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Abstract—We present a blindclosed-formconsistent channel es-
timator for multiple-input multiple-output (MIMO) systems that
uses onlysecond-order statistics. We spectrally modulate the output
of each source by correlative coding it with a distinct filter. The cor-
relative filters are designed to meet the following desirable charac-
teristics: No additional power or bandwidth is required; no syn-
chronization between the sources is needed; the original data rate
is maintained. We first prove an identifiability theorem: Under a
simple spectral condition on the transmitted random processes,
the MIMO channel is uniquely determined, up to a phase offset
per user, from the second-order statistics of the received data. We
then develop the closed-form algorithm that attains this identi-
fiability bound. We show that minimum-phase finite impulse re-
sponse filters with arbitrary memory satisfy our sufficient spectral
identifiability condition. This results in a computationally attrac-
tive scheme for retrieving the data information sequences after the
MIMO channel has been identified. We assess the performance of
the proposed algorithms by computer simulations. In particular,
the results show that our technique outperforms the recently intro-
duced transmitter-induced conjugate cyclostationarity approach
when there are carrier frequency misadjustments.

I. INTRODUCTION

B LIND channel identification is an active topic of research.
It is a bandwidth-attractive scheme for automatic link

re-establishment that requires no training sessions and finds
widespread application in the expanding field of mobile wire-
less communications. In this paper, we focus on closed-form
blind channel identification based only on the second-order
statistics (SOS) of the observations.

A. Monouser Context

For single-input multiple-output (SIMO) systems, the work
by Tonget al. [1]–[3] was a major achievement. They exploit
the information conveyed by certain correlation matrices of the
channel outputs to derive an analytical, i.e., closed-form, solu-
tion for the unknown channel coefficients by the method of mo-
ments. See also [4] for a distinct alternative closed-form sub-
space-based method.

Manuscript received August 9, 1999; revised January 8, 2001. This work
was supported in part by NATO Collaborative Research Grant (CRG.971184)
1202/97/JARC-501. The associate editor coordinating the review of this paper
and approving it for publication was Prof. Michail K. Tsatsanis.

J. Xavier and V. A. N. Barroso are with the Instituto Superior Técnico—In-
stituto de Sistemas e Robótica, Lisbon, Portugal (e-mail: jxavier@isr.ist.utl.pt;
vab@isr.ist.utl.pt).

J. M. F. Moura is with the Department of Electrical and Computer En-
gineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
moura@ece.cmu.edu).

Publisher Item Identifier S 1053-587X(01)03337-2.

B. Multiuser Context

Gorokhov and Loubaton [5] (see also [6]) generalize the sub-
space-based method for the multiple user situation. These ref-
erences show that by exploiting only SOS, the multiple-input
multiple-output (MIMO) channel can be recovered up to a block
diagonal constant matrix. In equivalent terms, the convolutive
mixture is converted into several instantaneous, or static, mix-
tures of the input signals, two sources being in the same group
if and only if they share the same channel degree. In particular,
the convolutive mixture is completely resolved if all users are
exposed to distinct system orders, i.e., they exhibit memory di-
versity. The blind SOS-based whitening approach in [7]–[9] also
converts a convolutive mixture into a static one, with a substan-
tial weakening on the channel assumptions: Infinite-impulse re-
sponse (IIR) channels can be accommodated, as well as min-
imum-phase common zeros among the subchannels; further, the
usual column-reduced condition can be dropped. Still, these ap-
proaches do not resolve the residual static mixtures.

To resolve these residual static mixtures, one may employ one
of several blind source separation (BSS) techniques, depending
mainly on the characteristics of the sources, but also depending
on the number of available samples, and the signal-to-noise ratio
(SNR). Examples of these BSS techniques include

i) high-order statistics (HOS) approaches, e.g., the joint-
diagonalization closed-form procedure in [10], which are
feasible for non-Gaussian sources (although estimates of
cumulants converge slower than SOS [3]);

ii) the analytical constant modulus algorithm (ACMA)
[11], which provides a closed-form separation solution
for constant modulus (CM) sources;

iii) separation of finite-alphabet (FA) sources, which may
be tackled by locally-convergent iterative algorithms, see
[12]–[18].

Chevreuil and Loubaton [20], [21] recently introduced the
transmitter induced conjugate cyclostationarity (TICC) method.
They provide a complete closed-form SOS-based solution for
the MIMO channel with no extra BSS algorithmic step required.
A distinct conjugate cyclic frequency per user is induced at
the transmitter. This data preprocessing is then exploited at the
receiver to reduce the problem to several SIMO channel esti-
mation problems, which can then be solved by the subspace
method. The main drawback of TICC is its high sensitivity to
carrier frequency misadjustments. In multiuser scenarios, this
distortion may be expected to appear in the baseband demod-
ulated signals, as the receiver has to synchronize its local os-
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cillator simultaneously with multiple independently generated
carrier frequencies.

C. Contribution

In this paper, we propose a closed-form method for the blind
identification of MIMO channels based only on SOS. As in
the TICC approach [20], we require no additional BSS step.
When compared with the TICC methodology, our channel as-
sumptions are more restrictive since we assume, as in most ap-
proaches [5], [6], [18], that the transfer function is irreducible
and column-reduced, but we gain robustness to baseband carrier
phase drifts.

Our method uses spectral diversity at the sources, attained by
correlative coding. We utilize correlative filters at the transmit-
ters to assign distinct spectral patterns to the random messages
emitted by the sources. We prove an identifiability theorem that
establishes sufficient conditions on the correlative filters to en-
sure uniqueness of the MIMO channel matrix from the SOS
of the channel outputs. We derive from this theoretical result
a closed-form algorithm that blindly identifies the channel ma-
trix by matching the theoretical and observed SOS.

Belouchraniet al. [19] derive an SOS-based algorithm for
separation of static or instantaneous mixtures of sources with
distinct spectra. Concatenating the techniques in [5] and [19]
can then solve the convolutive mixture problem. In contrast,
our work ensures the uniqueness of the channel matrix for gen-
eral convolutive mixtures and not just instantaneous ones like in
[19]; in addition, we recover the conditions in [19] as a special
case from our theorem. Further, we provide an integrated ana-
lytical solution to resolve the convolutive mixture problem. Be-
cause the spectra of the sources are known, we can parallelize
our solution, which is a fact that can be exploited in practical
wireless systems.

D. Relation with Previous Work

We introduced the correlative framework in [22]. In that
paper, the closed-form solution relies on a certainquasi-diag-
onal structure of the sources’s correlation matrices. We obtain
these by restricting the correlative filters to those that satisfy a
minimal memory lengthcondition: loosely, the channel order
of each correlative filter is assumed to exceed the degree of
intersymbol interference (ISI) experienced by each user. This
condition imposes a significant lower bound on the compu-
tational complexity of the Viterbi decoding algorithm as the
number of states in the trellis diagram increases with the order
of the correlative filters. In this paper, we drop thequasi-di-
agonal property, which makes feasible correlative filters with
arbitrary nonzero degree. Thus, the computational complexity
of the Viterbi decoding step is significantly reduced. In fact, we
prove that minimum-phase finite impulse response (FIR) filters
of arbitrary nonzero degree can fulfill the requirements of the
identifiability theorem. This allows for the direct inversion of
the filters and leads to a simpler scheme to decode the orig-
inal data sequences that may have phase-tracking capability.
Since the sources’s autocorrelation matrices do not have the

quasi-diagonal structure, the method in [22] no longer applies.
We develop here a new consistent closed form estimator for the
MIMO channel.

E. Paper Organization

Section II establishes the data model and states our main as-
sumptions. Section III presents the correlative framework for
multiuser blind channel identification. We introduce the iden-
tifiability theorem and show that the requirements of the the-
orem are satisfied by minimum-phase FIR filters of arbitrary
nonzero degree. Section IV describes the closed-form algorithm
that estimates the MIMO channel up to a phase offset. Section V
discusses a simple iterative technique for decoding the orig-
inal symbol sequences once the MIMO channel is identified.
This technique jointly tracks residual phase drifts in the base-
band signals and reduces the mean-square error (MSE) of the
closed-form channel estimate. Section VI evaluates the perfor-
mance of our closed-form correlative codingCFC approach.
We compare it with the transmitter induced conjugate cyclosta-
tionarity (TICC) approach in [20]. Our simulation results show
that CFC yields symbol estimates with lower probability of
error than TICC in the presence of carrier frequency asynchro-
nisms. Section VII concludes the paper.

F. Notation

, , , and denote the set of natural, integer, real, and
complex numbers, respectively. Matrices (uppercase) and
(column/row) vectors are in boldface type. and
denote the set of matrices and the set of-dimen-
sional column vectors with complex entries, respectively. The
notations , , , and tr stand for the transpose,
the Hermitean, the Moore–Penrose pseudo-inverse, and the
trace operator, respectively; tr denotes the
Frobenius norm. The symbols , , and stand for the

identity, the all-zero, and the forward-shift
(ones in the first lower diagonal) matrices, respectively. When
the dimensions are clear from the context, the subscripts are
dropped. For , we set , if , and

, if . The direct sum or diagonal con-
catenation of matrices is represented by diag ;
for , vec consists of the columns of

stacked from left to right, and represents the Kronecker
product. For , denotes
its spectrum, i.e., the set of its eigenvalues (including mul-
tiplicities). The set of polynomials with coefficients in
and indeterminate is denoted by . The polynomial

is said to have degree, written
deg , if . The degree of the zero polynomial
is not defined. The subsets of all polynomials with degree

and degree at most are denoted by and ,
respectively. Similar definitions hold for and ,
which are the set of polynomial vectors and
polynomial matrices, respectively. We will identify and

by tacitly associating with
the vector . For
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and , we define the
block-Sylvester matrix

...
...

.. .
. . .

. . .
. . .

...

Polynomial matrices operate on (input) sig-
nals , yielding (output) signals

For , the th-stackingoperator is defined as

where denotes a vector (or scalar) signal. Additional nota-
tion is introduced as needed.

II. DATA MODEL AND PROBLEM STATEMENT

Consider a noisy linear MIMO channel with inputs, ,
, and outputs collected in the output vector

:

(1)

(2)

Here, denotes the -transform of the mul-
tichannel filter corresponding to theth user, and
represents additive noise. For example, in spatial division mul-
tiple access (SDMA) networks for wireless mobile communi-
cations, several users impinge on an antenna array through a
multipath space-time channel. In this scenario, (2) models the
measured baseband array snapshots, and denotes the user
multipath spatial signatures.

Problem Statement (Blind MIMO Channel Identification):
Given the SOS of the observed output data samples, i.e.,
the set of correlation matrices

find the MIMO polynomial matrix

Finding amounts to finding

In the sequel, we will work withstacked(or smoothed) obser-
vations

(3)

where

Clearly, all the desired information, i.e., the entries of, are
contained in .

The following conditions are assumed:

A1) Number of sources and number of outputs :
The number of sources is known, and there are more
outputs than sources .

A2) Irreducibility and column reducedness:The MIMO
polynomial matrix satisfies three properties:

i) irreducible, i.e., rank , for all
;

ii) column-reduced, i.e., rank
;

iii) the column degrees of are uniformly
upper bounded by some known integer ,
i.e., , for .

As a consequence ofi) and ii) , the MIMO channel
matrix in (3) is full column rank if , which is
the number of stacked observations, is greater than a
certain integer. For example, the integer

is a lower bound, see [5] for a proof and a
more detailed discussion on this topic. We assume in
the sequel that is full column rank and that

for some known .
A3) Stationarity: The sources , , and

the noise are zero-mean wide-sense stationary
processes, uncorrelated with each other. The noise cor-
relation matrices are known, and
without loss of generality, the sources have unit power,

E

III. CORRELATIVE FILTERING

In digital communication systems, it is commonly assumed
that each user transmits a spectrally white data stream, i.e.,

E

where denotes the Kronecker delta. As an example, take the
usual scenario where denotes an independent identically
distributed (i.i.d.) sequence of information symbols drawn from
a finite alphabet set like the binary alphabet

. The emitted signals are indistinguishable from a
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statistical viewpoint. Their power spectral densities share the
same flat pattern. Due to this spectral symmetry, the MIMO
polynomial matrix cannot, in general, be unambiguously
determined from the SOS . For a simple illustrative example,
consider the two-users case and that for
some . In addition, for further reference, let
denote the SOS of given that

It is readily seen that the two MIMO polynomial matrices
, where , , and

induce the same output correlation matrices, i.e.,
. Note also that

is useless for source separation purposes, as the two users are
mixed together.

In conclusion, blind identification of from is not a
well-posed problem when all the input signals are spec-
trally white. This motivates us to consider correlative coding
at the source. Within this framework, theth user, rather than
transmitting a white data stream, say , emits the output of
a correlative filter

(4)

To avoid increasing the transmitted power, the correlative filter
is normalized to unit-norm

We will show in Theorem 1 below that the uniqueness of
up to a phase offset per user from is guaranteed by a certain
spectral diversity condition on the correlation matrices of the
colored signals .

First, we need some additional notation. For , set
Since, in (4), denotes a white

sequence, i.e., , the correlation matrices of
, hereafter , are given by

(5)

where the shift matrix was defined previously for generic
and . We formally state the spectral diversity

condition.

A4) Spectral Diversity: The users correlate their white
information sequences so that for each source

, there is a correlation lag
such that

holds for every and every
,

; here

(6)
denotes the normalized correlation matrix of
at lag . In addition, the correlative filters ,

are known by the receiver. Assump-
tion A4) means that for each source ,
there must exist one correlation lag that separates
the spectra of from ,

, i.e., from the remaining sources, irrespec-
tive of the stacking parameters taken in

. We now state
the identifiability theorem.

Theorem 1 [Identifiability] : Consider the signal model
in (2), and assume that conditions A1)-A4) are fulfilled.
Let be a polynomial matrix
satisfying the same conditions as , i.e., is ,
irreducible, column-reduced, and . If

induces the same MIMO channel output statistics,
i.e., , then , where

diag
Proof: See Appendix A. Theorem 1 ensures uniqueness of

the MIMO channel matrix from the SOS of the system outputs,
as [22, th. 1]. However, here, the minimum memory length re-
striction on the correlative filters of [22] has been dropped, and
uniqueness of the MIMO channel is now ensured by a more gen-
eral spectral condition.

A. Connection with [19]

Assumption A4) entails a significant simplification when the
channel degrees in (2) are knowna priori. In this situation,
from the proof of Theorem 1, it can be seen that it suffices that
for each pair of sources , there exists a correlation lag

such that , where
. Thus, for the special case of static mixtures

( and ), we recover the spectral conditions of the
identifiability Theorem 2 in [19].

Theorem 2 below shows that assumption A4) is not
very restrictive and is generically satisfied by unit-norm
minimum-phase filters of arbitrary nonzero degree. Be-
fore stating Theorem 2, we need a definition. For ,
we let denote the subset of unit-norm
minimum phase filters with degree. Recall that we pre-
viouly identified with by associating with
the filter the vector

. Thus, both and
are subsets of and take their metric structure

from this identification. Now, for given nonzero degrees in
, let

i.e., if and only
if for .
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Theorem 2: Consider the correlative filters in (4), where
denotes a white information signal, i.e., ,

for . Let
be a -tuple of nonzero correlative filter degrees, and let

denote the subset of correlative filters that
satisfy assumption A4). Then, is dense in

Proof: See Appendix B.

IV. A LGORITHM

We exploit Theorem 1 to derive a closed-form algo-
rithm that obtains the MIMO polynomial matrix

up to a phase offset per user
from the correlation matrices of the observed data samples

, i.e., from the set The algorithm
works in terms of the equivalent stacked data model defined in
(3); it computes a MIMO channel matrix
that reproduces the observed SOS of , i.e., satisfies

(7)

where E with as defined in (3).
Theorem 1 asserts that if (7) holds, then , or equiv-
alently, since , . The re-
ceiver knows

i) the correlation matrices of since we have (8),
shown at the bottom of the page, and can be
accurately estimated in practice, e.g., by a sample-mean
operator;

ii) the sources’s correlation matrices since the cor-
relative filters are known by the receiver according to as-
sumption A4);

iii) the noise correlation matrices since they are
related to ; replace by in (8) and the
latter are known by assumption A3).

Let denote the denoised correlation
matrices of . We compute to satisfy (7) in four steps.

Step 1) Determination of . This step computes the matrix

(9)

where is a residual (unknown) unitary mixing ma-
trix. Given the signal model in (3) and assumptions
A1)-A4), the denoised correlation matrix at lag 0 is
given by the outer product

Thus, , which is the MIMO
system order, i.e., the number of columns ofin (3), is
obtained as rank . As it is well known, de-

termination of rank in the presence of noise is a tricky
problem. For robustness, it is more appropriate to eval-
uate the rank of through statistical methods, such
as the minimum description length (MDL) test applied
to ; see for example [23]. Once is deter-
mined, we perform an -truncated eigenvalue decom-
position (EVD) of to obtain its square-root, say,

, which automatically satisfies (9).
Step 2) Joint Determination of and

. This step jointly estimates the channel degrees(
) in (2) and the unitary matrix in (9)

up to a phase offset per user. Notice that estimating
is equivalent to estimating , as , which
is the smoothing factor, is chosen at the receiver, and
so it is known. The indices , are ob-
tained by minimizing a certain non-negative function

, where denotes the finite set

We will see that the point is the
unique zero of . Moreover, the computation of
automatically provides up to a phase offset per user.
In order to define , we need some additional nota-
tion. Recall that the correlation matrices
of are given by (5) and its
normalized correlation matrices by (6). For

, let

diag

and

(10)
Note that both and are available
to the receiver. The matrices can be pre-
stored, and are computed from the received
data. Associate with each -tuple of integers

, a unitary matrix
as follows: Let be a global

minimizer of

(11)

subject to . Let
. We define as the nonlinear

projection of onto the group of unitary ma-
trices. Theorem 3 describes the functionand states
its main properties.

...
...

. . .
...

(8)
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Theorem 3: Let be defined by

(12)

Then, is the unique zero of . More-
over, , for some diagonal matrix diag

Proof: See Appendix C.
The following remarks are in order.
Remark 1: Given (10), we have

(13)

Thus, as runs over , the observed second-order moments
tend to be matched by .

Remark 2: The summations in (11) and (12) involve only
a finite number of terms. They are carried over a finite subset

since the correlative filters are FIR
(finite memory span).

Remark 3: A closed-form minimizer of (11) is obtained as

(14)

where vec , and

A global minimizer of subject to
can be obtained by scaling and reshaping into matrix format
the eigenvector associated with the minimum eigenvalue
of the semidefinite positive Hermitean matrix , say ,
i.e., vec . In addition, notice that

can be computed in parallel
threads, the th thread leading to .

Remark 4: The nonlinear projection of onto ,
which is the group of unitary matrices, is a special case
of the classical orthogonal Procrustes problem [25]. It can be
computed as follows. Let denote a singular-value
decomposition (SVD) of . Then, (unitary) globally min-
imizes the Euclidean distance betweenand .

Step 3) Determination of :. The previous step provides the
unitary matrix . To obtain , which is a
local copy of the channel matrix up to a phase offset
per user, set . In fact, using the
expression of in (9), we get

In the last equality, we have used the fact that
and commute. They share the same block-diag-
onal structure, the th block of being the matrix

.
Step 4) Determination of : Once

, , is computed, the
MIMO polynomial matrix up to a phase offset
per user is easily retrieved. Notice the equation at
bottom of the page. Thus, the coefficients of theth
filter

i.e.,

may be obtained by averaging the copies avail-
able in .

V. SEPARATION OFSOURCES

After the MIMO polynomial matrix is identified,
we face the problem of detecting the unfiltered information
sequences in (4) from the observations in (2). In the
sequel, we assume that theth data sequence consists of
i.i.d. symbols drawn from a finite alphabet . In addition,
for simplicity, we assume that denotes spatio-temporal
white Gaussian noise. Thus, the optimal maximum likelihood
(ML) criterion leads to a generalized maximum likelihood
sequence estimation (MLSE) Viterbi algorithm [24]. However,
the computational cost of this approach is usually very high.
We pursue a simpler, suboptimal technique to detect the data
symbols. The proposed technique exploits the fact that the
correlative filters are minimum-phase and permits to handle
carrier frequency asynchronisms, e.g., Doppler effects. This
distortion induces a baseband rotation in the received signals.

We have a data model similar to (2), except for the inclusion
of the residual phase drifts

(15)

...
...

. . .
.. .

. . .
. . .

...
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where , and denotes the baseband rotation
frequency corresponding to theth user. Although the filters

in (15) are not exactly the same as in (2) (some phase
offset corrections are needed), we maintain the notation for the
sake of clarity.

Each iteration of the proposed iterative procedure consists of
two steps:Step A) The data symbols are detected, given
the current estimate of , andStep B) the filtering matrix

is re-evaluated on the basis of the newly estimated data
symbols. This resembles, in spirit, the methodology of the ILSP
and ILSE approaches [12]. The added difficulty here is that the
data symbols are prefiltered and distorted by baseband rotations.
We now discuss these steps in more detail.

A. Step A

We are at the th iteration cycle. Let

denote the estimate of the MIMO channel matrix obtained
from the previous iteration cycle. The algorithm is initialized
with , which is the closed-form solution of Section IV,
and . We reason as if . Focus on the th
user. First, we extract the baseband rotated sequence

from the observations in (15). We employ a filter
satisfying

for some non-negative delay in the th entry, i.e.,
exactly nulls the intersymbol and co-channel interferences af-
fecting the user . Notice that for sufficiently high degree ,
the existence of such a filter is guaranteed by the irreducibility
of the channel matrix in assumption A2). The coefficients of the
filter

can be obtained as the
th row of the pseudoinverse of

Let

(16)

where denote the application of the
separating filter to the observations’ noise. We have to detect the
data symbols from (16).

i) First, we get rid of the correlative filter. Rewrite (16) as

where , and . We
have since for small integers

and typical values of , as for example,
and . Thus, within this approximation

Since the correlative filter is minimum-phase, we
use its stable inverse, say , to recover the signal

(17)

ii) Now, we handle the baseband rotation. Divide the
available samples in blocks of equal size .
Making small enough, we have, within each block

, the approximation

(18)

for some .
We process the data block by block. Within each

block, we jointly estimate the symbols and the
phase offset . Assume we are processing the
th block. The algorithm starts with and

. We use the estimate of the phase offset in
the previous block and the fact that the phase varies
smoothly between adjacent blocks to approximate

, from which we obtain almost
phase-corrected symbols

where denotes complex
Gaussian noise. The data symbol is estimated
by projecting onto the alphabet . By the
least-squares (LS) criterion

Now, we turn to the problem of estimating in
(18), given the symbols . Again, we follow an LS
strategy

(19)

The answer to this minimization is , where

Here, , with cardinality , denotes the set of in-
dices belonging to the th block.

It should be noticed that the estimation of in (17)
may also be efficiently solved by exploiting the fact that

is a conjugate cyclic frequency of . The main
advantage of the proposed methodology is that it per-
mits us to handle more generic phase drifts, i.e., phase
distortions of the form , where the time-varying
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phase signal is not necessarily given by
.

B. Step B

Take the estimated symbols and phase offsets
in Step A, and let

whenever the time indexfalls in the th block. Rewrite (15) in
matrix form as

Here

and . The LS estimate of is given
by

We set .

VI. COMPUTERSIMULATIONS

We present two sets of simulations. In the first set, we con-
sider users , without carrier misadjustments. The perfor-
mance of the proposed blind channel identification technique is
evaluated in terms of the mean-square error (MSE) of the MIMO
channel estimate. For separation of the sources and the equal-
ization step, the performance criterion is the symbol error rate
(SER) of the estimated data symbols. In the second set of sim-
ulations, we consider users with residual phase drifts.
We compare our technique with the TICC approach [20], both
in terms of the MSE of the channel estimate and the SER of the
resulting symbol detection scheme.

A. Scenario with Two Users

We consider users with distinct digital modulation
formats. User 1 employs the normalized (unit-power) quater-
nary amplitude modulation (QAM) digital format, and user 2
employs the binary phase keying modulation format (BPSK).
Both users pass their i.i.d. information sequences through cor-
relative filters prior to transmission. We used correlative fil-
ters with minimal memory, i.e., with just one zero

. The zeros of the correlative filters for users 1
and 2 are and , respectively; the
coefficients are normalizing constants to ensure unit-power
outputs. For both users, the analog transmitter shaping filter
is a raised-cosine with excess bandwidth. Each com-
munication channel is a realization of the continuous-time mul-
tipath model

(20)

Fig. 1. Output of the unequalized channel.

Here, we have two fixed paths at and ,
where is the symbol period, and a random numberof
extra paths is uniformly distributed in ; for

, the delays are uniformly distributed in ,
and , , as well as and denote unit-power
complex Gaussian random variables. Each composite contin-
uous-time channel , where is the convo-
lution operator, is then sampled at the baud rate and truncated
at . This approximation deletes, at most, 4% of the channel
power. Thus, in , deg ,
which is assumed known. The receiver has antennas
and processes packets of data samples in (2),
with smoothing factor ; see (3).

For the identification technique, we fit six correlation ma-
trices, i.e., , in (14). After channel identifica-
tion, the sources are extracted from the observationsby fil-
ters of degree with delay
. The observation noise in (2) is taken as spatio-temporal

white Gaussian noise with power . The SNR is defined as

SNR

We start by illustrating a typical run of our technique. Fig. 1
plots in the complex plane a typical received signal, i.e., an
entry of the observed vector in (2). The joint effect of the
intersymbol and co-channel interference is clearly noticeable.
Fig. 2 (notice the difference in the vertical scale relative to
Fig. 1) shows the output of the equalized channel, i.e., the
signals and in (17). As seen, the algorithm recovers
valid user signals from the observations. This example was
generated with SNR dB. We evaluated more extensively
the performance of our proposed technique. We varied the SNR
between SNR dB and SNR dB in steps
of SNR dB. For each SNR, statistically
independent trials were considered. For each trial, we generated

data samples and ran the proposed closed-form
and iterative blind channel identification algorithms. We
recorded the square-error (SE) of the channel estimate, i.e.,

SE . The symbol error rates for both sources were
obtained by error counting. Fig. 3 displays the average results
over the trials for the mean-square error (MSE) of
the channel estimate. This is monotonically decreasing, as
expected. The dashed and solid curves refer to the closed-form
and the iterative estimates, respectively. As seen, the iterative
technique improves significantly over the closed-form estimate.
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Fig. 2. Signal estimate for (left) user 1 and (right) user 2.

Fig. 3. MSE of the (dashed line) closed-form and the (solid line) channel
estimate: SNR varies.

TABLE I
SYMBOL ERROR RATE (SER).

CLOSED-FORM ALGORITHM (T = 350, SNR VARIES)

TABLE II
SYMBOL ERROR RATE (SER). ITERATIVE ALGORITHM

(T = 350, SNR VARIES)

In Tables I and II, we show the symbol error rates (SER)
associated to the two sources. These correspond to the symbol
detectors implemented from the closed-form and iterative
channel estimators, respectively. Notice that as user 1 employs
the QAM format, the SNR per symbol is lower, and as a

Fig. 4. MSE of the (dashed line) closed-form and the (solid line) channel
estimate:T varies.

TABLE III
SYMBOL ERROR RATE (SER). CLOSED-FORM ALGORITHM

(SNR= 10DB, T VARIES)

TABLE IV
SYMBOL ERROR RATE (SER). ITERATIVE ALGORITHM

(SNR= 10DB, T VARIES)

consequence, the SER is higher. Moreover, as expected, the
better accuracy of the iterative MIMO channel estimate results
in a lower probability of error. We also studied the performance
of the proposed technique with respect to the packet size. We
fixed SNR dB and varied between and
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Fig. 5. (Left) MSE and (right) BER of user 1 for the proposed and TICC (with square marks) approaches. (Dashed) Closed-form and (solid) iterative algorithms
(SNR= 5 dB).

Fig. 6. (Left) BER of user 2 and (right) user 3 for the proposed and TICC (with square marks) approaches. (Dashed) Closed-form and (solid) iterative algorithms
(SNR= 5 dB).

TABLE V
ZEROS OF THECORRELATIVE FILTERS (P = 3 USERS)

in steps of . Fig. 4 shows the average
results for the MSE, and Tables III and IV display the SER of
both sources.

B. Scenario with Three Users

In this set of computer simulations, we consider bi-
nary users, and compare our results with the TICC approach
[20]. Each user employs a FIR correlative filter with two zeros,
i.e., we have . Table V
discriminates the zeros of the correlative filters for each user.
The multipath propagation model in (20) is maintained, but now,

, and the composite channel is truncated at.
This suppresses, at most, 4% of the channel power. Thus,

for . An antenna array sampled at the baud
rate is assumed at the receiver. In addition, the data packet size

, the smoothing factor , the correlation lags used
in the closed-form identification are , and
the degree and delay of the separating filters are

and . For the iterative algorithm, we con-
sidered samples. For the TICC approach, the three
users employ cyclic frequencies given by , ,
and , respectively. In addition, the Wiener filters in
[20] are implemented with parameters and . The
nominal baseband rotations for the three users in (15) are given
by , , and , re-
spectively. The channel degrees are assumed known for both
approaches.

We performed computer simulations to compare the
performance of our proposed technique and the TICC ap-
proach. We considered residual baseband rotations given by

, where the drift factor varied between
and in steps of . For each

, statistically independent trials were performed.
Each trial consisted of the generation of data samples
as well as subsequent channel estimation and symbol detection
as in the previous scenario with two users. The left plot in
Fig. 5 displays the average results over the trials
considered. The SNR was fixed at 5 dB. For both approaches,
the dashed and solid curves correspond to the closed-form
and iterative channel estimates, respectively. Additionally, the
curves associated with the TICC approach are labeled with a
square mark. As seen, the accuracy of the channel estimate by
our technique is almost insensitive to the drift baseband rotation
factor . In contrast, the performance of the TICC estimators
degrades as the carrier’s misadjustment gets worse. The right
plot in Figs. 5 and 6 display the bit error rates (BERs) associated
with the two approaches for the users considered. As



XAVIER et al.: CLOSED-FORM CORRELATIVE CODING BLIND IDENTIFICATION 1083

Fig. 7. (Left) MSE and (right) BER of user 1 for the proposed and TICC (with square marks) approaches. (Dashed) Closed-form and (solid) iterative algorithms
(SNR= 10 dB).

Fig. 8. (Left) BER of user 2 and (right) user 3 for the proposed and TICC (with square marks) approaches. (Dashed) Closed-form and (solid) iterative algorithms
(SNR= 10 dB).

seen, the proposed technique outperforms TICC. A similar
set of simulations was performed under SNR dB. The
results are displayed in Figs. 7 and 8. We can infer the same
conclusions as above.

VII. CONCLUSIONS

We described a novel blindclosed-formestimator for the
MIMO channel. This finds applications in multiuser environ-
ments like in wireless mobile communications. The proposed
estimator is consistent and uses onlysecond-order statistics.
We correlative codethe source outputs by filtering the data
information sequences before transmission. This induces a
spectral asymmetry between the sources and enables us to
develop our closed-form solution. The correlative filters do not
increase the power or the spectral bandwidth of the system,
nor do they require any reduction in the original data rate.
We identified the sufficient condition on the correlative filters
that guarantees the desired spectral diversity. This condition
is generic in the set of unit-power minimum-phase filters of
arbitrary memory, in particular, filters with just one zero. Thus,
the filters can be inverted directly, which results in a computa-
tionally attractive scheme to recover the original information
sequences. We showed that in contrast to the TICC approach,
our pre-processing is resilient to baseband phase drifts induced
by carrier frequency misadjustments.

APPENDIX A
PROOF OFTHEOREM 1

First, we need some technical lemmas.
1) Lemma A: Let and . If ,

for all , then
Proof: Write , where .

Then, , where
is a Toeplitz lower triangular matrix with in the di-

agonal. Thus, is nonsingular, and implies .
Lemma B: Let diag ,where

for . Assume that for
. If commutes with , then diag

for some ,
Proof: We use the fact that if and

, then [25]. Write

...
...

...

where . From , .
Since , for , we have for

.
Lemma C: Let denote an isometry,

i.e., , and let for . If
commutes with for all , then

for some
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Proof: First, consider that is normal [25], i.e.,

(21)

where diag for
, and is unitary. Consider the hypothesis that . Using

(21) in

(22)

we have , where , and
is an isometry. Since commutes with , it

follows from Lemma B that diag
, where . Thus, all matrices

share at least one common zero entry (any entry off the
block diagonal), i.e., there exists a pair of indices such
that for all ; here,
denotes theth column of . Lemma A asserts that
(which is a contradiction). Thus, we conclude that and
that . We now turn to the general case. Given that

, we have

(23)

Combining (22) and (23)

for all and where denotes the Cartesian
decomposition of , i.e., , .
Since both and are normal (in fact, Hermitean) matrices,
it follows from the first part of the proof that and

for some . Thus, .
Proof of Theorem 1:To settle notation

The proof (up to
a phase offset per column) is carried out incrementally in three
steps in which we establish

4) ;
5) ;
6) .

In addition, for simplicity, we consider noiseless samples
in (2), as our proof only relies on the SOS of .

Step 1) Let denote the vector space of -tuples of ra-
tional functions (with indeterminate ) over the field
of rational functions [6], [26]. Let de-
note the -dimensional subspace spanned by ,
and its -dimensional dual
subspace [6], [26]. Similar definitions hold for .
As shown in [6], if (a stacking parameter) is high

enough, then is uniquely determined from the
correlation matrix , . Thus,

and . Be-
cause both and are irreducible and column-
reduced, they are minimal polynomial basis for
[26]; consequently, they have the same order [26], i.e.,

.
Step 2) Choose [recall (A2)] such that

is full column rank, where
. Let denote

a -truncated EVD rank , ,
diag . Set . Then

(24)

where , ,
; denotes

some unitary matrix. Thus, is
given by

(25)

diag . The
same reasoning, in terms of ,

, leads to

(26)

where (unitary), ,
. Thus

(27)

We must prove for . As-
sume the opposite. Since (Step 1),
then for some . Let be a
correlation lag satisfying A4). In the sequel, the no-
tation means that is the character-
istic polynomial of the matrix , i.e.,
det . In addition, let denote the set
of roots of (including multiplicites); of course,

. Let . From (25),
, where

for . From (27), ,
where for . By A4),

for . Thus, nec-
essarily, ; this is a contradic-
tion since the cardinality of (i.e., ) is
greater than the cardinality of (i.e., ).
Thus, for .

Step 3) From Step 2, . In the sequel,
. Thus, diag

. Let
(unitary). From (25) and (27), for
all . Letting

...
...

...
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, we have
. Consider . By A4), there

is a correlation lag such that
. Thus, for , and

diag with

(28)

Let denote a SVD, where
is unitary, is nonsingular (because, without loss of
generality, , and has full row rank),
and is an isometry. Using this representation in (5)
and (6), we have

(29)

Apply Lemma C to (28) and (29) to obtain
, for some . From (24) and (26)

Thus, , i.e., .

APPENDIX B
PROOF OFTHEOREM 2

Given and ,
we must provide such

that dist . Before pro-
ceeding, we need some definitions. For and

, let .
For and , set

. Finally, for and
, let denote the normalized correla-

tion matrix of at lag induced by ;
recall (5) and (6).

Notice that is a continuous function of
. In addition, some algebra reveals that irrespective of,

we have , and
is nonsingular. Thus, as varies, the spec-

trum of is rotated in the complex plane
(origin excluded by the nonsingularity). Clearly, we can choose

(as small as we want) such that
does not intersect a given finite set of points in. Apply this
property for all possible in order to satisfy A4), and let

.

APPENDIX C
PROOF OFTHEOREM 3

Suppose . Then, by the arguments in Step 2 of the
proof of Theorem 1, we have . In the sequel,

, and . Equation (11) reads as

(30)

Write , where . Suppose
that . Then

(31)

for all . Let . Equation (31) is equivalent to

(32)

for and . In the proof of Theorem 1, it was shown
that (32) implies for some . On the
other hand, from A4), there is a correlation lagthat separates
the spectra of and . Thus, for . We
conclude that . Normalizing to get

yields .
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