) Determination of each user's delay spread, that
the parameterd.;, Lo, ---, Lp. From this, the matrix
Q will be partitioned into P submatrices,@Q =
@ Q, -+ Qp], where thepth submatrix@,, has
dimensionsL x L,.

3) Determination of each of thé” submatrices,,. This
step can be optionally broken int8 parallel substeps,
each one leading to the computationf@]ﬁ =Q,ci%.

wherelU = [Uy Us --- Up] is unitary andT is upper-
triangular (bothL x L). Although M _ is not Hermitian, it is

@ normal matrix (it commutes with its conjugate transpose)
ahd thus it turns out thaf” in the Schur decomposition
(14) is diagonal [31], [32] (in practical applications, the
strictly upper diagonal entries are negligible). The spectrum
of M, is revealed in the diagonal dI’, and the delay
spreadsL., L., -, Lp are obtained by direct inspection by
counting the multiplicity of each eigenvalue. In practice, the
diagonal entries of” will cluster around the theoretical values

o o o o A{m,m,---,mp} and a decision rule must be employed. We
4) Dﬁtermﬂniﬂof‘ of the MIMO channel matrlf = HoQ, e that for many sources in high noise scenarios, this
where@ = [, @ -~ Qp]. method may fail due to the possible overlap of the eigenvalues’

These four steps are detailed in the sequel. We derive {)gsters. This topic deserves further investigation, a possible
algorithm based on the true second-order statistics of tQSproach being the redesign of the correlative filters.

MIMO channel’s output. In practice, the corresponding sample siep 3: Determination 0fQ. Q5.+, Qp.
correlation matrices are employed. Additional information may be retrieved from the Schur
Step 1: Determination ofZ and Hy. factorization (14) due to the diagonal nature Bf Without

.The starting point is the e§timation of the system’s oler |gg of generality, let the diagonal @fbe ordered afs(L.),
Given (4) and the assumptions A1)-A3), we haig(0) = see (7). Then we gep,Q. = U,U/’. That is, the projector
HH™ + Ry(0). The orderL is determined from the spectrumagsociated to theth user, i.e., the orthogonal projector onto
profile of R, (0) after subtracting the noise autocorrelatioaz(Qp), given by IT, = QPQH’ is also available from
matrix Ray(0). As rank(Rg(0) — Ruw(0)) = rank(HH") = the Schur decomposition in (14). We compute edph =
L, Lis the number of nonzero eigenvaluestty(0)—Fw(0). [q (0) --. g,(L, — 1)] in the residual unitary mixing matrix

In practice, a threshold test is applied. When the noise procgfs,:ocus on thesth user, and consider the matrices
is modeled as spatio-temporal white Gaussian noise, i.e.,

Ruw(k,l) = E{wkw)T} = o,Iy6(k — 1), statistical Pi=I,Mp i+ (I — 1)
procedures based in information theory concepts, such as :anpRs(l)Q;’Jr(IL —1II,).
the Aikaike information criterion (AIC) or the minimum
description length (MDL) test [30], are preferable.
Regardless of the approach chosen, a truncated eigenvalu? N(PLy) = span{q,(0),q,(1), -, q,())}
decomposition (EVD) leads to N(Pr, 1) =spanig,(1),q,(l+ 1), -+, q, (L, — 1)}

for I = 0,1,---,L, — 1. Therefore, each columpg,(l) of
Rz(0) — Ryy(0) = vA*vH (13) Q, can be determined by intersecting the kernel®gf, and

It is straightforward to verify that
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Py, ;. This can be accomplished [31] by calculating the right Variation: We discuss briefly a possible alternative to avoid
singular vector corresponding to the minimum singular valube Schur decomposition, step 2 in the algorithm of Table I,

of the 2L x L matrix necessary to estimate, and the projectodl, = QPQ]{{ Dt
pH consists in exploiting the concept of interpolating Lagrange
T, = [PLIHJ polynomials. Namely, if
or equivalently, by extracting the eigenvector associated with P,(t) = H RS (16)
the minimum eigenvalue of thd x L semipositive defi- atp 0

nite matrix Tl T;. In either case, an esUmatg Yed“ is
generated, i.e., a mati® = Q2 is determined, where iS the Lagrange polynomial corresponding to ghieuser, then,

2 = diag[e?*0, 71 . .. e“Tr-1] contains (possibly distinct) given the unitary structure af in
phase factors. B I
We now equalize the remaining phasesfZni.e., we con- My, =QRs(Lo)Q
dense the phase ambiguity in just one paramé?es, ¢/“I, . =Q diag [mIp,, I, -, nplL, Q"

This will show that the algorithm verifies the identifiability

result expressed in Theorem 1 when using the exact processconclude that the matrix polynomig),(M ) = QPQ]{{ =

correlation matrices. We exploit the shift property structure df ,. This method is more sensitive to errors in the (sample)
estimate of My_ than the Schur decomposition, since it

N=I,Mp .+ depends on the degree@factmatching between the (sample)
0 eigenvalues oM 1 and the expecteq,’s. This alternative is
—1,Q o or best suited for higher SNR scenarios with large data sets. To
= ' ' P obtain each user delay spread, we use the consistent estimators
1 0 .
by defining the matrix Ly = LalL,)] an
_ Hyw — o+ kT where |[z] denotes the integer nearest to € R, in
A=(NW/np)"W = O K, 2 the Euclidean metric. Set = [L; L, --- Lp]' and
The first upper diagonal oA contains information about twol = [L1 L» --- Lp]”. Also, let 27 denote the set of:-
consecutive phase ambiguity factors dimensional positive integer column vectors and afgre 77,
; let D(xo) = {x € 7%: ¢ = o L €, % = 1,2,---,n}; e,
AL 41) = ey D(x,) contains the2n vectors inZ7 which differ from

by 41 in one of itsn entries. For finite (large) data sets,
Simulations studies showed that the most likely error event in
the estimates (17) correspondslte D(1). We now describe

Qp =W diag [5o/|Bol. B1/1B1l, -+, Br,—1/1Br,—1]] (15) @ method that overcomes such errors. It is based on the

following straightforward fact, for yvhich we omit the proof.

where 5; = H "7 A(j+ 1,7 +2). It is straightforward to  Fact: Letl € D(I). Letl =[L; L, --- Lp]* be a global
verify that th|s results in an estima®@, = Q,¢/%, where Mminimizer of the functiony: 7% — R
0p = wr,—1 (mod 27). _ -

Step 4: Determination ofi. g=[rn w2 oo wp]t o x(a)

Defining H, = HoQ,, the matrixH = [Hy H> --- Hp] r >
meets the theoretical identifiability result of Theorem 1. The = <Z 77p37p> —tr(Mr,)
P submatricesﬁ can be computed in parallel at the receiver p=1
since no cross- related data is ever needed.

MIMO Blind Channel Identification:Table | summarizes OVer the finite se§ = D) N {z € 27: 1 +ws+-- - +ap =
the MIMO blind channel identification algorithm. WeL}. Then,i = L.
assume that there ard( data samples available, i.e., From (14), we see thate(M. ) = X_, #,L,; thus,

for{=1,2,---,L,—1. This can be used to correct all phase
drifts from the last factor, by setting

z(1),2(2),--,z(K). The output correlation matriceBy(I) x(!) = 0, wherel = [Ly Ly --- Lp]". What the fact

are replaced by their respective estimates emphasizes is thdtis theonly zero of x in the neighborhood
X S of . We exploit this result in the following manner. We

Re(l) = Z compute the vector of estimatéss in (17). We check if its

elements sum up té (estimated in Step 1). If not, we assume
thatl € D(I) (most likely error event) and minimize over the
For simplicity, we assume that the noise procaes&:) setS by an exhaustive search. The cardinality$fs upper-

is a spatio-temporal white Gaussian proce&y(k,!) = bounded by2P, so this is not computationally expensive. This
oo, In6(k — ). Notice that, for this case, the MDL criteriayields the new vector of estimates. It will be seen in Section
also yields an estimate of},, i.e., previous knowledge of this V that this method allows for the substantial improvement of
system parameter is not required. the initial estimates in (17).

k=l+1



1512 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 8, OCTOBER 1998

TABLE |
MIMO XBM B LIND CHANNEL IDENTIFICATION ALGORITHM AS PRESENTED IN THE PAPER

Step 1: Determination of L and Hy
Perform an EVD, Ry (0) = VA?V# (A sorted in decreasing order)
Estimate both L and o2, by the MDL criteria [30]
Partition V= V; V3] and A:[A1 Az] (Vi: NxL, A;: LxL)
Compute Hp = V;A; and H} = AIIV{’ , where A; = (A} - oZIr) 1/2
Compute the matrices M;=HIR, (I)H¥", for | = L, Lc+1,...,Le+ L
Step 2: Determination of L, Ls,...,Lp

Perform a Schur decomposition, My, = UTU#

Estimate each L, by counting the diagonal entries of T closest to n,

Compute the projectors II, = U,UJ, where Uy:L x L, contain the columns of
U associated to 7y

Step 3: Determination of Q;,Qa,...,Qp

for p=12,...,P
Compute the matrices P;=TI,My_4;+ (I —II,), for {=0,1,...,L, -1
Compute W =[ w(0) w(l) --- w(Lp—1)], where w(l) is the minimum
right singular vector of T = [PH—l Pg,,—l]
Compute N =II,Mj_;; and A = (NW/q,)* W
Compute Qp=1[ G,(0) (1) - Gz(Ly—1)], where §,{I) =w () B/|8]

and f =T1;2 2 AG + 1,5 +2)

end

Step 4: Determination of H
Let Q=[Q Q2 -~ Qp]
Compute H= HOQ .

B. Sources Separation and Equalization expect a residual interuser interference. In the performance
Let H = [H, H» --- Hp] be the MIMO channel studies in Section V, it will be seen that the algorithm

matrix. We estimate each source’s emitted sequepck). effectively combats this residual crosstalk interference.

The extraction of the information symboais,(k) from s,(k) ~ Sources’ Equalization:We now address the problem of
is straightforward and is efficiently carried out by an MLSEEStimatings,(k) under the Gaussian noise assumption. For
approach [25], [26]. Notice that, due to the controlled 1S§Stimatings,(k), we exploit the fact that multiple delayed
introduced at the transmitter, the complexity of the detectidfPlicas of this signal are available b the vecty(k) =
step increases since we need to use a Viterbi algorithm whé$el%) sp(k — 1) -+ sp(k = Ly, + 1)] M Thus, instead of
trellis contains now at least#.A,)" states, whergiA, is PICking up just one element &, (k) = Hy(k) as in [2], we
the cardinality of the modulation alphabet corresponding &art by synchronizing the time-delayed signals (k). This
the userp. We focus on thepth user. produces data samples given by
_ Sources’ Separation:T_he first _step consists_ in isolating its_ 5,(k) = 1s,(k) +n(k) (18)
signal from the observations. This can be achieved by applyin _ T )
an oblique projector to the data [33]. More specifically, let udnere1 = [1 1 .- 17 (L, times), and theth element of
define n(k) is epran(k—i-l— 1). Thus, the(l,m) entry of Ry;(0)
_ " T equals the(l,m) entry of H¥ Ry (I — m)H? . Estimation
=p = Hp(Hp T,H,) H, T, of s,(k) given (18) is a well-known studied problem in the
2 CH L area of statistical signal processing [28]. It is equivalent to the
where ¥}, = Iy — Hy(H, H,)""H,, and H, is ob- ggtimation of a dc-level in colored Gaussian noise, and the

tained from H by deleting thepth submatrix, i.e..H, = minimum variance unbiased (MVU) estimator is given by
[Hy ---Hp_1Hpyq - pr].As described in [33]=}, nulls 17 Ry, (0)-
every vector lying inR(H,) and preserves those contained 5p(k) = s 5 (K. (19)
in R(H,). Thus 1R (0)711
_ If the noise process(k) is modeled as a spatio-temporal white
y(k) = Zpa(k) = Hpsp(k) +n(k) Gaussian process, then we haRg(k,1) = o2, In6(k — 1)

where the new noise samples are defined ) = and (19) simplifies to

E,w(k), having autocorrelation matrices given Bp (1) = 5 (k) = 1 17 R (015 (s
Z,Ryw()EX. In practice, an estimate df,, is used so we 5(k) tr(Rp(0)~1) B (0)7 (%)
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TABLE I
SIMO XBM BLIND CHANNEL IDENTIFICATION ALGORITHM AS DESCRIBED IN THE PAPER

Determination of L and Hy

Perform an EVD, Ry (0) = VA?V" (A sorted in decreasing order)
Estimate both L and o2 by the MDL criteria [30]

Partition V=[ V] V,] and A:[A1 Az] (Vi: NxL, Ay: LxL)
Compute Hg = VA, and Hf = A['VY, where A, = (A? —o21)"?
Compute the matrices M;=HFR, ()HF", for [=0,1,...,L—1 (My =0)
Determination of Q
Compute W= w(0) w(l) --- w(L—1)], where w(l) is the minimum right
singular vector of T;= [M1+1 MZ_,]H
Compute A = (M;W)"W
Compute Q=[q(0) 4(1) - q(L—1)], where q() =w () A/ |4
and i =[I;% 2 A( +1,5+2)
Determination of H

Compute H= HOQ

where R (0) is a diagonal matrix having the same diagonal o. ; ; ! ; . ? . T .

entries asky(0) = of, HY 5, HF 1. S : L
V. COMPUTER SIMULATIONS .

We present two sets of simulations. In the first set, we

consider a SIMO channel and compare our XBM algorithm 925

with TXK [2]. This comparison is based on the mean-square

error of the channel matrix estimates and on the probability &f ®*[ "

error at the receiver output. The second set of experiments

. . 0.15

is performed in the context of the GSM system. We run

a Monte Carlo simulation over several randomly generated ,,|

MIMO channel matrices. We evaluate the resulting mean- : 5 ; 5 : :

square error of the channel matrix estimates and the abilitysos)-....... P S S b U A i

of our method to discriminate the sources. : : : : : :

_ Single-User Cont_ext:ln a_smgle-s_ource environment there o ——2—— —— L — L — L —

is no need for coloring the information sequence before trans- Scenarios

mission since there are no multiple users to be discriminategl. 1. Normalized error of the TXK algorithm of Tong, Xu, and Kailath

Thus, the user transmits directly a sequence of i.i.d. unitpper curve) and of the XBM algorithm of this paper (lower curve).

power symbols randomly chosen in its modulation alphabet.

Adqptﬁ';lon ofdthe dXBM glgogthm tl(l) the I_SIMO 'S|tuar1]t|on 'rsleach SIMO channel in order to guarantee an SNR5 dB,

straightforward an .con5|sts asically in eliminating the Schijf ore the SNR is defined by

decomposition step; see Table Il

We start by comparing the normalized error (NE) SNR — E{||HS(/€)||2}.
|- H]| E{|lw(k)|*}
NE = TE We used the MDL criteria [30] to estimate both the system’s

order L and the noise varianceg,. The identification of
achieved by the TXK and the XBM algorithms. Herl; || each channel matri is based onK = 200 data samples.
denotes the Frobenius norm, which is an MSE-like norrkig. 1 exhibits the results obtained. Observing this figure, we
We generated randomhy = 500 SIMO channels, each conclude that XBM (lower curve) is clearly more robust than
parameterized by amV x I. convolution matrix H, where the TXK algorithm (upper curve). In fact, the average of
N = 20 and L = 15. The complex entries of eacH are the normalized error taken over the ensemble of the gener-
independent samples of a complex zero-mean normal randarad SIMO channels, me@iExpy) = 0.1387, is smaller
variable with variance two. For each SIMO channel, a QAM1han that achieved by the TXK algorithm, méaitirxk) =
input digital source is considered, and the channel outpuR294. Moreover, the same conclusion applies with respect
is corrupted by spatio-temporal white Gaussian noise, i.€o, its variance, since we havear(NExpy) = 0.0004 and
Ry (k1) = o5,In6(k,1). The noise power is adjusted forvar(NErxk) = 0.0010.
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Probability of Error

0 i ;
15 20 25 30 10 15
SNR (dB)

-8 L 1
20 25 30
SNR (dB)

Fig. 2. Normalized root mean-square error of the TXK algorithm of Ton
Xu, and Kailath (dashed line) and of the XBM (solid) algorithm of this pap
(solid line).

qlig. 3. Probability of error of the TXK algorithm of Tong, Xu, and Kailath
e(dashed line) and of the XBM algorithm of this paper (solid line).

To obtain a more accurate performance analysis, we fixed’[
one of the generated scenarios and made the SNR vary|:
betweenSNR,,;, = 15 dB andSNR,,... = 30 dB, in steps
of SNRiep = 2.5 dB. For each SNRM = 500 statistically ~— °[
independent trials were considered. In each trial, the channeb| :
identification is based oK = 200 data samples. Fig. 2 shows :

the normalized root mean-square error (NRMSE) !

E o

1 |1 <

NRMSE = —— .| — > |H™ — H|]? )

=\ M ,,2 ‘
for the two algorithms, wher# (™ is the channel estimate at :
the mth run. The dashed and solid lines refer to the TXK and-3f-
XBM algorithms, respectively. As we see, smaller NRMSE’s .
are produced by XBM for all the SNR’s considered. To com- "~ | :
pare the combined identification and equalization capability-s'-
of the complete algorithm described in Section IV-B (also
referred for short as X_BM)’ with the One in [2] (also refe_rreq’—i . 4. The output of the TXK equalizer of Tong, Xu, and Kailath.
to as TXK), we determined the probability of error assomatedg
with the reconstructed input signal sequence. In Fig. 3 th o o . )
dashed line refers to TXK and the solid line to XBM. Fof  [34]- As we see in Fig. 3, significant gains are obtained

each value of the SNR, the probability of error was determinddf©ugh the entire range of SNR’s considered. Figs. 4 and 5
in the following manner. In each of th&/ = 500 trials, confirm these probability of error computations. They show the

the channel’s estimate (based on the fikst= 200 samples) SPréad ofK = 2000 samples after equalization by the TXK
was used to equalize the nekt = 2000 new data samples and the XBM algorithms, respectively. The figures are typical

and the variance at the equalizer's output was computed. THe2ny one of the 500 simulated trials at SNR15 dB. As

probability of error was then evaluated on the basis of tf&€ S€€, the channel is well equalized by the XBM algorithm,
mean value of thesd/ — 500 variances. That is. for eachWhereas several decision errors are likely to occur at the TXK

SNR. we haveP. = P.(5%), where equalizer’s output. The better performance of the XBM over
' et o the TXK algorithm is perhaps best explained by the fact that,
M . . .
52 = 1 Z o2 in the former, the columns of the residual unitary maix
M m are identified independently of each other, whereas, in the

m=1

latter, the estimation relies on a sequential unfolding of this
5 matrix starting from the last column. This process introduces
P(o?)=1— 1(2 3 er&(l)) propagation errors which accumulate from column to column.

4 a Multiple-User Context: To assess the performance of the

is the probability of error associated to the ML estimation 0fBM algorithm in a multiuser environment, we considered
a QAM16 symbol in zero-mean Gaussian noise with variandg = 3 binary sources. For physical communication param-

is the mean variance over all trials, and
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: : : : : : : 0 L i i L i H
sl I L L 1 I i 200 300 400 500 €00 700 800 900 1000
By 4 _2 0 2 4 6 K (Number of data samples)

Fig. 6. MIMO: normalized root mean-square error of the XBM algorithm
Fig. 5. The output of the XBM equalizer of this paper. of this paper.

eters, we used typical values of the mobile GSM system.? ! ! ! ; f ; !
Namely, the standardized impulse response corresponding to : : : ‘ : :
the more hostile propagation environment [27] was chosen
to model the channel between each source and one antenng
element. This impulse response is specified by six delta
impulses modeling six equal-power independent Rayleigh-
fading paths. The delays associated to these paths range frgm
Tmin = 0 S 10 Tmax = 16 s in equal steps of,e, = 3.2 pS. 515
In addition to the amplitude random modulation, each patfi
is also randomly modulated in phase. The sources use the |
symbol period?” = 3.7 us and transmit raised-cosine pulses
rr/2(t —1'/2) with 100% rolloff. It is readily seen that, with
these parameters, each system’s impulse response spans over
L, = 5 symbol's intervals. At the base station, we assumed
an antenna array witlh = 6 sensors and an oversampling s i i i i i i i

factor of J = 4. This results in MIMO channel matriced 200 %00 400 K‘rzr(\)l(l).lmberosfodoala sam7§gs) 500 50 1000
of dlmenSIOn(DJ) x (L T Lz + Ls) = 24 x 15. Notice also Fig. 7. MIMO: signal-to-interference ratios of User 1 (solid line), User 2
that each matrixd contains samples aff x P = 18 GSM  (dashed line), and User 3 (dashdot line).

impulse responses. The correlative filters were designed as in

Section lll, with L, = 5. The system’s output is corrupted byresidual user’s interference crosstalk. Its relative power can be

spatio-temporal white Gaussian noise. measured by the signal-to-interference ratio (SIR)
We considereds = 10 distinct scenariod. For each one,

the noise variance was chosen to fix the SNRO dB. The

number of data samples used to estimate d#aanges from SIR, = E{|Hpsp(R)II”} tl‘(prIg
Kimin = 200 t0 Kuyax = 1000 in steps of Ky, = 100. 2 Z tr (Hqu)
For eachK, we ran a Monte Carlo simulation consisting of E ZHqsq(k) an#p

M = 200 independent trials. We computed the corresponding ap

NRMSE. Fig. 6 displays the average results over $he 10
scenarios considered, which are monotonically decreasing. )

We also evaluate the ability of XBM to discriminate amongvhere we have definell, = =, H,,. Fig. 7 shows the average
the users. Recall that theth user’s signal is separated fron¥esults obtained in terms IR, over theS = 10 scenarios
the observations by applying an oblique projector to the dagtnulated. The solid, dashed, and dotted lines refer to the
samples first, second, and third user, respectively. As seen, XBM

(k) = 5, (k) satisfactorily rejects interuser interference even for small data
y -r blocks, e.g..K = 300 observations.
E Hps,(k) + Z EpH s,(k) +n(k). (20)  The last set of simulations compares the performance of the
aFp XBM algorithm with and without the variation discussed for
The second term on the right-hand side of (20) measures Biep 2. Recall that the objective of the alternative algorithm is
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mean-square error of the channels estimates and in its ability
in suppressing interuser interference crosstalk.

APPENDIX
PROOF OF THEOREM 1

Let Re(l; H) = HRs(1)H” + Ry(1) be the output au-
tocorrelation matrices of a MIMO system parameterized by
the channel matribd = [H; H, --- Hp]. It is understood
that (4) models the system and conditions A1)-A3) hold. Let

; ; : : : ; H be a channel matrix satisfyinB(l; H) = Ry(l; H) for
R ] SETERRREE ------------ ------------ ------------ frrene e B . 1=0,L, and L. + 1, i.e., that (10)—(12) hold.
: ' ' : : ' : Since Rs(0) = I, the equality in (10) is jusHHH =

NRMSE

o5k e SIS SO s S SR e ﬁ . H . ) _

- : : : : : HH" and thusH = HQ", whereQ is an L x L unitary
o ; ; ; i ; i ; matrix. By using this representation in (11) and (12), and sum-
O mber of e samegy 0 110 2% ming both sides of these two equalities, we h&yd = AQ,

where A = RS(LC) + RS(LC + 1) = diag[Al,Ag, .- ',Ap]

Fig. 8. MIMO: XBM original (solid line) and alternative (dashed line). . . -

algorithms as presented in this paper. IS a bquk diagonal matrlx, andl,, = 77P(ILp + K_Lp)'
Due to its structureA is also a nonderogatory matrix [32]

| h ional burden in hiah SNR , the linear dimension of every eigenspace is one). Sifjce
to lower the computational burden in hig enVIronMenta, mmutes withA, there exists a polynomiaP(t) such that

We have chosen one of the ten generalEdsSM channel . ;
) Q = P(A) [32]. Thus,Q = diag[@,,Q,,---,Qp] is also a
matrices. The lengths of the data packets range g, = block diagonal matrix, where thgth block on the diagonal

800 to If\;aj: 12(.)0 dm ste(;as Of‘r.(stlel’ N é(l)\lol.%FZr Z%Chvli' is given by Q, = P(A,). Notice that eachQ, is by itself
we ran M= 100 independent trials at 0dB. We 5, L, x L, unitary matrix. It is straightforward to verify that

computed the NRMSE for both algorithm.s. Fig. 8 display, very power ofA,, is a lower-triangular Toeplitz matrix, i.e.,
the results obtained. The dashed and solid lines refer to 5 ®an be written as

XBM algorithm with and without the variation, respectively.

As expected, the alternative algorithm presents a higher error ay
in the estimate. Also, we have discarded the runs at which as ap

the alternative method fails to correctly estimate the right as as a1
delay spreadd., of the users. This situation occurred for :
K = 800,900, 1000, 1100, and 1200 in 3.0, 1.5, 1.5, 1.0, and

1.0% of the runs, respectively (as compared to 11.0, 10.0, 7.5,

7.0, and 5.0% if the estimates in (17) were not subject to thgnce this structure is preserved under scalar multiplications

as a9 a1

improvement discussed in Section IV-A). and matrix additions, we conclude that ea@f has that same
structure. Using the fact tha@, is also a unitary matrix, it
V1. CONCLUSIONS follows thatQ, = e/®»I;, . Therefore,H,, = H,e’*», and

We derived XBM, a closed-form solution for the blindTheorem 1 is proved.
identification of MIMO-FIR systems driven by digital sources.
It uses spectral diversity obtained by coloring the output REFERENCES
of each source prior to transmission. The receiver exploit[sl] VAN B GO ME M “Beamforming with ated

. . . . . I . . A. N. barroso an . . F. Moura, eamriorming witn correlate

the spectral diversity to achieve the blind |dent_|f|cat|pn _Of arrivals in mobile communications,” in V. Madisetti and D. Williams,
the unknown MIMO channel matrix. The algorithm is in Eds., Digital Signal Processing Handboplnvited paper, chapter on
closed form, avoiding the convergence problems of iterative i\;@/ Signal Processing, M. Kaveh, Ed. Boca Raton, FI: CRC Press,
approaCheS- .and uses only _Secpnd'order Stat'St'(?S' makmg[é]t L. Tohg, G. Xu, and T. Kailath, “Blind identification and equalization
suitable for wireless communications. The penalty is the added based on second-order statistics: A time domain appro#€RE Trans.

mputational complexity, which is miti its paralleliz-  Inform. Theory vol. 40, pp. 340-349, Mar. 1994. _
computational comple tY’ chis tgated by ts paralle A’ﬂ D. Godard, “Self-recovering equalization and carrier tracking in two-
able S_trUCture- The aIgont_hm separates the MIMO sources and  gimensional data communications system&EE Trans. Communvol.
equalizes the corresponding channels. The approach is basedCOM-28, pp. 1867-1875, Nov. 1980. _
on synchronization of the replicas delayed by the multipattli“] A. Benveniste and M. Goursat, “Blind equalizer$ZEE Trans. Com-

. . . . . mun, vol. COM-32, pp. 871-883, Aug. 1984.

and on their coherent recombination to attain higher SNR. [5] z. Ding, R. Kennedy, B. Anderson, and C. Johnson, “lll-convergence of

Computer simulations illustrated the good performance of godard blindl e??gualizerlSBi{ls)dfi\t;\Zgogmunilcgggn systetsE Trans.

; _ ommun. vol. 39, pp. — , Sept. .

XBM. In the context of a smgl_e user, when _compar_ed t0[6] D. Hatzinakos and C. Nikias, “Estimation of multipath channel response
TXK, XBM produces smaller biases and variances in the ~ in frequency selective channeldEEE J. Select. Areas Communol.
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