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Multisource Delay Estimation: Nonstationary Signals

Isabel M. G. Lourtie, Member, IEEE, and José M. F. Moura, Senior Member, IEEE

Abstract—This paper studies delay estimation in a very gen-
eral framework: multiple sources, correlated noises, nonsta-
tionary random signals, and varying delays. We derive the op-
timal maximum likelihood (ML) delay estimator, analyze its
performance via the Cramer-Rao inequality, and test by ex-
perimentation with synthetic data. The present time-varying
delay estimator extends to the nonstationary/multisource en-
vironment the estimators of Ng and Bar-Shalom, Kirlin and
Dewey, and Knapp and Carter. However, as it will be appar-
ent, our receiver significantly departs from the correlator
structures of these authors.

I. INTRODUCTION

IME delay estimation is an important problem in un-
derwater acoustics. In positioning systems, delay es-
timation is a first stage that feeds into subsequent pro-
cessing blocks. The postprocessing blocks use the delay
estimates as features from which location parameters and
the dynamics of targets are then recovered. In underwater
acoustics, most of the work reported on time delay esti-
mation assumes a single source configuration and station-
ary signal processes observed over a long observation time
interval. These are not always realistic assumptions.
Noisy targets emanate acoustic signals that are observed
at an array of hydrophones. Several targets may be pres-
ent in the vicinity of the one being located or tracked. At
the array of sensors we receive then the superposition of
all the radiated signals. Over time, the received signal
cannot be assumed to be stationary. The transmission me-
dium, the ocean, shows a complex behavior exhibiting
simultaneously temporal and spatial dependence. The ra-
diated signatures are themselves nonstationary. The em-
itter/receiver relative motions are often not negligible. In
this context, a more accurate modeling of the problem is
often needed, justifying a multisource configuration with
nonstationary signals. However, as we will show, this
leads to a rather more complex receiver than the one tra-
ditionally used.
For a narrow-band (NB) random signal x(f) with com-
plex signal representation

B (1)e’ ! (8Y)
the delayed replica x(¢ — 7) has a complex envelope which
is approximately given by
y(r)e 2. @

Manuscript received May 6, 1988; revised June 25, 1990.

1. M. G. Lourtie is with CAPS, Complexo, Instituto Superior Técnico,
P-1096 Lisboa Cedex, Portugal.

J. M. F. Moura is with LASIP, Department of Electrical and Computer
Engineering, Carnegie-Mellon University, Pittsburgh, PA 15213.

1IEEE Log Number 9042718.

In (2), we used the NB approximation

Xt — 1) = X,0).

3)

On the other hand, for a stationary random signal with a
large time bandwidth product BT, working with the Fou-
rier representation, we have the Fourier transform of the
delayed replica x(t — 7) as

X(f)e " @)

where X( f) is the Fourier transform of x(¢). Equations (2)
and (4) show that under assumptions of either NB signals
or stationary signals with large BT, the delay dependence
factors out of the structure of the signal. This factoriza-
tion is a key point determining the structure of the present
day delay estimators, see, for example, Knapp and Carter
[3] who showed that the optimal maximum likelihood
(ML) delay estimator for stationary signals with large BT
is essentially a cross correlator.

We consider in this paper the problem of delay esti-
mation for nonstationary random signals with arbitrary
time bandwidth product BT. For these signals, the factor-
ization of the type of equation (2) or (4) is no longer pos-
sible. We derive the structure of the ML delay estimator
which turns out to be remarkably different from that of a
cross correlator. Lacking stationarity, the Fourier trans--
form techniques that underly the design of these cross cor-
relators are no longer useful. Rather, the maximization
step of the ML delay estimator is preceded by a recursive
filter. This filter estimates the random signal conditioned
on knowledge of the values of the delays. It generalizes
the Kalman-Bucy filter to the case of estimation of wave-
forms with delays.

In deriving the ML estimator, we consider a very gen-
eral setup for the problem: i) nonstationary correlated
multiple source signals, ii) time-varying delays (relative
or absolute) parameterized by a finite number of unknown
quantities, iii) nonstationary, possibly mutually corre-
lated, observation noises, iv) arbitrary (short or long) ob-
servation time interval. In doing so, we extend to the non-
stationary, arbitrary BT case, the works of Knapp and
Carter [3], [4], and of Ng and Bar-Shalom [1], who stud-
ied the problem of multisource environment, and of Kirlin
and Dewey [2], that assumed a single source with spa-
tially correlated measurement noise.

When the sources are moving, besides delay, we need
to estimate the Doppler shift. We derive the joint optimal
ML delay/Doppler estimator. This extends to the more
general class of nonstationary signals with arbitrary BT
the works of Knapp and Carter [5], and of Kirlin, Moore,
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and Kubichek [6]. The latter work develops a suboptimal
strategy to deal with signals where the nonstationarity is
due to time-varying delays. This is achieved by sequen-
tially processing the data into continuous blocks of length
T seconds. Within each block the delay is assumed to be
time invariant, but allowed to change over successive
blocks. In [6], a linear Kalman filter is used as a postpro-
cessor that filters the sequence of delay measurements.
These delay estimates result from processing the most re-
cent received data block by means of a delay estimator
such as the one described by Hassab and Boucher [7]. For
narrow-band signals, and when the delays are themselves
sample functions of a random process Bucy, Moura, Mal-
linckrodt [8], Leitdo and Moura [9], Bethel and Rahikka
[10] have developed Bayes law type receivers to estimate
the delay waveform. Moura and Baggeroer [11] have used
the estimators of [9] with real data underwater signals that
propagated under the Arctic ice crust.

In Section II, we formulate and model the delay esti-
mation problem. A multisource environment is consid-
ered. The signals are sample functions of Gaussian non-
stationary stochastic processes, described via a state space
model, and the delays are continuous real functions. The
maximum likelihood (ML) delay estimator for the above
context is derived in Section III. The ML delay estimator
maximizes, over the unknown delay parameters, the log-
likelihood function (LLF). When the source signals y, ()
are not deterministic known functions, but rather sample
functions of nonstationary random processes, the con-
struction of the likelihood function involves the minimum
mean-square error estimate (MMSE) 9,(r — D)) of the de-
layed source signals y,(z — Dj) given the observation set,
and conditioned on the values of the delays Dj. This is
the first step of the ML receiver. We develop the causal
MMSE recursive filter for §,(¢t — D7) which exhibits the
structure of a Kalman-Bucy filter for signals with delays.
These MMSE estimates ¥,(tr — D7), which are functions
of the unknown delays Dj’s, are used in the LLF whose
maxima yield the delay estimates. In this sense, the ML-
delay receiver here studied generalizes to unknown non-
stationary random signals, the FSK-type receiver of radar
contexts. To evaluate the estimator performance, in Sec-
tion IV we develop analytically the time evolution of the
Cramer-Rao bound. Under the general framework con-
sidered herein, the Fisher information matrix requires the

gradient with respect to the delays of the estimate of the

signal process. Our parameterization in terms of the
GKBF, promptly provides algorithmically the means to
compute these gradients. To gain insight into the general
ML delay estimator developed herein, in Section V we
analyze its asymptotic structure under stationary signals,
long observation time interval (SLOT approximation), and
time-invariant delay assumptions. For the SLOT case, we
provide a frequency interpretation showing that the new
delay estimator recovers the structure of a generalized
cross correlator, [1]-[4]. Assuming a multisource envi-
ronment with spatially uncorrelated observation noise and
SLOT conditions we obtain the processor of Ng and Bar-
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Shalom [1], while considering a single source configura-
tion we recover either the estimator of Kirlin and Dewey
[2], for spatially correlated measurement noise, or the
generalized cross correlator of Knapp and Carter [3], [4],
when the observation noise is uncorrelated among sen-
sors. In Section VI, we carry out a simulation study that
illustrates the capabilities of the general ML processor and
compare it with the classical generalized cross-correlator
structure. Finally, Section VII presents the paper’s con-
clusions.

Notation: The general setup of the problem involves a
detailed notation that is presented here. The following
symbols are used throughout:

i) ®: Kronecker product [12] which, for example, for
X, Ye ®? x ®?, is defined by

xnY x,Y
X®Y=[” lz}e(ﬁ“x(ﬁ“. )

xY xpY
ii) diag {e}: diagonal matrix of block-matrix ele-

ments, e.g.,
A, 0
A,

diag {A4;} = . s =12, ,L
(6)

where A, are matrices of appropriate dimensions.

iii) I: identity matrix of order § X S.

iv) 13 = [1 -+ - 1]™: one vector of order S.

V) Vin(®), V,(¥), and V,(*): differential operators
defined by

4 ad
Virir(¥) = ¥(® [E (*)] Y@ + B, ) [a_r. (*)} y(®)

3
+ v [a—rz (*)] B, r) O
Vi (*) = y() [2 (*)} + 8@, n [i (*)] )
” Y o " or
d
V(¥ = 7 *) ()]

where ¢, r,, r, are scalars representing time and delay vari-
ables, v and 3 are diagonal matrices.
vi) (*, @)z weighted inner product, i.e.,
(x, @) = *'R™'e (10)
where R is a covariance matrix. :
vii) Try(e): matricial trace operator, defined as fol-
lows: given a block square matrix

X = [X;] e ®" x @MY (1n

r
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with the blocks X; € ®" x ®Y, Try(X) is the M x M
matrix

Try(X) = [tr X;] € ®Y x ®". (12)

viii) On occasion, a short notation is used for func-
tions, e.g.,

P1r|r2 = P(t’ ry, r2)- (13)

When no ambiguity arises, arguments may also be
omitted.

II. PROBLEM FORMULATION
A. Statement of the Problem

We now formulate the multiple source delay estimation
problem, when the processor array has § = 1 sensors,
and the receiving signal at each sensor is a superposition
of L = 1 sources. Specifically, let {z(z, s) € R, ¢t = 0}
be a sample function of the observed process at sensor s,
modeled by

L

at, 5) = 2 i@y = D) + v, 5),

teT, ses, lelL 14)
wherete T = [0, T] € R is the time variable, s € S =
{1,2, -+, 8} is the sensor index, and [ € L = {1, 2,

-+, L} is the source index. Functions Dj(f) and o] (?)
represent the time-varying delay and the attenuation as-
sociated to each pair (s, /). The observation noise {v(t,
s) € ®, t € T} is a nonstationary zero mean Gaussian
temporally white spatially correlated noise process with
cross-covariance E{v(z, s)v(a, m)} = R, (0)6(t — o), (s,
m € §). The signal {y,(r) € ®, t = ¢,} emanating from
source [ € L is a stochastic nonstationary process assumed
to be uncorrelated with the noise {v(¢, s)}. Throughout
the paper, the signals are assumed scalar. Generalization
to vector signals is trivial.

At each sensor of the receiving array, the observed sig-
na’ is the superposition of delayed (travel time) and atten-
uated replicas of the emitted signals. Inherent to the prob-
lem description is a propagation effect introduced through
the travel time delays (Dj(¢)) and the attenuation factors
(] (2)). These are functions of both the transmission chan-
nel impulse response, and of the sources and sensors ge-
ometry and relative motion.

Equation (14) describes the problem. It encompasses a
multisource configuration with a single direct acoustic
path from each source ! € L to each sensor s € S. It also
includes the single source multipath geometry if we take
a single signal y(f) = y,(?) propagating through multiple
paths [ € L from the source to each sensor s € S of the
array. Fig. 1 shows the multisource configuration for two
sources and an array of three hydrophones.

In our formulation, the time-varying delay function
Dj(@), vt € T, is assumed to satisfy the following condi-
tions:

i) it is a continuous function of ¢;
ii) it has first derivative with respect to ¢;
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1 2 3
array of sensors
(s)

Fig. 1. Multisource, single direct acoustic path geometry.

iii) it is described by a deterministic time-varying
function which is parameterized by a finite number
of unknown parameters, i.e.,

Di(t) = 7(t, 6) (15)
where 0, is the vector of unknown parameters.
Under i) above, for bounded T, we can define

min  Dj(®)

teT.seS.lel

Dmin =

(16)

and

D, = max

teT.seS./leL

Dj (. an
The values D,;, and D,,,, are, respectively, lower and up-
per bounds to all the time-varying delay functions Dj(¢).
In the sequel, we need the technical assumption

_Dmax (18)

where 7, represents a time reference with respect to which
all sources start radiating the signals y,(#), / € L. Equation
(18) guarantees that the process y;(t — Dj(f)) in (14) ex-
ists for every ¢ € T, that is, all signal sources are present
during the entire observation time interval T. For a linear
array, and depending upon the case under study, absolute
or relative delay, the parameter D, is defined accord-
ingly. For an absolute delay, since

lelL,

L <

vieT, s€S, Di@t) =0

D,.in has the trivial value
Dmin = 0

For the relative delay case, i.e., when the differential de-
lays Dj(r) can be negative, D, is a function of the inter-
sensors separation and/or of the maximum range of the
time-varying delays. If there are no constraints on the
source location, the relative delay Dj is minimum or max-
imum for the endfire configuration.

The work presented in this paper does not assume any
particular parameterization 7, (¢, ;) of the delay functions.
It remains valid for a general parameterization. A discus-



1036

sion of parameterizations for a planar source/receiver ge-
ometry, with a linear array shape and a target following a
linear uniform motion can be found in Moura and Bag-
geroer [13], and Moura [14], [15]. The ML estimation of
the time-varying delays Dj(¢) is accomplished after the
ML estimates of the parameters are performed.

To model general nonstationary source signatures, the
signals y,(¢) are described as sample functions of Gauss
Markov processes, which are the output of a linear system
driven by noise. In formal terms, the source signature is
described by

d
25O = 40x @0 + B0 (@),

n(@® = COx@. (20)

The initial condition x,(¢;) € ®™ is a Gaussian random
vector with mean value X;(fy) € ®" and cross-covariance
matrix E{[x;(10) — X;(t)] [xk(fo) — Xu(t)]” } = Euto, 1) (U,
k € L). The dynamics disturbance {u; () € R™, = 1} is
a Gaussian white noise vector process, independent of the
observation noise {v(¢, s)} and of the random initial con-
dition x(t;)(k € L), with cross-covariance matrix
E{u/(tyul(o)} = Qu()8(r — 6). For I # k, the noises 1, (t)
and () may be statistically correlated. In this case, the
signatures y;(¢) and y,(¢), emitted by sources / and k, are
correlated. If the sources are mutually uncorrelated, we
simply take

Qu =0

tzt,leL, (19

and 2y (to, 1) =0, ¥Vl £k Q1)
Depending on the system matrices 4;(?), B;(?), and C,(z),
(19), (20) model nonstationary narrow- or broad-band
processes. When the system matrices are time invariant,
the matrix A is asymptotically stable, and the observation
interval is large, model (19), (20) leads then to signals
which are asymptotically stationary. Equations (19), (20)
represent a paradigm which is alternative to Fourier rep-
resentation of signals. The latter describes signals as lin-
ear superposition of complex exponentials, and in the
context of delay estimation leads, under a large BT as-
sumption, to batch cross-correlation techniques. Equa-
tions (19), (20) represent the signals as output of linear
systems driven by noise. They are well-suited represen-
tations to handle nonstationary environments and lead to
estimators that emphasize time recursiveness. Equations
(14) and (19), (20) are to be interpreted in a formal sense.
A rigorous writing requires the Ito calculus formulation,
e.g., see [16].

B. Modeling

As referred to in Section I, the log-likelihood function
involves the minimum mean-square error (MMSE) esti-
mate of the received signals. Because at different sensors,
these correspond to delayed replicas of sample functions
of nonstationary random processes, we need to develop
filtering structures for nonstationary stochastic processes
with delays. The compliexity of the problem is brought
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about not so much by the nonstationarity but more so by
the necessity of filtering with delay of random signals. We
achieve this by reformulating the problem into the context
of linear filtering of signals described by partial differen-
tial equations (distributed parameter systems). As we will
see, the present problem corresponds, however, to a very
specific context within this very general topic.

To be able to obtain a compact description we work
with vector and matrix notations. For that, define the ex-
tended processes that collect the snapshots over the array
of sensors:

i) Received signal vector:

Zay = [z26, 1) - 26, 2) - -+ 20, S (22)
ii) Measurement noise vector:
Viey = o, 1) - 0@, 2) - -+ - o@, . (23)
iii) Delay line vector D, (t) for source [:
D = D@ :Di®: -+ : DIl (¥
iv) The L X S delay matrix:
D@ = DY) : D3 : -+ DIOI". (25
v) State vector:
xe, r =1xX"¢,n:x7a, 0 x5a, " @26
vi) State vector for sensor s:
X', n = [ ) s xi@se )
- (e ). @7
vii) Equivalent auxiliary time variable:
£, ) =1t — Dpin — (D} (®) — Dpyin)- (28)
viii) Input noise vector:
U@ = [t — Dyin) : w3t = D) = =+ :
- uf(t = D). 29)

The parameter r € [0, 1] in (26)-(28) is useful in describ-
ing the evolution in the time interval [t — Dj(?), t — Dyyn ]
of the state vectors x; (! € L) that model the emitted signals
y; (see (19), (20)). It introduces gradually and implicitly
the nonstationarity imposed on the signals by the time-
varying delays. In (28), £ (z, r) is an auxiliary time vari-
able that represents, for fixed observation time ¢, the time
evolution of the emitted signal when propagating along
path (I, s) from source [ to sensor s. For example, if
Dj (1) is an absolute delay, we have

@, n =1t— rDi@®. 30)
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In the above context, at fixed time ¢, along path (I, s) from
source / to sensor s the emitted signal is at source /

»® =y 0) (31
while at the receiver is
(@t — Di@®) = y,(§/@ D). (32)

In between, y,(£;(¢, r)) is a nonobservable signal at a fic-
titious sensor located a distance rdj(r) apart from the
emitter (Fig. 2). When r = 1, X(¢, 1) collects the state
vectors x;(¢ — Dj(#)) used in modeling the signals re-
ceived at each sensor of the array.

Under definitions (22)-(29), the multisource delay
problem is now compactly described. The vector process
{Z(t) € ®®, t € T} observed at the receiving array is

Z(n = Y(» + V@) (33)

where the observation noise {V(r) € ®5, t € T} is a non-
stationary Gaussian white noise vector process with co-
variance matrix E{V(1)V(0)} = R(H)8(t — ¢). When the
noise is spatially uncorrelated, R(z) is diagonal. The re-
ceived signal {Y(r) e R, r e T}

Y( = C(HX@, 1) (34)

is a stochastic nonstationary vector process, uncorrelated
with the noise {V(r)}. It is interpreted as the output of a
linear distributed parameter system. From (26), (27) and
(19), the state vector X(t, r) is described by the partial
differential equation
V.X(t, r) =0, relo, 1],

t=0 (35)

where V,,.(+) is the differential operator introduced in (8),
with

y(n) = diag {v'(} (36)
where
Y0 = diag {[D;()) — Dpinll} €]
and
B, r) = diag {B°¢, n} (38)
where
B°(t, ry = diag {[1 — rV,Di(D]L,}- 39)
The boundary condition for (35) is at r = 0
Vv, X(t, 0) = A(HX(t, 0) + BOU®). (40)

Matrices 4, B, and C in model (34)-(40) are given by

Ar) = Is ® diag {A4;(t — Dpin)} 41)
B(r) = 15 ® diag {B,(t — Dyn)} 42)

and
- C() = diag {C’()} (43)
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source £ sensor s

r=0 r =|1/2 r=1
ye(£3(2,0)) ve(£2(2,1/2)) ye(£2(t,1))

Fig. 2. Path (I, s) between source ! and sensor's at a fixed time 7.

with

Ci0) = [&IEDVCE) © a3EDCED) « - - -

CaiECUED) (44)

where £], defined by (28), is taken at r = 1. Expressions
(34)-(44) model the received signal Y(r). Although not
explicitly specified, the signal Y(#) and the state vector
X(t, r) are functions of the delay matrix D(¢).

The partial differential equation (35) describes the
propagation of the state vectors x;(£)) of the radiated sig-
nals along each propagation path (/, s). The boundary
equation (40) describes the signals at the source locations.
They correspond to time ¢ — Dy,;,(r = 0), rather than 7 =
0. This is a useful gimmick that allows us to consider
relative delays. In this case, Dy, < 0 and the boundary
condition is advanced relative to the signal received at the
reference sensor. This procedure represents a time-invari-
ant translation which does not modify the emitted signal
characterization.

III. TIME-VARYING DELAY ESTIMATION
A. Estimation Criterion: Maximum Likelihood

The observations along the time interval [0, 7] and array
sensor set S are collected by

Z' = {Z0):0 <0 <1} 45)

We assume that the time delays, if time varying, are de-
scribed by deterministic functions whose structure is
specified up to a finite number of unknown parameters
collected in the vector #. Let the time-varying delay re-
alization be

D'(0) = {D(¢) = 1(0,0): 0 < 0 < t}. (46)

The vector 0 is estimated by maximum likfilihood (ML)
techniques [17], [18], i.e., the ML-estimate 6(¢) of 6 given
the observation set Z' is

b(z) = arg max J(z; D'(6)) (47)
86

where J(t; D') is the log-likelihood function (LLF). The

maximization operation in (47) is carried out on the com-

pact domain © S ®’ where the vector 8 is assumed to

lie.

B. Log-Likelihood Function (LLF)

In this subsection, we present the LLF when the time
variable ¢ is continuous. To get insight into the structure
of the LLF, we derive it in Appendix A for the discrete
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time case. For continuous time ¢ the LLF structure is es-
tablished in Appendix B. The evaluation of the LLF in-
volves the minimum mean-square error (MMSE) causal
estimate of the received signal Y(¢), conditioned on both
the observation set Z' and the time-varying delay real-
ization D'(6).

The log-likelihood function (LLF) is given by (B.13)
of Appendix B

t

J(@; D') = S\O [<?zn Za)R - % (?m f}o)R

— 3tr R™'Py)] do (48)

where ¥(o) is the minimum mean-square error (MMSE)
estimate of the signal process ¥(0), and P, (o) is the signal
error estimation covariance matrix. Both ¥(¢) and Py(0)
are functions of the time delay realization D?(#). The first
and second terms on the RHS of expression (48) depend
on the observation process:. the first term computes the
cross correlation, normalized by the observation noise
covariance, between the observation process Z(f) and the
MMSE signal estimate f’(t); the second term represents
the energy of the MMSE signal estimate. The third term
on the RHS of (48) is a correction term. It depends only
on the signal estimate error covariance Py(¢). The next
subsection shows that Py(7) does not depend on the ob-
servation process, and thus can be precomputed.

To conclude, we emphasize that the ML delay estimate
D(r), which is obtained by maximizing the LLF given by
(48), involves the MMSE estimate of the received signal
?(t). If the emitted signals were deterministic, that is, the
received signal Y(¢) was known except for the finite di-
mensional vector of parameters  that describes the delay
realization D'(6), then it would be trivial to show that

) = Y0 49)
and
Py(t) =0 (50)

leading to the well-known expression for the LLF for a
deterministic signal (see [17, ch.4])

1

J@t, D) = SO (Y, Zdr — 3 (Y., Y,)pl do. (51)
In the general case of random Y(¢), we describe in thg next
subsection how to construct the MMSE estimate Y(¢) of

Y(¢) conditioned on the value of the delay.

C. Generalized Kalman-Bucy Filter (GKBF)

In the previous subsection, the LLF was expressed in
terms of the minimum mean-square error (MMSE) esti-
mate ¥(¢).of Y(r). Because the signals are delayed sample
functions of linear random processes, the MMSE esti-
mates are obtained by generalization of the Kalman-Bucy
filter to the distributed parameter context of Section II.

The optimal filtering theory of Kalman and Bucy [19]
was first extended by Kwakernaak [20] to include linear
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systems with multiple time-invariant delays in both the
dynamics and the observations. Yu et al. {21] generalized
Kwakernaak’s results to nonlinear distributed parameter
systems. The structure of [21] is too general. The gener-
alized Kalman-Bucy filter (GKBF) that we need for the
delay estimator is obtained by deriving the causal MMSE
filter when delays (possibly time varying) are present only
in the observations. The details of the derivation are
lengthy. They are available in [18].

Under the general linear framework stated in Section
II, the signal MMSE estimate f’(t) and the error covari-
ance matrix Py(t), appearing in (48), are given by

0 = coXe, (52)
and
Py(t) = C(t)P(t, 1, DCT() (53)
where
X, n = E{X,|Z', D'} (54)

and P(t, ry, r;) is the error covariance conditioned on D’
P(t, 1\, 1) = E{[X,, = X,][X,, - X,."|D'} (55)

witht = 0, ry, r, € [0, 1]. Denoting the filter gain by
K(@t, r) = P, CIR; (56)

the state vector MMSE estimate X(z, r) is given by the
partial differential equation

VX, =vK,2, teT, rel0,1 (57)
with the boundary condition
V. Xo = A X0 + KoZ, (58)
and the initial condition
Xor = Xor 59
where
Zn = Zo - Y0 (60)

is the innovations process, and matrix y(?) is defined in
(36), (37).

The state estimate error covariance matrix P(t, ry, ry)
is given by the partial differential equation

Vinr P, = _'YthrerKtT;z'Y:’

teT, r, rp, €10, 1] (61)
with the boundary conditions
ViPro = ViPioAl — vK,RKg (62)
Po, = Pyo (63)
V,Pgo = AP + PoAl + B,Q,B] — KoRKYG (64)
and the initial condition
Porry = EOrer (65)

where the matrix X(0, r,, r;) stands for the cross covari-
ance of the state vectors X(z, r|) and X(z, r,).
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Z(t) +
:%>(+ K(t,0) N

- +

X(t,0)
/(o) - >

V(1) <:l

Fig. 3. Generalized Kalman-Bucy filter: boundary condition.

A(t)

Equations (52)-(65) describe the generalized Kalman-
Bucy filter (GKBF), which extends the Kalman-Bucy fil-
ter [19] to systems with multiple time-varying delays in
the observation process. The GKBF is a recursive system
that reproduces the dynamics structure of the signal, (35)
and (40), driven by the innovations process.

The received signal Y(#) contains different delayed rep-
licas of the emitted signals. The boundary condition (58)
computes the estimates of the state vectors x;, VI € L,
describing each radiating source, at time instant 1 — Dy,
In the above context, the boundary condition (58), Fig.
3, performs a prediction operation in the sense that it gives
estimates of the state vectors x; at a time instant

I—Dmm—t~ 7(1), teT, lelL,

ses.
(66)

On the other hand, the propagation equation (57) evalu-
ates the estimates of the state vectors x; in the time inter-
val [t — Di(®), t — Dy;,], that is, it carries out a smooth-
ing operation over the boundary state estimate.

The filter gain requires the solution of the coupled par-
tial differential equations (61)-(64). These represent the
extension to filtering with time-varying delays in the ob-
servation process of the Riccati equation of the Kalman-
Bucy theory [19]. Because of the linearity assumption on
the signal process model, the covariance matrix P(z, ry,
r,) does not depend on the observation process being pre-
computable. As mentioned, the interested reader is re-
ferred to [18] for the complete derivation.

D. Estimator Structure

As referred to before, P(r) depends on the time delay
realization D'(§). Based on the same set of data Z', dis-
tinct delay realizations D'(6) lead to different signal esti-
mates P(r). The ML processor chooses for the delay es-
timate the delay realization that is most likely to have
caused the particular set of observations Z', that is, the
one that accomplishes a better matching between signal
modeling and data. The ML time-varying delay estimator
developed herein is conceptually equivalent to two blocks
(Fig. 4). It first computes the ML estimate of the param-
eter vector (7). The LLF block generates the log-likeli-
hood function (LLF—expression (48), Fig. 5). It con-
structs the MMSE estimate of the received signal,
conditioned on both the observation set Z' and the time-
varying delay realization D'(6), via the generalized Kal-
man-Bucy filter. The maximization of the LLF is carried
out on the compact domain © where the parameter vector
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Z(t)

D(t)
——> LLF

—

(t)

max |y

6e©

7(t,8)

ML-estimator of
parameter vector 6

ML-estimator
of time-varying
delay D(t)

Fig. 4. Time-varying delay estimator.

%tr(R"Py)

2(t) o ey o 1262
L
GKBF == || o |}
Y (1)

Fig. 5. Log-likelihood function (LLF) block.

6 that describes D(?) is aseumed to lie. Thereafter, the
time-varying delay estimate D(7) is constructed based on
both the parameter vector estimate 8(), and the assumed
delay function 7(¢, 6).

When the second and third terms on the LLF (expres-
sion (48)) are weakly dependent on the delay matrix D,
for example, when the problem geometry assumes a sin-
gle stationary source configuration, and the observation
noise is uncorrelated among sensors, we have

D(t) = arg max So (Z(0), Y(0)) do. 67)
60

IV. CRAMER-RAO BOuND
A. Introduction

In this section we establish the Cramer-Rao bound
(CRB) for the parameter vector estimate 8. It is well
known that the ML method provides asymptotically op-
timal Gaussian estimates which are consistent (asymptot-
ically unbiased) and whose variance achieves the CRB (ef-
ficiency) [17]. For any unbiased estimator, the CRB is
given by the inverse of the Fisher information matrix T(Z',
6% [17], i.e.,

E{I0¢) - 6100 — 61} = 172", 6 (68)

" where 6° € ®” is the actual value of the parameter vector.

The » X » Fisher information matrix is

TZr Ba —_ _E az‘l(t’ 0)
@, ) = 3000”

. } (69)
e

and J(t; ) is the log-likelihood function (LLF) given by
(48).
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B. Fisher Information Matrix

Denote by
. aY(r)
V. Y(t) = —
«Y() % (70)

ga

the Sv dimensional gradient of the MMSE signal estimate
Y(1) with respect to 6, taken at 6 = 6“. By expanding in a
Taylor serieﬂs Y(¢) about the actual parameter vector 6,
noting that ¥(#) satisfies the orthogonal projection lemma,
expression (70) can be written after lengthy algebraic ma-
nipulations (which again are omitted here but can be found
in [18])
1

TZ', 6% = SO Trs {lI, ® R;'1[P%y(0)

+V,%,V, YT} do (71)
where & is the Kronecker product introduced in (5)
VY1) = E{V, Y} (72)

and
v = E{[V, Y1) — V, Y01V, Y0 - V, 701"}
(73)

represent, respectively, the mean value and the covari-
ance matrix of the gradient stochastic process V, ¥(r).

Fig. 6 shows the evaluation in block.diagram of the
Fisher information matrix. The block GM generates the
first- and the second-order moments of the gradient vector
process V, ¥(7). To obtain the gradient process V, ¥(¢) two
approaches can be considered: i) Numerical solution:
v, Y(t) is computed numerically from f’(t); ii) Analytical
solution: obtain, from the GKBF model, a dynamical
equation for the gradient

axa,

v, X, = %

74)
fa
Then describe the gradient V, ¥(f) by means of the state
vector X(t, r), its estimate X%, r), and the gradient
v, X(t, r). The superscript @ means that the process at
which it is applied is taken at the actual parameter vector
6“. For the analytical approach, it is shown in [18] that
Vv, Y(1) is modeled as the output of a dynamic distributed
parameter system with the Gaussian white noise inputs
{U®} and {V(n)}.

V. SLOT ApPPROXIMATION: TIME-INVARIANT DELAY,
STATIONARY PROCESSES, LONG OBSERVATION
TIME INTERVAL

A. Introduction

In Sections IIT and IV, we presented the structure of the
ML delay estimator, of the GKBF used to construct the
causal MMSE filters for random signals with delays, and
derive expressions for the Cramer-Rao bounds for the de-
lays. Here, we show that the ML estimator extends to the
nonstationary multisource contexts, the more often en-

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 5, MAY 1991

Py
Y =L o R =
w47 >

V.Y

; T(Z',6°)
A Trs()——=>

Fig. 6. Fisher information matrix.

countered cross-correlator techniques used in delay esti-
mation when the signals are assumed stationary. We do
this by carrying out the asymptotic analysis of the ML
estimator of Section III under stationary long observation
time interval (SLOT approximation), and time-invariant
delay assumptions. A further technical condition needed
is that the signal processes are completely controllable and
observable [19].

In the above context, the covariance matrix P(t, ry, )
(61)-(64) is asymptotically time invariant, i.e.,

lim P(t, ry, r;) = Pu(r), r).

t— 00

(5)

The steady-state error covariance matrix P (r;, r;) gives
rise to an asymptotically time-invariant generalized Kal-
man-Bucy filter (IGKBF).

We proceed now by factorizing this asymptotic Riccati
equation, showing that the IGKBF corresponds to a gen-
eralized Wiener filter, and then interpreting this as the
usual cross-correlator structures arising in the delay esti-
mators of, for example, [1]-[3].

B. The Generalized Wiener Filter (GWF)

Denote by Y, 1(w) and Z;(w) the integrated Fourier trans-
forms of the vectorial processes Y(r) and Z(»), [17], [22],
[23] ’

1 + oo
0 = — S e d¥(w) (76)
27[' —o0

and accordingly for Z(r). The IGKBF equivalent fre-
quency domain representation is (see Appendix C)

d¥(w) = Fy(w) dZ;(w) n
with
Fy(w) = I — Hw, D) (78)
where
H Y(w, D) = I + Ce ™Y [(jwl - A7'K,
\ )
+ S e yK, do}. 79
0

The transfer matrix Fy (w) of the IGKBF corresponds to
a generalized Wiener filter extended to systems which
have delays in the observation process. This is a linear,
causal system that, for a stationary signal process Y(¢),
minimizes the mean-square error between Y(7) and its es-
timate ¥(r). We can show (see [18] for details) that the
generalized Wiener filter (GWF) (77)-(79) is concep-
tually equivalent to two cascade filters (Fig. 7). The first

!
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e R™Y?H(w, D)

[HY(w, D) — Is|RY?

Fig. 7. Generalized Wiener filter.

one, with transfer matrix R ~'2H(w, D), is a realizable,
minimum phase, whltemng filter. The second one, with
transfer matrix [H™'(w, D) — IR 172 is a realizable filter
that gives at its output the signal steady -state MMSE es-
timate f/(t).

C. Log-Likelihood Function Asymptotic Analysis

To be able to compare the general ML processor de-
veloped in this paper with the solutions available in the
literature, e.g., [1]-[3], we need to express the log-like-
lihood function (LLF) (48), and the corresponding time
delay processor structure, in the frequency domain. These
are obtained by working with truncated versions of the
processes to a bounded interval T. Under the hypothesis
of stationarity, assuming T is large compared to the cor-
relation times of the processes plus the maximum delay
magnitude |D|,,, (SLOT approximation), the estimate of
the (truncated version) of the received s1gnal YT(t) is the
output given by the GWF when the input is the (truncated)
observed process Zr(f). Processes YT(z) and Z;(#) being
limited to T seconds are finite energy processes, which
then admit Fourier transforms, Y7(w) = dYT,(w) /dw and

Zr(w) = dZ7(w)/de [22]. From expression (77), it fol-
lows
Yr(w) = Fw(@)Zr(o). (80)
As referred to before, the LLF has two parts
J(T; D) = J(T, D) + J(T; D). (81)

The first one, J(T; D), first and second terms on the RHS
of expression (48), depends on the observation process
Zr(1); the second part, J(T; D), is the third term on the
RHS of (48). From (48), under the SLOT approximation

J(T; D) = —3 Ttr [R™'Py] (82)

where Py, is the steady-state signal estimate error covari-
ance matrix, while the first term of the log-likelihood
function is

+oo
J(T; D) = S_ [KZr(@), Pr(d)dp — 3 <Yr(), Yr®)dx] dt

(83)

where the integration over ] —o, + o[ is va11d given the
time limitation imposed to the processes Y,() and Z7(r).

Application of Parseval’s theorem to the term J (T; D)
gives

+ oo
JAT: D) = S Zi(-w)R™' — ng'<w>1zr(w)fj—°’

(84)
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where, it is shown in Appendix D, the power spectral den-
sity of the observation process is

Gg(w) = H (0, D)RH™ (-, D). (85)

The term J(T; D), expression (84), is a generalized cor-
relation function that computes the autocorrelation of the
prefiltered observation process.

Until now the signals were assumed to be mutually cor-
related, as well as the observation noise processes. In the
next subsection, we are going to consider the simpler case
of mutually uncorrelated signals.

D. Mutually Uncorrelated Signals

Assume that the emitted signals y,(¢), [ € L, are mu-
tually uncorrelated. In other words, the covariance matrix
Q is diagonal. The power spectral density of the obser-
vation process is then

L
Gz@) =R + L Vi@G@V[(~e)  (86)

where

2 _l“’D(:-..:

: S
—jwDT
aje aje P

Vy(w) = lorfe 01 (87)
is the steering vector, and G, (w) is the power spectral den-
sity of the signal y,(¢) radiated by the source 1 =1,
v L

An ML estimate of the L X (S — 1) differential delay
matrix

AD! AD? --- ADY"!
AD) AD} --- AD3"!
AD = . R o ) (88)
AD) AD} --- AD;™!
where the relative delays are
AD{™' =Dj-Di"", (89)
is obtained by solving the root equation
dJ(T; D)
VT, D) = ——— = 90
J(T; D) 3(AD) (90)

where V is the gradient operator. By differentiation of J(T;
D) (expressions (81), (82) and (84)) with respect to
AD3, 1 e L, s € S, assuming the signal estimation error is
small, we get approximately

AJ(T, D) S*“ e T et 1 As AT
—_——t = 'z VIA]V
9AD" . jo{U7 Zr G VNV
dw
- G7'Zr — T} — 91
S Zr 1} o 9n
where the superscript * stands for complex conjugate

Vi(w) = diag {aje 77} 92)
Aj() = & — bilsls 93)
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- anT;D)
AD;

Fig. 8. Generation of J(T; D) /3AD;: expression (91).

& = 2 [~lse, + ¢,1]) 94)
i@ =T o [G7 V8, V] 95)
T = Vg 'V, + G (96)
L
G =R+ X VGV O7)
€y =[0---010---0"e®RS (98
—
column m

and 1 is the one vector introduced in Section I.

The delay processor assembles L(S — 1) parallel pro-
cessing channels that perform the derivative oJ(T;
D)/dADj. Fig. 8 shows the path (/, s) processing channel
block diagram. The causal filter I’/ (w) "G/ ' (w), where
I/ ' (w)* contains all poles and zeros of I'; ' (w) that lie on
the left-half s plane (stable, minimum phase), is a func-
tion of the delays regarding the first / sources. The term
bj(w) is a correction term due to either the presence of a
number of sources L greater than 1 and/or the spatially
correlated observation noise.

For a multisource configuration, under the SLOT ap-
proximation with spatially uncorrelated observation noise,
i.e., diagonal covariance matrix R, Ng and Bar-Shalom
[1] developed a ML processor to estimate the delay matrix
AD. These authors modeled the observation noises and
the signals as zero mean band-limited Gaussian pro-
cesses. For a white noise assumption it is straightforward
to show that the structure of Ng and Bar-Shalom (see [1,
eq. (9), (10)], and the processor stated above (see (91)-
(98)) are equivalent. The general ML processor presented
in this paper (48), (52)~(65) generalizes the estimator of
Ng and Bar-Shalom to nonstationary mutually correlated
signal processes with possibly mutually spatially corre-
lated observation noises.

Assuming a single source configuration (L = {1}), i.e.,
taking / = 1 in (88)-(98), the ML differential delay esti-
mate is given by the solution of the system of S — 1 equa-
tions (90), (91), with

G(w) = R. 99

The delay receiver involves § — 1 parallel processing
channels. Each channel block diagram is obtained from

the one in Fig. 8, with G(w) defined in (99). For this case,
the prefilter I'"'(w)*R ~', although dependent on the de-
lay vector D, becomes a causal system. The term b*(w) is
the correction regarding the nonzero observation noise

. cross covariance. This structure is now equivalent to that

of Kirlin and Dewey (see [2, eq. (6)]). A similar argument
also recovers the generalized cross correlator of Knapp
and Carter [3], when we specialize the structure of (90),
(91) to a stationary single source geometry under a spa-
tially uncorrelated observation noise assumption.

VI. SIMULATION RESULTS

To illustrate the general ML-processor behavior we
present an experimental study based on synthetic data. In
[18], as well as [24]-[26], several other examples have
been described, where we consider the performance of the
novel delay estimator when the source signal is nonsta-
tionary, in presence of a directional interference, for a
two sources configuration, Doppler estimation, and joint
estimation of both delay and signal spectrum. Here we do
not repeat these experiments that show that the ML esti-
mator developed in this paper achieves asymptotically the
Cramer-Rao bound. Rather, we present a comparison with
the classical cross-correlator structure when the signals
are not stationary. This is, of course, a situation where
the classical estimator does not strictly apply.

To implement the delay processor, the parameter do-
main O is restricted to a grid of allowable values. The
ML estimator reduces to a bank of parallel processing
blocks, each one computing the log-likelihood function
(LLF) tuned to each feasible solution 6 € ©. This scheme
converges uniformly to the optimal algorithm when the
mesh of the discretization grid goes to zero.

A Monte Carlo experiment is analyzed next. We carry
out the comparison study of our processor with that of
Knapp and Carter [3]. For both structures, we evaluate
their statistical mean-square error performance, and com-
pare them to that predicted by the Cramer-Rao theory of
Section IV.

The array of hydrophones has 2 sensors. The observa-
tions are modeled by (14), with

af =1, D* = (s — 1)D°, s=1,2 (100

where the actual delay value is D¢ = 0.5 ms. The delay
processor does not know the actual delay D, but bounds
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Fig. 9. Time evolution of A(?).
the a priori region of uncertainty to
D e [-2.5, +2.5] ms. 101)

This constraint is established from the prior knowledge
concerning the problem geometry. The observation noise
is spatially and temporally white with spectral height

R(s) = 0.001, s=1,2. (102)

The single signal process y(?) is a zero mean nonstationary
process modeled by the linear dynamical system (19), (20)
with A(¢) shown in Fig. 9, and

B =10, C=1, Q =120, (103)

The time dependence on A(f) may model, for example, a
fast maneuvering target subject to sudden changes in its
trajectory.

Taking a discretization step of 0.25 ms for the delay
domain, both the ML processor developed herein and the
generalized cross correlator (GCC) of Knapp and Carter
[3] are implemented through a bank of 21 filters working
in parallet. We compare both estimators for different ob-
servation time interval durations 7, where we take

T = 5n n=12,---,20. (104)

For each value of T, we average the results of 150 Monte
Carlo simulations. The time evolution of both the sample
mean (SM) and the mean-square error (MSE) of the delay
estimate are plotted in Figs. 10 and 11, respectively. From
Fig. 10 we see that, for small 7, the GCC suffers a larger
bias on the delay estimate than the ML processor. Fur-
thermore, as ¢ increases, Fig. 10 shows that the ML es-
timate is asymptotically unbiased while the GCC retains
a residual bias. Fig. 11 shows that the mean-square error
(MSE) of the GCC is much larger than the MSE of the
ML estimator developed in this paper. In particular, as ¢
increases, Fig. 11 shows that the ML estimate is asymp-
totically efficient, i.e., its MSE converges to the Cramer-
Rao bound (CRB).

cov xp = 1.

ms,
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Fig. 11. Delay estimate mean-square error.

VII. CONCLUSION

The paper reports on maximum likelihood time-varying
delay estimation with stochastic nonstationary signals.
The framework includes multiple sensors with possibly
spatially correlated noise, for either multisources in a sin-
gle path, or a single source in a multipath environment.

The maximum likelihood (ML) delay estimator maxi-
mizes the log-likelihood function (LLF). This function
involves estimates of each of the source signals received
at each array sensor. To obtain these estimates, we refor-
mulated the nonstationary multisource/multisensor delay
problem in the framework of a distributed parameter sys-
tem model. The signal estimation was now constructed as
the causal minimum mean-square error (MMSE) filter for
the distributed parameter signal model.

The paper presented the structure of the ML-delay es-
timator. Due to the nonstationarity assumed, the estimator
emphasizes time domain techniques. We provided an
interpretation of the delay estimator by studying it under
SLOT conditions. We showed that under stationary and
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long observation intervals, working in the frequency do-
main, the Riccati equation associated with our general-
ized Kalman-Bucy filter (GKBF) can be factored, leading
to the transfer function of a corresponding generalized
Wiener filter (GWF). Using this GWF into the LLF re-
covers the more common cross-correlator delay esti-
mators of [1]-[3]. The statistical analysis of the delay es-
timator is carried out in terms of the Cramer-Rao bound.
The paper presents an experimental study based on syn-
thetic data that illustrates the behavior of the ML-delay
estimator and compares it with the classical generalized
cross-correlator configuration.

APPENDIX A
In this Appendix we derive the LLF for discrete time
t. Two steps are considered: in the first one, the model

discretization is carried out, while in the second one, the
LLF is established.

1. Model Discretization
Define in [0, 7] the partition

0, 7,27, -+ ,Nr =1t (A.1)

with 7 small and positive. The discretization of the ob-
servation set (45) leads to the observation record

Z'={Zkn: k=01, -+ N} (A2)

modeled by the algebraic equation (from (33))
ZkT) = Ytk1) + Vk7), k=0,1,---,N (A.3)
where {V(k7), k =0, 1, - - - , N} is a zero mean Gauss-

ian white noise vector sequence, with normalized covari-
ance matrix R(k7) /7.

To the observation record (A.2) corresponds the signal
sequence

Y = {¥kn: k=0,1, - N} (A.4)
Denote the corresponding delay sequence as
D'={Dkn):k=0,1,--, N} (A.5)
2. Establishment of the LLF
The log-likelihood function (LLF) is
Jt, D"y = In p(Z'| D) (A.6)

with
p(Z'|DY) = Ey[p(Z'|Y'; D")|D"}

= Ey[p(Z®|Y', Z'"7, D"Yp(Z'~"|Y', D)D"}
(A.7)

where Ey. denotes the expectation operation over all paths
of the signal sequence Y.
From (A.3)

pEO|Y', 277, D) = pZ®)|Y(), D). (A.8)
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From (A.7), noting that
Ey-Ap@''|Y', DYD'} = pZ'~"|¥(t), D")
we have
PZ'|DY) = Eyy{pZ®| Y1), Da)p(Z'~"|¥(5), D"|D'}
(A.10)

where Ey, denotes the expectation operation over all paths
of the random variable Y(¢). Since

p( 1—1|Dr) = p(Zl—-1'DI*r)
from Bayes law {22], we can write
_ P(Y(I)IZI—7, Dl)p(zr—rlDl~r)
pY(n)|D"

(A.9)

(A.11)

pZ' 77| Y(»), DY)

(A.12)
Substitution of (A.12) in (A.10) leads to
pZ'|DY) = Eyy{pZw)|Y®), Dt)|Z' ", D'}p(Z'~"|D' 7).
(A.13)
From (A.3), we have

Rt
PZ®|Y@), D)) = N (Z(t) - Y0), %) (A.14)
where 91(.,.) represents the normalized Gauss function.
On the other hand, noting that Y(¢) is Gaussian

p(YW|Z'™7, DY) = UY() — Y1), Py(1)) (A.15)
where
Y = E{Y»|2'~", D"} (A.16)

is the minimum mean-square error (MMSE) estimate of
the received signal, and

Py(1) = E{[Y() ~ YOI[Y() — Y(0))"|2'~", DY}

is the signal error estimation covariance matrix.
Substitution of (A.14) in (A.13), considering (A.15),
leads to

(A.17)

R

pE'|DY) = N (zm — Y0, Py() + 7) pE' =D,

(A.18)
From (A.18), recalling the partition (A.1) considered in
the discretization of the time interval [0, 1], we obtain

N
In p(Z'|DY) = kZ

=0

{[Z(k-r) — Yk [Pylk )7

+ R*kD] '[Zk7) — YkDI7

- l In {(21)5 det [M}
2 T

- det [ + R—‘(kT)Py(kr)T]B. (A.19)
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In (A.19), the term (27)° det [R(k7) /7] does not depend
on the delay sequence D', its inclusion on the LLF being
not necessary. Thus

N

J@, Dy = % {1Z(kn) — YV PyknT + Rkn)]™

- [Ztkr) — Y(kD]T

— 3Indet [I + R™'knPy(k7)7]}.  (A.20)

Expanding as a Taylor series, around 7 = 0, the second
term on the RHS of expression (A.20), keeping k7 = #;
fixed, neglecting the second and higher order terms, leads
to the LLF for discrete time

N
J@, DYy = B {1Ztkn) = Ykn)PyknT + Rk

- [Zk) — Yk7)] — 3 tr [R™(kT)Pyk D]},
(A.21)

AprPENDIX B

In this Appendix, the log-likelihood function (LLF) for
continuous time 7 is presented.

As referred to in Section II-A, a rigorous description of
the processes requires the Ito calculus formulation. Let-
ting formally Z(¢) = d{(¢) /dt and V(r) = dW(t) /dt in (33),
the observed process is modeled by the stochastic differ-
ential equation

di(t) = Y() di + dW(t) (B.1)

where {W(?)} is a Wiener vectorial process. Assume that
i) the processes {Y(#)} and {W(r)} are independent; ii)
E{JT (Y(1), Y(1))gdt} < oo, where (*, *)p is the weighted
inner product operator defined in (10), and R(?) is the co-
variance matrix of the observation noise.

In the above context, the log-likelihood function (LLF)
is nothing but the logarithm of the Radon-Nikodym de-
rivative of the measure induced by the observation pro-
cess with respect to the Wiener measure. This derivative
is (see [27, ch. 7, theorem 7.13, note 3])

J(t; DYy = SO (Y, dt.yr — 3 SO (¥,, ¥,)pda. (B.2)

In (B.2), f/(a) is the minimum mean-square error (MMSE)
estimate of the signal process Y(o) given the observation
process and the delay sequence
(o) = E[Y(0)|$y, 9 € [0, o], D'(O)]. (B.3)

The first term on the right-hand side (RHS) of expression
(B.2) represents an Ito stochastic integral [16].

When implementing the LLF, one converts the Ito in-
tegral into a Stratonovich integral [16]. Denoting the in-
novations process as

d¥) = dir) — Y dt (B.4)
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the LLF becomes

J(t; DY) = Sodm dt,r +%50<‘a, Srdo. (B.5)

The first term in (B.5), the Ito integral, can now be writ-
ten [16] as

50 (Y, di,ox = SO (¥, dtygr — 3 (X, Dr. (B.6)

The integral in the RHS of (B.6) is a Stratonovich integral
which is computed using the ordinary rules of calculus.
The second term in the RHS of (B.6) is the quadratic vari-
ation [16] of the processes F(1) and {(r). Define in [0, 7]
the partition

Tn = {tO’ tl’ e

. (B.7)

where

O=tfy <ty < -+ <t, =1 (B.8)

The quadratic variation of the processes P(#) and {@) is
defined by [16]

n—1

(T = Lim, 2 (Fe) = PR - A
(B.9)

where ¥(7), the best linear estimate of ¥(r) in the mean-
square error sense, is

'
Y, = E{Y} + S PyR;' dE,. (B.10)
0
Noting that
t
) = SO ds, (B.11)
and considering (B.10), the quadratic variation becomes
[16]
t
(¥, tr = S tr [R, ' Py do. (B.12)
0
Using formally Z(r) = d{(¢)/dt along with (B.6) and
(B.12), we obtain the LLF

t

Jt; D" = SO RAVATEE RS S A

—1tr R™'Pyl do (B.13)

where the integral is computed using the ordinary rules of
calculus, and both ¥(¢) and Py(o) are functions of the time
delay realization D°(9). The third term on the RHS of
(B.13) is the correction term regarding the corresponding
Ito integral representation.
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APPENDIX C

In this Appendix we derive the frequency domain rep-
resentation of the time-invariant generalized Kalman-
Bucy filter (IGKBF).

Let X, (w, r) (re[0, 1)) and Z,;(w) be the integrateq Fou-
rier transforms of, respectively, the state vector X, r)
and the observation process Z(f). From (87), (58) with

K(t, r) = K(r) = P(r, )C'R™! (C.1)
the frequency domain representation of the IGKBF is
. 5 a
Jory dX(w, 1) + a [dX;(w, n]
= YK(N[dZ)(w) ~ C dX;(w, 1)]
with the boundary condition
dXy(, 0) = (jol — A)'K(O0)[dZ(w) — C dX, (w, 1)].
(C.3)

(C.2)

For r = 1 the solution of (C.2) is
1
dX,(w, 1) = ¢ v dX,(w, 0) + e Jor S e "yK(a)
0

- dofdZ)(w) — C dX,(w, 1)]. (C.4)

Substituting (C.3) into (C.4), premultiplying by C, and

noting that
d¥(w) = CdX,(w, 1) (C.5)

where ¥;(w) is the integrated Fourier transform of the sig-
nal estimate Y(f), we get

d¥)(w) = s — H(w, D)] dZ;(w) (C.6)
where '
H '(w, D) = I + Ce 7" [(jwl — A)"'K(0)
] :
+ So "y K(a) daJ. (C.7

APPENDIX D

In this Appendix we establish expression (85). The
technique carries out a spectral factorization of the steady
state (PDE) Riccati equation. To work with a compact
notation, the subscript o on the steady state covariance
matrix P(r,, r;) will be often omitted.

From (79), we have

H Y(w, D)RH (—w, D)

= {13 + Ce 4 [(jm - A7'K,
1
+ S Nk dojlz R
0
. {Is + [K{(—jwl —AD7!

1
+ S K ye i do] ej“’"CT}
0
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=R + Ce '(jwl — A)"'K,R
1

+ Ce S e™"yK . doR
0

+ RK(—jwl — AT le/rCT

1
|
0

+ Ce v {(jwl — A 'KoRK L (—jwl — AT)™!

KTye =7 dgeirCT

1
+ (jol — A)7'KyR S KIve 7 do
0

1
+ g e""vK, doRK }(—jwl — AT
0

1 i
+ S e*'vK, doR g KIye 5o do} T,
0 0

@D.1)

Each one of the quadratic terms on the RHS of (D.1)
can be obtained from the generalized Riccati equation that
describes the steady-state covariance matrix P.(r,, r,),
ri, r, € [0, 1]. From expressions (61)-(64) with dP(, r,,
r) /9t = 0, P(ry, ry) is given by the partial differential
equation

VanPalri, 1) = —yK(rDRK )y~ (D.2)
with the boundary conditions
V,Py(r, 0) = yP,(r, 04" — yK(PRKT(0) (D.3)
VP, ) = AP0, ¥y — KORK(ny (D.4)
and
AP0, 0) + P.(0, 0A” + BQB" — K(O)RK'(0) = 0
(D.5)

where the differential operators are

d d
V(¥ = {a_r, (*)} vty {a—rz (*)} (D.6)
and

d
V(%) = —(*). (D.7)

dr
Multiplication of (D.2) on the left by ¢/ and on the
right by e 7", and integration on r, and r, over the in-
terval [0, 1], leads to

1 ]
S e*"yK doR S KIye v dg

0 0
1

1
= —eM S Pi,ye 7" do + S Py, ve 7 dg
0

0
1

1
- S e™"°yP,, dae I + S e/ yP o do.
0 0

(D.8)
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Noting that
eV, Py = V,(e*"Py) — juye’ Py (D.9)

multiplication of (D.3) on the left by ¢/“", and integration
on r over the interval [0, 1], yields after manipulation

]
SO e*"°vK, doRK(—jwl — ATY™!
= e MP(~jol — AN

+ Poo(—jol — AN ~ S; eIyP o do.  (D.10)
Noting that

V,Py.e 7" = V,(Py.e My + Pye FMjwy (D.11)

multiplication of (D.4) on the right by e ", and inte-

gration on r over the interval [0, 1], gives after manipu-
lation

i
(ol — A)7'K,R S K ye 7 do
0
= —(jwl — A '"Pyre ™ + (jwl — A)"'Py

!
- S Py, ve 77 do.
0

(D.12)
From (D.5), it is straightforward to show that
(ol — A) " 'KyRK§(—jwl — AT
= —(jwl — A)7'Py ~ Pop(—jl — 407"
+ (jol — A)"'BOB"(—jwl — AN, (D.13)

Substitution of (D.8), (D.10), (D.12), and (D.13) in
(D.1), remarking that the IGKBF gain matrix is

K(r) = Po(r, )C'R™' (D.14)
yields after manipulation
‘H Y (w, D)RH T(—w, D) = R + Gyy(w) (D.15)

where

Gyy(w) = Ce ™ (jwl — A)"'BQB"(—jwl — A 'e'CT

(D.16)
is the power spectral density of the received signal Y(¢).
The RHS of (D.15) represents the power spectral density
Gzz(w) of the observed process Z(1), i.e.,

H Yw, D)RH T(—w, D) = Gz(w). (D.17)
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