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Phase Unwrapping of Signals Propagated Under the
Arctic Ice Crust: A Statistical Approach

JOSE M. F. MOURA, MEMBER, IEEE, AND ARTHUR B. BAGGEROER, FELLOW, IEEE

Abstract—The paper studies the phase unwrapping of time signals
transmitted under the Arctic ice crust. Unexpected phase discontinui-
ties observed in a previous study [14] of the same data prompted the
need for a robust phase unwrapper. The acoustic source generates a
narrow-band sequence whose phase experiences random fluctuations.
At the receiving hydrophones, the measurements are corrupted by
wide-band noise. With this formulation, the reconstruction of the ran-
dom phase naturally fits the setting of statistical signal processing [16].
We apply discrete optimal nonlinear filtering techniques {5] to design
the phase unwrapping algorithm. The scheme presented proves more
insensitive to noise than other nonstatistical unwrappers, supporting
less stringent prefiltering constraints. Under the conditions of the Arc-
tic experiment, it accommodates processing of each individual sensor’s
output data, avoiding the need for beam forming. Also, to discriminate
between intrinsic phenomena and transients induced by the prefilters,
shorter duration impulse responses are desired. Accordingly, the pre-
filters are designed with large bandwidths, the statistical unwrapper
withstanding satisfactorily the lower signal-to-noise ratio environ-
ment. To take advantage of this flexibility, the data are processed un-
der alternative conditions which assume different values for the statis-
tical parameters. The similarities of the corresponding unwrapped
phase paths help to discriminate those rapid events which are intrinsic
from those which are artifacts introduced by the processing. By using
real signals that traveled several hundred kilometers through a highly
unstable channel, the work shows that nonlinear statistical designs are
viable and useful in many practical problems of underwater acoustics.

1. INTRODUCTION

HE present work studies the phase of continuous wave

acoustic signals after being transmitted several
hundred kilometers under the ice crust in the Arctic
Ocean. The actual data collection experiments have been
described previously; see [8], [2], [3]. They are part of
an ongoing research program started in 1977, which in-
cludes onsite data gathering missions in the Arctic, e.g.,
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the Fram 2 (1980) expedition, the Fram 4 (1982), the
Marginal Ice Zone Experiment MIZEX 83, MIZEX 84,
and MIZEX (1987).

Data collected under Fram 2 were studied in [14]. The
processing showed that the phase exhibited unexpected
phase discontinuities. These raised puzzling questions.
First, they were a rare and fast phenomenon. Out of 300
min of signals analyzed, only two phase jumps were ob-
served, each one lasting for just a few seconds. Second,
the phase slips occurred in the same recorded experiment,
less than 5 min apart. Finally, and perhaps more impor-
tant, each slip amounted to strictly less than a cycle (27).
It is well known from communications theory that phase
unwrappers are cursed by large sudden phase discontin-
uities induced by even small noise variations. On a fre-
quency modulation (FM) receiver, they are heard as
clicks. The crackling sounds become more frequent at
signal-to-noise ratios (SNR) below a threshold level.
These phase slips are multiples of full cycles.

Plausible explanations for the jumps detected in [14]
include the following: 1) a source anomaly, 2) a channel
instability, 3) a recording malfunction, or 4) a processing
deficiency. To better understand the two latter ones, a new
phase unwrapper has been developed. The new design
takes into account the statistical nature of the signals. At
low SNR’s, the statistical unwrapper is more robust than
other phase unwrapping algorithms, exhibiting fewer
phase jumps. Without noticeable performance degrada-
tion, it accommodates individual processing of the data of
each sensor, prior to array beam forming, as well as pre-
processing filters with large bandwidths and short impulse
response durations. The greater flexibility provided by the
statistical algorithm is particularly relevant when attempt-
ing to decide if phase discontinuities are intrinsic or are
the result of processing artifacts.

In Section II, we give a brief description of the data
measuring experiments, summarizing previous process-
ing experience. Phase unwrapping is dealt with in several
distinct aspects in Sections III-VI. Section III overviews
the problem. Section IV presents the statistical design.
Section V details its implementation as a compromise be-
tween performance and complexity. This is an adaptation
of the algorithm in [10], [11] to our problem. Section VI
analyzes the statistical unwrapper behavior under con-
trolled conditions (simulated study in a digital computer).
Finally, Section VII applies it to the Arctic data. The pre-
processing is examined there, and the robustness to poor
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prior statistical knowledge utilized to resolving questions
about the nature of fast phase changes.

The paper shows that sophisticated algorithms can be
used in the context of many underwater acoustics exper-
iments. Extending the signal-to-noise ratio threshold of
good performance, the statistical procedure places less
stringent constraints on the preprocessing schemes, re-
ducing the chance of contamination of the raw data by
spurious events. The price paid is in terms of sophistica-
tion, and hence of computer power needed. However, as
argued later on, simple-minded approximations to opti-
mal approaches translate into reasonable compromises that
obtain most of the performance gain available at the cost
of a fractional increase of the processing complexity. To
the authors’ knowledge, the present is the first published
account of the use of nonlinear stochastic filters in a real-
world- problem. That the data have propagated and were
collected under severe conditions just strengthens the be-
lief that these techniques should find in the future a wider
utilization.

II. DATA COLLECTION EXPERIMENTS IN THE ARCTIC
OCEAN

The research program Fram 2 was conducted in the
Eurasian Basin of the Arctic Ocean from ice stations on
drifting pack ice from March 19, 1980 to May 5, 1980.
The scientific program is described in [8]. It involved
three ice stations—a main camp, Fram 2, and two remote
sites. The camp was approximately 2 X 2 km. It included
a 22-channel array of hydrophones, suspended to a depth
of 91 m through holes drilled in the ice. The interelement
spacing was log periodic, and the overall dimensions were
approximately 800 m on each leg of an L-shaped array.
Ice breakup forced redeployment into an X shape. Each
hydrophone was monitored separately, digitized at a 250
Hz sampling rate with timing provided by a global clock,
and recorded on magnetic tape. The signals we are con-
cerned with originated at camp 1, about 343 km to the
north of Fram 2. They consisted of coherent acoustic tones
centered at 15 Hz. The source was a Hydro-acoustics
HLF-3 operated at a depth of 91 m. The peak power was
165-177 dB re 1 pPa at 1 m. The response of the receiv-
ing system rolled off above 80 Hz. The disturbances were
very low-frequency noise of mechanical origin, wide-band
omnidirectional noise in the 1-80 Hz band, and a 60 Hz
interference. See [2] for further details.

To establish the stability in time of the acoustic channel
for transmission of low frequencies under the ice in the
Arctic Ocean, the Fram 2 tonal data have been exten-
sively analyzed in [14]. The processing tasks included
beam forming with a standard delay and sum technique,
decimation by a factor of 2, quadrature demodulation, and
low-pass filtering (LPF). The LPF used a 500-point finite
impulse response (FIR) digital filter rolling off from 0 dB
at 0.016 Nyquist to —50 dB at 0.024 Nyquist. At the
0.008 s sampling interval, the cutoff frequency is 1 Hz.
The quadrature demodulated data were further decimated
by a factor of 16, low-pass filtered again to obtain a 128

mHz passband centered on the demodulated tone (cutoff
at 64 mHz). The phase sequence was reconstructed by
unwrapping the arctan of the quadrature components of
the filtered signal; see Section III. Although the received
signal is composed of many single paths traveling under
the ice crust, the analysis in [14] concludes that the fluc-
tuations of the single-path vectors is negligible compared
to the noise. A suitable model assumes that the total en-
velope amplitude p is the sum of a constant signal vector
and a noise vector whose quadrature components are
Gaussian. The statistical tests carried out substantiated this
hypothesis, which again underlies the model to be pre-
sented in Section IV. Only two deep fades were identi-
fied, both in the same experiment, one larger than 20 dB
and the other of 5 dB. The corresponding skips observed
in the phase unwrapped path were intriguing in that they
did not correspond to full cycle slips. Questions remained
about the true nature of these events. The fades duration
was short, on the order of the time constants of the filters
used in [14]. To determine if the fades were not the result
of all channels missing a sample, their duration should be
tested using alternative filters with visibly different time
constants. However, the phase-demodulated scheme of
[14] did not endure shorter FIR’s, larger filter band-
widths, or individual processing of single hydrophones.
The design of a more reliable phase unwrapper is neces-
sary to understand these anomalies.

[II. PHASE UNWRAPPING OF DISCRETE TIME SIGNALS

Phase unwrapping of discrete time signals (DTS) is im-
portant in many signal processing applications, from
speech to geophysics or underwater acoustics. In the com-
munications field, it is known as phase demodulation.
Given a complex-valued time series x[n], n = 0,1, -,
the phase is constructed as the continuous sequence

Im {x[n]}
Re {x[n]}

The no-memory subroutine computing the inverse tangent
function only contributes to the principal value of the
phase, i.e., its value modulo 27. To obtain a sequence
with values in R' requires the unwrapping of (3-1a). Sev-
eral authors have studied this problem. We consider only
the question of unwrapping the phase of time signals, not
that of the Fourier spectrum. A common procedure used
in practice, for example in [14], chooses at time n the
unwrapped phase é[n] as that version of

Im {x[n]}
arctan <———————Re {x[n]}> + k2w

where k is an integer that leads to a deviation in absolute
value from ¢[n — 1] not larger than 7. In [13] and [4],
the problem is addressed by looking at the shifted version
of ¢[n] that suitably accounts for a multiple number of
shifts of +m, depending on the zero crossings of Re
{x[n]}. To avoid a global dependence on possible local

tan (¢[n]) = (3-1a)

(3-1b)
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errors resulting from incorrect identification of these ze-
ros, an algorithm using Sturm sequences is developed in
{13] and applied in [4] to symmetric and antisymmetric
sequences. :

The models underlying the phase unwrapping algo-
rithms discussed in the literature do not account for two
features that are present in many signal processing appli-
cations of interest, namely, that the measurement of x[n]
are compounded and corrupted by noise, and that the
phase itself may be a random sequence. Bringing this to
bear has several implications. On the one hand, the prob-
lem becomes harder; it lies in the realm of stochastic fil-
tering with nonlinear signals. On the other hand, a more
robust phase estimate is to be expected since the noisy
nature of the involved signals is taken into consideration.
We will see that the phase unwrapper developed under the
statistical framework eliminates most of the phase jumps
that are apparent in other unwrappers. The algorithm
combines, in an optimal statistical sense, the information
provided by the data sequence and the prior information
regarding the constraints the data should satisfy. A rea-
sonable model considers, for example, that the phase is a
second-order random sequence; see Section IV. The sta-
tistical unwrapper is designed as a discrete-time stochas-
tic nonlinear filter. The theory provides a nonlinear re-
cursive scheme that updates, via Bayes’ law, the
probability distribution function (pdf) of the phase pro-
cess given the measurements. If the phase has values in
the field of the reals (not digitized), the pdf is defined on
the real line. In a finite resource environment, actual com-
putation requires finite representations of this function.
Except in trivial applications, no finite representation can
capture the complete description of the pdf, approxima-
tions being mandatory. The next two sections describe the
design theory of optimal discrete nonlinear filtering and
its practical implementation in the context of the problem
under study.

IV. A STATISTICAL PHASE UNWRAPPING ALGORITHM
The phase process ¢ [n] is

+ apo[n]
(4-1a)

¢[n + Nl +ay_1¢[n+N—-1]+ -

= byuln + N} + -+ + byu[n],

i.e., it is the output of a linear discrete time invariant sys-
tem driven by independent, identically distributed (iid)
Gaussian random variables u[n] with spectral level q.

Some or all of the g,’s, i = 0, - - - , N — 1 and some or
all but one of the b;’s, j = 0, - - - , N may be zero. The
initial conditions

#[0], -+, o[N - 1]

are jointly Gaussian random variables, independent of the
{ul[n]} for all n. Below, it is useful to have in mind the
one-dimensional model

¢[n + 1] = a¢[n] + u[n]. (4-1b)

The signal process is
2[n] = V2P exp {j¢[n]}
= xc[n] + jx;[n].
The measurements are

£[n] = %[n] + w[n]

(4-1c)

with
W, exp {j0,,}
we[n] + jw[n]

where {w.[n], w,[n]} are zero-mean iid Gaussian ran-
dom variables with spectral level r, independent of
{uln]} for every n, and independent of the initial phase
values or the initial data. We actually work with real sig-

nals, and let
zi[n]
nl = Lz[nJ

where z,[n] = Z.[n], zu[n] = Z,[n]. Similarly for x[n]
and w[n]. Introduce the normalized noise-to-signal ratio
¢ in the filter band

wln] =

(42)

where W is the filter equivalent (half) bandwidth.
There are two possible phase estimates. One is the (first
component of the) mean of the conditional predicted pdf

P,[A] = Pr{¢[n] < Alz[0], - -+, z[n - 1]}
and the other is the mean of the filtered pdf
F,[A] = Pr{¢[n] < A|z[0], - - - ,z[n]}.

To compute the conditional mean phase $[n], one needs

to propagate the pdf’s P, and F,. This is provided by

Bayes’ law, e.g., [5], which reduces to two steps.
Prediction Step:

Pn=Fn—l*Qn- (4'3)

Filtering Step:

Fn = (Pn : Hn) X Kn‘ (4_4)

In (4-3), the predicted pdf P, at time n is obtained by a
convolution (*) operation of the filtered pdf F,_, avail-
able at time n — 1 with a Gaussian kernel Q, correspond-
ing to the pdf of the iid random variables {u,}. Having
present (4-1b), (4-3) should be no surprise since the pdf
of the sum of two independent random variables is the
convolution of the corresponding pdf’s.

In (4-4), a pointwise multiplication (- ) of P, with a
Gaussian kernel H, (the pdf of the random variables
{w,}) followed by a normalization constructs F, at time
n. Actually, (4-4) is accomplished usually in two sub-
steps:

F.=P,-H, (4-5a)

F,=Fl XK, (4-5b)

619
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where

N A+ in A
H,(A) = exp {Z'["] = rWZZ["] =

| s

is a periodic unnormalized kernel. Equation (4-5b) is a
normalization procedure guaranteeing that F, remains a
pdf with

_r
[ ritany
Equation (4-4) is easily justified. By Bayes’ law, F,, is
Pr {¢[n]|z[0], - - - , z[n]}
_br {#[n], z[0], - - ,z[n]}
Pr {z[O], cee, z[n]}

K, = (4-5d)

which in turn
_ Pr{olnl. z[n][2[0], - -, z[n — 11}
Pr {z[n]lz[O], cee L z[n — 1]}

or

achieve most of the performance gain available. Hence,
we have the interest of the present algorithm to many un-
derwater signal processing applications.

V. IMPLEMENTATION OF THE STATISTICAL PHASE
UNWRAPPER

In a digital environment, recursion (4-3)-(4-6) re-
quires a finite representation of the functions F,(A),
P,(A), H,(A), and Q,(A). Except in special cases, the
finite description is not possible, approximations being re-
quired, with inherent resulting errors. The implementa-
tion of the algorithm must strike a balance between the
complexity of the solution and the errors one is willing to
accommodate. The same question arises in many other
fields, e.g., integration of partial differential equations
(PDE). In a sense, (4-3)-(4-5) are the integral solution of
a parabolic PDE. So, a differencing (implicit) grid scheme
is one possible representation method, the resulting rou-
tine propagating the discretizing grid and the probability
mass on the mesh points. The uniform computational flow
of this procedure is an advantage that, when tied to ma-
chine architectural constraints, leads to speedups of the

_ Pr{o[n]|z[0], - - - , z[n — 1]} Pr {z[n]|$[n], z[O], - - - , z[n — 1]}

Pr {z[n]|z[0],

In the last equality, the first factor in the numerator of the
right-hand side is P, of (4-4). Given the independence
between the phase sequence ¢ [n] and the measurement
noise sequence w[n], the second factor in the numerator
is the kernel H, of (4-4). Finally, the denominator is the
inverse of the normalizing constant K,,.

The filtered phase estimate sequence is obtained by

3ln) = | AR[aA].

The recursion (4-3)-(4-6) provides the basic equations for
the statistical phase unwrapper. Because the support of
the densities P, and F, is the whole real line R®' and not
just a cycle [ —m, 7], the estimate provided by (4-6) takes
values on the line R', just as the phase (4-1) does. The
unwrapping of the phase sequence is accomplished di-
rectly by statistical means. No use is made of the cyclic
arctan of (3-1b), so the corresponding decision problems
of how to unwrap the phase are avoided. When noise dis-
turbs the measurements, and in particular for high noise-
to-signal power ratios, the fact that the noise is accounted
for by the model and taken into consideration by the re-
ceiver design explains why the algorithm withstands many
of the phase jumps experienced by other techniques. This
will be elaborated upon later on. The tradeoff may lie in
the complexity of (4-3)-(4-6). This is certainly true when
they are compared to a straightforward unwrapper (see
Section III), being the price paid for better performance.
It is questionable, however, if the statistical phase un-
wrapper is significantly more complex than the unwrap-
pers of [4] or [13]. As discussed in the next section, the
implementation of the filter may be quite simple and still

(4-6)

-, z[ln - 1]}

algorithm. Also, reducing the grid mesh provides a simple
way of controlling the corresponding numerical errors.
The disadvantage lies on the associated computational ef-
fort. For a summary of these issues, see [6], [7].

We take here an alternative route that explores the spe-
cifics of the phase unwrapping problem. The algorithm
adapts to the present signal processing problem the phase
demodulator developed in [10], [11]. Recall that the class
of Gaussian functions is closed under convolution and
pointwise multiplication. Gaussian functions are com-
pletely described by their first- and second-order mo-
ments. If we represent F,, P,, H,, and Q, by finite sum
of weighted Gaussian functions, each cycle of the algo-
rithm just propagates the set of means, covariances, and
weights associated with each function. The idea of using
Gaussian functions for nonlinear filter implementation
dates back to [1]. However, the implementation discussed
in the remainder of this section is different, particularly
simple, and highly tailored to the phase problem.

We first address the general issues associated with the
Gaussian representation. Let

G, o, A) = exp {3 (A = w) o' (A ~ w)}
(5-1)

be the (unnormalized) Gaussian function with mean p and

covariance o. Assume that a representation for F, by

means of a finite sum of weighted Gaussians is available:
Ny

Fo = 2 Ki(i) G(pi(i), on(i), A).  (5-2a)
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Denote by

&1 = {uri), of()), KI()}, e

the corresponding set of means, covariances, and weights.
Each term in (5-2a) will be referred to as a Gaussian mode
and abbreviated by G5(i). Indexes and arguments are
kept only if necessary. Likewise, define equivalent rep-
resentations for P,, H,, and Q,. With this setup, we ana-
lyze the nonlinear algorithm (4-3)-(4-6). At the predic-
tion step, substitution of Gaussian representations for
F,_, and Q, in (4-3) leads to

(5-2b)

= 2K (1) KEG) [GI1(1) * GR()] - (5-32)
which, after renumbering, becomes
Ny
= 2 K7(1) G(ur(1). 07(1), &) (53b)
with
NY =NE_| - N¢ (5-3¢) -

prediction Gaussian modes. Similarly, the filtering step
(4-4) or (4-5a) leads to

F, = 2K KI(D[GI() - GI(D] (5-4a)
N
= 2 Kn(1) G(a(1), 05(1), A)  (5-4b)
with
Ny =N} - N (5+4c)

filtering modes. Using (5-2b), (5-3) and (5-4) can be rep-
resented by

(5-3)

(Rn—l E— (RII:

(5-4)
®E.

The diagram illustrates that (5-3) and (5-4) require the
updating of the sets of means, covariances, and weights
associated with each representation. In general, the equa-
tions propagating the means and covariances are nothing
but the discrete Kalman-Bucy filter equations [9]. The use
of generic Gaussian representations will require, besides
overhead, as many Kalman-Bucy filters as the number of
propagating modes. In turn, the statistical unwrapper sub-
stantially reduces this effort.

For the phase model of Section IV, the nonlinearity is
in the observations, (4-1c). Accordingly, the kernel Q,
associated with the linear phase process is Gaussian, i.e.,

vn: N¢ =1 (5-5a)
so that by (5-3¢c)
Ny = Nj_,, (5-5b)

there is no mode creation in the prediction step. The ob-
servation kernel H, or H, given by (4-5c) is not Gaussian.
This raises two remarks. One is how to approximate H,

by a train of N Gaussians. That is a representation issue.
The other is how to keep the required number of Gaussian
modes within a predetermined value given that N¥ > 1
leads, through (5-4c), to an explosive growth of N£. That
is a projection problem. The simplicity of the approach
to be studied and where it departs from the Gaussian sum
method of [1] resides exactly on how to resolve satisfac-
torily these two questions. We address briefly both.
Representation of H,: Rewrite (4-5¢) as

H,(A) = exp [\, cos (A — pf 7(0))]  (5-6a)
where the argument of the maximum
H Zl["])
un(0) = arctan (— (5-6b)
© aln]
and the adaptive signal-to-noise ratio (SNR)
J2tn1]
T T (5-6¢)
with
Izln]|| = V2i[n] + 23[n]. (5-6d)
Realizing that A, is periodic, we reexpress it as
H,(A) = H)(A) * p(A) (5-7)
where
Ca(Any Ael—ar+ 250, 7 +-u7(0)]
AO(A) = 1.(&)  Ae|—7 +u,(0), 7 +3u,(0)]
0 elsewhere

is the fundamental period, and the peaked fence

+oo

p(A) = 2 8(A + k27)
with 6(-) the Dirac impulse. The fundamental period
HY(A) is a Tikhonov function, well known in phase-
locked loop (PLL) studies; see [18], [17]. It resembles a
Gaussian when A, is large, and becomes flat as \, — 0.
The idea in [10] is to approximate the basic period A 3(1\)
by a Gaussian which matches it in three points—the max-
imum (5-6b) and the points 7 /2 apart of the maximum;
see Fig. 1 for a typical example.

It is straightforward to conclude that the matching
Gaussian G7(0) has a mean wH0) given by (5-6b) and

variance
2
ol = J_ (5-8a)
8t

The representation of the sensor factor becomes, from
5-7,

A,(A) = G(u;(0), o7, A) * p(A) (5-8b)
or
H,(A) = k:El G(ri(0) + k2, of, A).  (5-8¢)
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22 d k2424
H
u(’)‘n KoM +2m

Fig. 1. Gaussian approximation to A, (A).

Equation (5-8¢) represents H, by Gaussian modes which
have the same variance and where the means are translates
by 2= of 1 (0). For a linear phase model, substitution
in (5-3b) and then in (5-4b) shows that the filtering and
prediction modes also have the same variance, i.e.,

o?(iysde i=1,---, N}
af(i) = o

The end result is that only one Riccati equation is needed
for all Kalman-Bucy filters; see the Appendix for a sum-
mary of the updating formulas. The overhead in comput-
ing (5-6b) and (5-8a) is significantly less than in other
techniques that require at each iteration multiple lineari-
zations plus a Riccati equation per Gaussian mode, e.g.,
[1]. Both facts suggest considerable computational sav-
ings. As a final comment, (5-8a) provides an adaptive
mechanism of the value of the noise variance used by the
filter in its calculations. For weak noise, of is a renor-
malization of ¢ as it should be. On the other hand, if the
noise annihilates one or both of the sensor measurements,
o™ is large. Filtering affects the phase estimate update lit-
tle, the measurements being practically ignored by the fil-
ter. We now consider the second issue mentioned before.

Projection: The increase in the number of modes results
at the filtering step. The projection is then applied at this
stage of the algorithm, being accomplished in three
phases.

1) Truncation: Each Gaussian mode G* of P, is mul-
tiplied by only the J most adjacent modes of A, so that

NE =7 x NE.

2) Agglutination: Modes GF(i) and GF(j) which are
close to each other

|Gi) - Gr(h)| < 8 (5-9)

where 8 is a preset value are agglutinated. Agglutination
of Gaussian functions is a Gaussian function whose mean,
variance, and weight are easily evaluated from the cor-
responding values of the combined modes. For a two-di-
mensional phase process, (5-9) requires two constants 3;
and S3,.

3) Elimination: Mode GE (i) is eliminated if

Kf(i) < e

where € is a small positive number. This constraint is
equivalent to bounding the maximum number of modes
by 1/e. Practice shows that usually the average number
of modes is well under this limit.

i=1,---,NF

Besides the statistical parameters, constants J, B, i =
1, 2, and € are needed. By prior experimentation, these
are tuned to the particular application under study. If they
are chosen so that N” results on the average too small, the
filter is on a predictive mode; transients may be missed.
If they lead to N F being too large, the algorithm relies
heavily on new data, the filtering behavior prevails, the
estimates are wigglier, and the long-term (local) mean-
square error behavior deteriorates. The details are not fur-
ther pursued, the interested reader being referred to [12].

The estimate of the phase is

Ny
2 KIG) wi)
b= T

2 Ki(i)

(5-10)

Note that (5-10) is a line estimate, i.e., the unwrapping
of the phase has been accomplished without ambiguity.

VI. BEHAVIOR ANALYSIS UNDER CONTROLLED
SIMULATED CONDITIONS

Due to the lack of analytical tools, the performance of
nonlinear statistical filters is hard to quantify. In [11], ex-
tensive simulations established via Monte Carlo the mean-
square error performance of the previous algorithm for
several communications problems. Compared to other
procedures, like the phase-locked loop (PLL) or the tech-
niques of [1], it performed consistently better and re-
solved faster larger uncertainties about the phase process
(i.e., sudden changes in the input phase signal). Instead
of replicating the results of [11], we address here the novel
aspects of what happens when there are discrepancies be-
tween the model underlying the design and the data col-
lected from the real world. These may arise from errors
in the values assumed for modeling parameters or from
structural mismatches between the model and the physical
system. To understand how the phase unwrapper behaves
under different operating conditions, the results of a con-
trolled experiment are reported here. Since our concern is
with divergence issues, we focus on the qualitative prop-
erties of the procedure. The simulations try to emulate the
Arctic data from a noise-to-signal ratio point of view. In
this and next sections, the acronyms SPW and APW are
used to refer to the statistical phase unwrapper and to the
arctan phase unwrapper, respectively.

The simulations generated a chirp signal of the type
used to improve resolution in radar systems. This choice
is made because of its nonstationary character and its high-
frequency contents. Also, it helps understanding the
tracker’s behavior when the signal moves out of the filter
band; see Experiment 3 below. The phase signal is

y[n] = 27 foAn + é[n]

where

é[n] = 27r% A% (n? — n) + ¢[0] + ¢[n)
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is the low-pass component, «, is the chirp constant, f; is
the frequency offset, A is the sampling interval, and {[n]
is a random term. Defining

M) = 5= 8ln]

1 ¢[n+1] - ¢[n]

A =
2[n] e A

and
Aln] = [A[n] Ayln]]"

a suitable second-order difference equation modeling the
low-pass phase process is

Aln + 1] = [1 ?} Aln] + |:(1)] QoA + [(1)] VAu[n]

| (6-1)

The process A [n] normalizes the phase to cycles of 2.
In all subsequent plots, phase and phase rate are measured
in cycles and cycles per second, respectively. The set
{ulnl}, n > 0, corresponds to a sequence of iid Gauss-
ian random variables with zero mean and power level g.
The observations are

y[n] = V2P cos ¢[n] + w[n] (6-2)

where P is the signal power and {w[n], n = 1} are iid
Gaussian random variables, with zero-mean (double-
sided) spectral level of r/2, and independent of the se-
quence {ulul}.

A sequence of experiments was carried out where the
response of the SPW is studied. For comparison, the phase
path obtained by the APW is also considered. For all fig-
ures shown, we have the following.

Signal and Noise:

= sampling interval = 0.008 s.
T = data span = 20 s.
P = signal power = 8 X 1078 V?/s.
W = system input bandwidth = 50 Hz.
ao = chirp parameter = 0.5 /s2.

Stochastic Phase Unwrapper (SPW):

J = truncation constant = 3. ‘
B; = agglutination parameters = 0.01, i = 1, 2.
€ = elimination parameter = 0.01.

Depending on the experiment, a combination of the fol-
lowing was adopted for the signal and noise:

fo = tonal frequency = 1 Hz; 15 Hz.
r = noise variance = 5 x 107% 5 x 1078 V2 /Hz.
g = phase noise variance = 0.1; 0.5.

The preprocessing consisted of quadrature demodulation
with a frequency equal to the nominal tone, followed by
low-pass filtering, as illustrated in Fig. 2. The low-pass

z [n]
[

z [n]
s

sin 2 fot

Fig. 2. Preprocessing: low-pass quadrature components.
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Fig. 3. Experiment 1: low-pass phase. (a) True process. (b) Statistical
phase unwrapper estimate. (c) Atan phase unwrapper estimate.

components are then input to SPW and APW. To have a
feeling for the robustness of SPW, the algorithm was
given in many of the runs erroneous values of the param-
eters. Details are described next.

Experiment 1: q = 0.1; r =5 x 107°

Although the chirp signal is not stationary, we need an
estimate of its frequency contents. This was obtained by
evaluating the Burg spectrum and used to design the low-
pass filter (LPF) of Fig. 2. The LPF is an FIR with im-
pulse response duration of 400 ms, i.e., extending over
50 samples, and bandwidth of about 25 Hz, large enough
to pass all signal components. The filter is not made nar-
rower so the conditions of next section where the prepro-
cessing is to be as simple as possible are best replicated.
Fig. 3 superimposes the phase paths of the true process
(a), of SPW (b), and of APW (c). It is clear that APW
has lost track, while SPW holds the noisy environment
well, its phase estimate being almost undistinguishable
from the true process. Also, SPW provides an estimate
for the phase rate which, as shown in Fig. 4, is in good
agreement with the phase rate of the real process.

Experiment 2: fy = 15Hz; g = 0.5, r = 5 x 107°

In this experiment, besides the higher frequency f;, the
phase noise variance ¢ is boosted up. The Burg spectrum
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Fig. 4. Experiment 1: low-pass phase rate. (a) True process. (b) Statistical
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Fig. 5. Experiment 2: low-pass phase. (a) True process. (b) Statistical
phase unwrapper estimate. (c) Atan phase unwrapper estimate.

estimated the frequency contents of the signal to lie be-
tween 15 and 25 Hz. Figs. 5 and 6 repeat for the present
experiment Figs. 3 and 4, confirming the observations
made above.

Experiment 3: fo = 15Hz; ¢ = 0.5, r =35 X 1078

The signal values are as in the previous example; the
noise level is increased by 10 dB. The noise is now of the
same strength of the signal. This experiment is targeted
to showing how SPW behaves when there are misfits in
the model. The LPF used has a cutoff frequency at ap-
proximately 5 Hz, well below the bandwidth of the low-

100
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2. 400 6.00

200

0.000£+00

2.00

0000Es00 300 600 900 150 180

120
TIME(SC)

Fig. 6. Experiment 1: low-pass phase rate. (a) True process. (b) Statistical
phase unwrapper estimate.
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Fig. 7. Experiment 3: low-pass phase. (a) True process (ag = 0.5, ¢ =
0.5). (b) Statistical phase unwrapper estimate (ag = 0.3, 9 = 2). (©)
Statistical phase unwrapper estimate (oo = 0.3, ¢ = 0.2). (d) Statistical
phase unwrapper estimate (oo = 0.2, ¢ = 0.2).

pass signal. At midpoint of the data span, the chirp signal
falls outside the filter band. In the first half of the obser-
vation interval, at the input of SPW, there are signal and
noise. In the second half, the signal is missing, resulting
in a basic inconsistency between the model and the (sim-
ulated) real world. The SPW was run several times over
the same data, each run being fed with a different set of
assumed values of the chirp parameter o and of the phase
noise variance q. Figs. 7 and 8 display the phase and phase
rate results. In the first half of the record, there is a rea-
sonable agreement between all estimates and the true pro-
cess, irrespective of the offsets in the parameters. In the
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Fig. 8. Experiment 3: low-pass phase rate. (a) True process (ap = 0.5, ¢
= 0.5). (b) Statistical phase unwrapper estimate (og = 0.3, ¢ = 2). (c)
Statistical phase unwrapper estimate (op = 0.3, ¢ = 0.2). (d) Statistical
phase unwrapper estimate (o = 0.2, ¢ = 0.2).

second part, the SPW exhibits a remarkable behavior. It
is apparent that each SPW follows a different path. The
absence of the signal being unknown to the algorithm, the
data being the same, it is concluded that the filter follows
in the second half of the observation interval, a path which
is principally determined by the prior statistics assumed.
Said in other words, when the signal is present, to a large
extent, SPW is insensitive to offsets in the parameters’
values, filtering being the dominant mode. When the sig-
nal is absent, the model assumed in the design of SPW no
longer is in accordance with reality, prediction prevailing
over the behavior of SPW. In a real-world application,
this behavior is useful to test for inconsistencies between
the model and the physical system.

VII. PROCESSING OF THE ARCTIC DATA

Recalling from Section II, the signals to be analyzed
were generated by a highly stabilized crystal source vi-
brating at a nominal 15 Hz frequency. They propagated
about 300 km, being received by a 24 channel L-shaped
array with leg span of 800 m. The sampling rate of digi-
tization was 250 Hz. The receiving system response rolls
off at 80 Hz; this is well above the Nyquist rate. The basic
steps of the processing are summarized in Fig. 9.

In [14], the structure of Fig. 9 was used, with inter-
mediate stages of decimation applied. The filters were
FIR’s of 500 sample points duration. After sufficient dec-
imation, the final LPF had a bandpass of 128 mHz cen-
tered on the demodulated tone. This processing signifi-
cantly reduced the noise-induced fluctuations on the phase
process, the arctan providing a highly stabilized phase
path. There were observed, however, unexplained peaks
of very short duration. Identification of these fast events
with the well-known cycle slip phenomena associated with

20 rrgem= BpF || Qued_ | I o] [PHASE Gin)
FORMER DEMOD. UNWRAP.

Fig. 9. Arctic data block processing.
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Fig. 10. (a) Phase path in [14, Experiment 4]. (b) Signal amplitude in [14,
Experiment 4].

phase unwrappers (see [17], [18]) is precluded because
they did not correspond to an integer multiple of cycles,
but rather to a fraction of a cycle. Because the dynamics
of ice flow are much slower than the spikes’ duration, it
is unlikely that such fast phenomena were due to the tem-
porary annihilation of a strong signal path.

To diagnose if they are or are not artifacts of the pro-
cessing, it is important to process the data of individual
hydrophones and to use shorter FIR’s, the latter requiring
larger filter bandwidths. In either case, the noise-to-signal
power ratio is increased, the arctan phase unwrapper
(APW) loses track, and the spikes are masked by the rapid
succession of cycle slips. The stochastic phase unwrapper
(SPW) of Sections IV and V is here applied. The data
analysis pursued corresponded to several versions of the
sequence described in Fig. 9. For the sake of brevity, only
a representative set is reported here. It conveys and is sup-
portive of the general conclusion provided by all the ex-
periments that were carried out. Both beam-formed and
individual sensors’ data are studied. The analysis detailed
below focuses on an interval of 150 s about the first spike
identified in log 4 [14, Fig. 12], here reproduced for il-
lustration purposes in Fig. 10(a). Fig. 10b, also of [14],
shows the corresponding amplitude fades. The second
spike of the same log was also the subject of our study,
with identical conclusions about its nature having been
reached. Due to space limitations, we do not present here
the corresponding analysis.

To help with the identification of the main features of
the received signals, Burg spectral estimates are con-
structed (see Fig. 11) for the beam-formed Burg spectrum
(160 poles). Besides the low-frequency contents deriving
from struming and array vibration, one distinguishes in a
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Fig. 11. Burg spectrum (160 poles): beam former.

background of wide-band noise the tone of interest at 15
Hz and a vestigial 60 Hz power component. The bandpass
filter (BPF) and the low-pass filter (LPF) of the schema
in Fig. 14 were designed via the Remez-Exchange algo-
rithm. The BPF is centered at 15 Hz with a passband of
10 Hz. The LPF has a half-bandwidth of 5 Hz. The filters’
impulse responses have equivalent durations of 50 points.
Compare these values to the 64 mHz cutoff frequency and
500 points duration for the impulse response in [14].
Decimation with a factor of 2 was used only before LPF
so that the FIR’s of both filters are, respectively, 200 and
400 ms. This is much smaller than the duration of the
spike; it is then possible to rule out improbable but pos-
sible rare events like loss of a clock pulse in the recording
equipment.

Application of SPW requires a suitable statistical
model. The phase process of the tone generated by the
crystal is taken as a second-order linear process (see Sec-
tion IV or in Section VI take oy = 0), the narrow-band
signal being assumed a pure sinusoidal carrier whose fre-
quency is chosen at the receiving end as the peak of the
Burg spectrum. An unintentional downward trend exhib-
ited by the phase paths below is a result of a slight offset
of this assumed frequency with respect to its real value.
The statistical parameters, namely g and r (see again Sec-
tion VI), are not known exactly. A reasonable estimate of
the noise-to-signal ratio for the beam-formed data can be
obtained from [14]. Alternatively, it can be estimated from
the Burg spectral estimates. From Section VI, it is learned
that the SPW is robust with respect to perturbations on the
exact values of the parameters, and that if filtering is the
dominant mode, the global behavior of SPW is not af-
fected by these offsets. If the model misfit is too large,
then Experiment 3, Section VI says that the SPW re-
sponse is markedly different. The processing results are
now examined.
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Fig. 12. Statistical unwrapper phase: beam former.
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Fig. 13. Atan unwrapper phase: beam former.

The spike of concern is located about 250 s after the
signal has been turned on in log 4. The data analyzed cor-
respond to the interval [220 370] s. The origin of the time
axes in all figures is relative to the lower end of this in-
terval. Figs. 12-14 concern the beam-formed data. Fig. 12
shows the phase path reconstructed by the SPW, while
Fig. 13 displays the corresponding APW curve. SPW
shows no cycle slips, while APW extends on the same
time interval over about 50 cycles. The latter provides no
clues, the spikes masked by the rapid succession of slips.
At the SPW output, it is readily apparent that on or after
the 240 s time reference (0.4 min in the figures horizontal
labelings ), the phase slips down with a fast trend to an
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apparent recovery, followed by a fast down trend again,
finally locking on the slow global trend. The event lasts
for less than 18 s. The burst is also apparent from the
frequency rate path provided in Fig. 14. A rough evalu-
ation of the total difference between the upper (left) and
lower (right) downward dominant trends, before and after
the spike, shows a loss of approximately 0.6-0.8 of a
cycle. Being less than 1 cycle, it cannot be attributed to
a temporary loss of lock of the type occurring in phase
and frequency modulation systems, known as cycle skips.

Fig. 16. Atan unwrapper phase: Channel 2.

. N
' blow up of
V\/\/‘ 1st phase spike
—

/

-0.167 -0.833E-01  O000E+00

PHI CYC.
-0.250

@
g
]
<
<
g
%AOO 0425 0450 0475 0500 0525 0550 0820
T MN N

Fig. 17. Statistical unwrapper phase: Channel 10 (blow).

Figs. 15-20 repeat similar processing curves for the
SPW and the APW tracks for individual sensors. Note the
different vertical scales. The SPW phase again has a dy-
namic range of less than two cycles (see Figs. 15 and 19),
the down trend being caused by the small offset in the
center frequency of the quadrature demodulation block.
APW has at least an order of magnitude larger dynamic
range (Figs. 17, 19, and 21). In all SPW pictures, at the
same time frame (and discounting the relative delays be-
tween sensors), the presence of a similar spiky pattern is
distinguished in the phase process and its rate. The cor-
responding APW’s curves are inconclusive. From sensor
to sensor, the noise environment changes. In particular,
in channel 10, the noise is much stronger than in other
channels. By retuning the statistical parameters of the
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SPW, it is still possible to enhance the phase path, clean
the noise, and exhibit the pattern of concern (see Fig. 17)
where a blow of the SPW phase is presented.

Further experiments were carried out with the beam-
formed and individual channel’s data where different BPF
and LPF filters were used and where SPW was provided
with alternative values for the model parameters. Con-
sistently, the same spiky behavior was obtained, the
curves being very similar to the ones shown. The insight
provided by Experiment 3, Section VI justifies then the
conclusion that this impulsive event is an intrinsic feature
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Fig. 20. Atan unwrapper phase: Channel 20.

of the recorded data, and that it is not artificially intro-
duced by the processing. We can only speculate on its real
causes: either one path becoming temporarily dominant
or a glitch showing in the source.

VIII. CONCLUSION

The following are relevant issues drawn from the work
described.

* An alternative to the phase unwrapping of time se-
quences was presented, designed via the techniques of
stochastic nonlinear filtering theory. Taking into consid-
eration the noisy nature of the phase instability and of the
measurements disturbances, a reliable unwrapping is
achieved.

¢ The statistical phase unwrapper (SPW) performance
depends upon the nature of the misfits between the model
underlying the design and the real world data. Errors re-
sulting from offsets of the assumed parameter values af-
fect the local behavior, but do not imply global diver-
gence between the responses of differently tuned SPW’s
processing the same real data. Errors corresponding to
basic misadjustments between the model assumptions and
the real world translate into lasting long-term effects in
the SPW response, with each differently tuned SPW ex-
hibiting its own distinct phase path (see Section VI). With
detuning errors, the SPW reacts dominantly in a filtering
mode. With model mismatches, the predictive mode is
prevalent in the SPW response.

® The previous remark says that the SPW is robust to
parameter errors, and that it can be used to resolve fun-
damental inconsistencies between the model and the real
physical system. This suggests that the nonlinear algo-
rithm has a finite memory span, being able to switch be-
tween regions of operation. In one region, greater reliance
to new input data is given, while in the other, greater em-
phasis is placed on the prior knowledge.
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® Due to its robustness to imprecise knowledge of the
parameters values and to higher noise levels, the SPW
supports more flexible preprocessing. The necessity of
beam forming may be waived, and the prefilters required
to clean the data may be designed with shorter responses
and larger bandwidths.

¢ Application of the SPW to the Arctic data shows that
the spiky pattern of concern is present in' both beam-
formed and single sensors data and when differently tuned
SPW’s run over the same data. The widely distinct con-
ditions of operation (faster FIR’s, beam forming and un-
beam forming, largely different levels of noise-to-signal
power ratios) leading systematically to the same consist-
ent global behavior support the conclusion that the im-
pulsive behavior is not a processing artifact; rather it is
an intrinsic characteristic of the recorded data. The exact
origin, e.g., source transient, recording malfunctioning,
is not clear. But with high confidence, the SPW helps to
rule out the demodulation processing as one of its causes.

® The work has described an application of nonlinear
stochastic filtering theory to a real world problem. The
flexibility provided by the SPW and its resistance to noise
justifies its wider use in environments where the signal-
to-noise power ratio is small, as typically happens in un-
derwater acoustics.

APPENDIX
For simplicity, the Appendix corsiders the updating
equations for the one-dimensional linear phase model
é[n + 1] = a¢[n] + u[n]

.(see Section IV for details). They are as follows.
Prediction:

P 2 _F

a,,=aa,,_1+q
pn(i) =apf_(i) i=1,---,Nf
Knp(l)=Kf—l(i) i=19"'aN§

where ¢ is the variance of the noise u[r]. Recall from
Section V that

NP = NE_ .
Filtering:
1
T TR
wh(i k) = pf(i) + of (o)™ [wH(0) = wb(i) + k2n]
i=1, - ,Nf
Ki(i, k) = K7(i) G(p7/(0) + k2w, o) + oy, pr(i))

k=Jy+ 1, -, J +J.
The resulting number of modes is
NI = NPJ.

After the filtering recursion is accomplished, projection
as described in Section V is carried out, and the modes

are renumbered. To obtain a true density,-the weights are
then normalized.
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