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o and [; Beamformers: Recursive
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Abstract— In this paper, we study array beamformers as
optimal waveform estimators. We apply an inverse problem
formulation, presenting an integrated design to quadratic (l2)
and least absolute value (/;) beamformers. The general solution of
the > beamformers is parameterized by a regularizing parameter
that weights the confidence placed by the designer on prior knowl-
edge versus the quality of the measurements. This regularizing
parameter is used to establish an equivalence between alternative
1, beamformers. We then develop time-recursive implementa-
tions of the /> and !; beamformers. The performance of these
beamformers is studied next. We show that 1) in the presence of
correlated arrivals, the MMSE beamformer uses constructively
the correlation between incoming signals in reconstructing the
estimated field, while rejecting the uncorrelated returns, and 2)
the I, beamformer has the ability to adjust itself to unexpected
noise conditions because it is considerably more robust than the />
beamformers to unmodeled impulsive noise or to the occurrence
of malfunctioning sensors. The analysis is confirmed by simulated
studies.

I. INTRODUCTION

EAMFORMERS provide spectral estimates of signals
with temporal and spatial contents, e.g., directional prop-

agating fields. The minimum noise power and the minimum
variance distortionless signal response (MNPDR, MVDR)
beamformers [7], [9] are examples of such well-known op-
timum quadratic (I3 norm) receivers. In this paper, we are
concerned with the integrated design and the study of the
performance of beamformers considered as array processors
yielding optimal waveform reconstruction. We adopt an in-
verse type approach [22]. This inverse problem approach
captures several alternative beamformers in an integrated
formulation [3]. We study in detail l; and {; beamformers.

The beamformers’ structure is parameterized by a regu-
larizing parameter «. For the /> beamformer, we show how
specific choices of «, combined with the assumed noise
statistics, lead to alternative beamformers like the minimum
mean square error (MMSE) {4], the MNPDR, the MVDR, or
the conventional delay-and-sum (DS) beamformers.

We present recursive implementations for the Iy and I3
beamformers that are based on the Kalman-Bucy filtering
theory [15], [16].
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We turn then to the beamformers’ performance study, ad-
dressing two situations of practical interest. The first is when
there are correlated arrivals. The MMSE beamformer com-
bines coherently all the correlated replicas of the desired
signal. This behavior is quite different from that exhibited
by the MVDR beamformer, where correlated arrivals are
known to cause signal cancellation. In this case, the MNPDR
beamformer nulls the correlated arrivals as if they were
undesired noisy interferences, whereas the DS beamformer
acts like a conventional filter designed on the spatial fre-
quency (wavenumber) domain. The superior performance of
the MMSE beamformer for coherent signals is due to the use
of prior knowledge of the desired signal. Although this may
be a problem in some applications, there are other situations
where prior knowledge is available. Underwater robotics,
particularly autonomous vehicles technology, is an important
emerging field of research and development. Clearly, a true
autonomous behavior requires an acoustic communication link
between the vehicle and the base station [2]. In addition, it
is necessary for the base station to locate and to track the
vehicle’s trajectory. In both cases, the receiver has knowledge
of the signal power spectrum, thus enabling the use of the
MMSE beamformer in order to take advantage of the multipath
propagation. The second situation of interest is when the actual
noise conditions depart significantly from the model assumed
for the noise. Although both I5 and I/; beamformers exhibit
comparable behavior when the observed noise follows the
prior assumed statistics, in the presence of unmodeled noise
conditions, they have quite distinct performances. This results
from the adjustable features of I; processors [5], [11], [17],
[241, [26]. Contrary to what happens with [ processors, which
consider all the noise samples as representative of the assumed
statistics, [, processors adjust themselves to unexpected (less
probable) noise samples. We study the case of unexpected
impulsive noise with a power level that is much stronger
than that of the background noise. We prove that the output
error power of the 2 beamformer is essentially determined
by the power of the impulsive noise. On the contrary, the
I, structure adjusts itself to the observed noise conditions
providing signal estimates where the input noise impulses are
strongly attenuated. Simulation studies confirm the analytical
results derived.

The paper is organized as follows. In Section II, we in-
troduce beamforming as an inverse problem. We consider
inversion strategies based on I3 and {; norms. For the I, norm,
we derive the MMSE beamformer and show how other known
beamformers are captured by this integrated design. In the I
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case, we show how the beamformer gains are adjusted by
the level of the residues at the output of the beamformer.
Section III develops recursive implementations for both [y
and [/, beamformers. Performance studies are carried out in
Section IV, particularly for scenarios where correlated arrivals
or outliers are present. Simulation results are reported in
Section V. Finally, Section VI lists the main conclusions of
the paper.

II. BEAMFORMING AS AN INVERSE PROBLEM

The inverse approach is frequently used to solve reconstruc-
tion problems in situations where the involved signals are not
measured directly. In this section, we address beamforming as
an inverse problem.

A. Problem Formulation

In beamforming, the goal is to estimate waveforms arriving
from known directions, given a set of noisy measurements
collected by an array of N sensors. We restrict our attention
to the narrowband beamforming problem. Let

2(k) = a(8)z(k) + w(k) .1

be the complex envelope of the (N x 1) vector of observations
at time k, where z(-) and w(-) are the complex envelopes of
the desired signal and of the noise, respectively. The problem
is to find the best estimate of z(-) in the sense of minimizing
the generic cost functional

J = di(2(k) — a(8)z(k); Rp') + adz (z(k); R;')  (2:2)
where d;(-; R;') represents a suitable norm defined using
the metric R,;' and similarly for da(-; R;!). In general, the
positive definite metrics on which the norms d; and dy are
defined are arbitrary. In this paper, we adopt a statistical
context, R,, and R, being interpreted as noise and signal
covariances, respectively. The first term in (2.2) constrains
the residues, whereas the second constrains the solution. The
regularizing parameter « adjusts the confidence of the designer
on the prior knowledge about z(-) versus reliance on the
observations. For @ = 0, total confidence is placed on the
measurements. This corresponds to situations where no prior
knowledge about the desired signal is available. For o # 0,
dy(-;-) penalizes the cost associated with the noise model,
whereas da(+; -) has a smoothing effect on the solution, forcing
it to follow the assumed prior signal model.

The norms that we consider are [, norms of /V-dimensional
vectors s in the metric of the positive definite matrix R,. These
norms result from the generalization of the usual quadratic
norm s¥ R71s ((-)H denotes transpose conjugate) defined for
non-Euclidean spaces with metric Rs. For 1 < p < oo, we
define these norms to be

(RO = [i (|\71/1\_i|>p]%

n=1

(2.3)

where {\,})_, are the eigenvalues associated with the nor-
malized eigenvectors {v, }_; of R,. It is easy to verify that
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(2.3) satisfies all the axioms of a norm. Notice that for B, = I,
the general definition (2.3) becomes the usual [, norm

N 7
bp(s) = [Z Isnl”]
n=1

where s, denotes the nth element of vector s. Let S be the
space of vectors s spanned by the orthonormal basis {vn }5—;.
Then, (2.3) weights the contributions of the components of s
along each direction v, by the inverse of the standard deviation

Vu.

2.4)

B. Quadratic Beamforming: p = 2

Using quadratic norms p = 2, the cost functional (2.2) takes
the form )

iy = [2(k) — a(@)a(k)]" R, z(k) — a()z (k)]

+ oxB (kYR z(k) 2.5)

where R, and R, are the noise and the signal covariance
matrices, respectively. The minimum of (2.5) is achieved by

i(k) = [aR;" + a# (0)R7 a(8)] " a (O) RS 2(k). (2.6)

This is the general solution for the /2 beamforming problem.
Cases of interest are @ = 0 or @« = 1. In the following
paragraphs, we consider instances of interest of this general
result.

1) MMSE Beamformer: Assume that 1) a = 1, i.e., prior
knowledge and measurements are balanced in the cost func-
tional (2.5), and 2) signal and noise are statistically indepen-
dent. Equation (2.6) takes the form

FMMSE(Ry = R RT12(k)
= [RZ + o™ (O)R; a(6)] o™ (9) R, 2(k) 2.7)

where
R, = a(8)R,a"(8) + R, (2.8
is the spatial covariance matrix of the observations and
R.. = R.a*(0) 2.9)

is the cross-covariance between the signal and the observa-
tions. The [, beamformer (2.7) is the MMSE solution provided
by the optimum Wiener filter [23]. Notice that with oo = 1,
minimizing (2.5) is equivalent to computing the maximum a
posteriori (MAP) signal estimate for the Gaussian signal in
Gaussian noise problem.

2) MNPDR and MVDR Beamformers: With o = 0, abso-
lute confidence is placed on the measurements. Equation (2.6)
yields
z(k).

H -1
‘,i,MNPDR( ) = a” ()R, (2.10)

"~ aH(0)Ry'a(8)

This formula specifies the MNPDR beamformer and gives the
maximum likelihood (ML) signal estimate for the unknown
signal in the Gaussian noise problem. It is known that when
signal and noise are statistically independent, the MNPDR and
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MVDR beamformers are equivalent [6], and (2.10) can be
written as

af(O)R;!
a# (6)R:"a(6)
is replaced by the

.'EMVDR(]C)

z(k) (2.11)
where the noise covariance matrix R,
observations covariance matrix R,.

3) Conventional Beamformer: If no prior knowledge is
available about the desired signal and about the structure of
the noise covariance matrix, we make « = 0 and R, = I
in (2.6), which leads to '

a(8)
@)@ ")

i.e., to the conventional delay-and-sum (DS) beamformer.

PS(k) = 2.12)

C. Least Absolute Value Beamformer: p = 1

As an alternative to quadratic norms, we consider now the
least absolute value or [; beamformer. We take, in (2.2), d1(-;-)
to be the I; norm p = 1. In Section IV, we will show that this
beamformer is capable of adjusting itself to the environment
conditions and is robust when outliers are present. The general
cost functional (2.2) takes the form

N o, H
k
=2y )
n=1 n

The first term in the right-hand side is the /; norm of the
residues vector

+ ozt (k)R Yz (k). (2.13)

r(k) = z(k) — a(0)x(k) (2.14)
in the metric B! where
N
= Zvn/\ v} (2.15)
n=1

The factor 2 is a normalizing constant. Differentiating (2.13)
with respect to z(-) and equating to zero yields the nonlinear
equation

[aR;! +a®(9)Q7" (K)a(8)]z(k) = a® (H)Q 7 (k)=(k)
(2.16)
where
2.17
Z T rao iy
Here Q! plays the role of the noise inverse kernel R31

in (2.6). Equation (2.16) can be solved using, for example,
the reweighted least squares algorithm [24]. Let &;(k) be the
solution of (2.16) at time k and iteration ¢; then, at iteration
1+ 1

af(0)Q; (k)= (k)
aRz' + o (0)Q; (k)a(h)

where, according to (2.17) and (2.14), Q; (k) depends on
the residues vector at the ith iteration. This algorithm can
be initialized using, for instance, the MVDR solution (2.11)
discussed in the previous subsection. As mentioned before, the

Tiy1(k) = (2.18)
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previously known kernel RZ! is here substituted by Q7'(-),
which depends on the actual value of the residues. In (2.17),
|vE (k)| measures the length of the component of the residues
vector along the noise eigenvector v,. Using (2.17), the
numerator of (2.18) can be rewritten as

XV [ (8)va] vl 2(k)]
=2 <|v{:’n(k)|> An :

=t (2.19)
The filtering operation in (2.19) attenuates the components
of the observations v z(k) responsible for large residues
[vEr;(k)] > V., enhancing those that best match the
desired field |vZ r;(k)| < v/An. This discussion brings out an
important property of the [; norm solution for the beamforming
problem: its capability of adjusting itself to the noise condi-
tions. If the observation noise does not follow the assumed
model, as, for example, when outliers are present, some of
the residues will be large when compared with the standard
deviation of the respective noise components. Equation (2.19)
shows that essentially only the observation components not
affected by the occurrence of outliers are used to perform the
signal estimate. This is even more apparent when R,, = o3, 21,
where it follows that

aH(6)Q7 (k)= (k)

o™ (8)Q7 (k)z(k) Z i n(0)zn(k)

i.e., sensors where measurements lead to large residues
|:, (k)] > 1 are practically discarded by the processing.

1II. RECURSIVE IMPLEMENTATION
* OF THE l; AND [ BEAMFORMERS

In Section II, we used the inverse approach to design [ and
l; beamformers. Here, we will derive time recursive imple-
mentations of those beamformers. With no loss of generality,
the following introductory discussion is presented in the [y
norm context.

Consider the problem of reconstructing the field (k) as
an l; inversion problem specified by the functional (2.13).
This may be solved by iterative schemes, namely the gradient
algorithm, where each iteration is obtained by correcting the
previous estimate with the functional’s gradient evaluated at
the previous iteration. For the problem under consideration

&i1(k) = &i(k) + p[—aR7 &:(k) + o (O)Q7 (k)ri(R)],
(3.20)
where yu is a parameter that controls the convergence of
the algorithm. When the signals are slowly varying relative
to the sampling period, it is conceivable that a convergent
algorithm can be implemented recursively in time without a
significant performance degradation. The assumption of slowly
varying signals is verified in applications, such as time domain
beamforming, where oversampling techniques are used [19].
Iterating on the time index k instead of the index ¢ and
grouping terms, the iterative scheme in (3.20) is written as

ik +1) = (1 - paR;")i(k) + pa™ (0)Q ™' (k)r(k). 3.21)

This is a time-recursive scheme where the dynamics follows
the prior knowledge about the desired signal as corrected by
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the residues 7(k). This suggests the use of Kalman-Bucy
filtering theory to design time recursive beamformers. Within
this framework, the prior knowledge about the signal to be
estimated is modeled using a state space representation. This
is discussed in the following paragraph.

A. Signal Model

We define a low pass representation for the complex en-
velope of the signal which is described by a difference
equation. We notice that model selection can be critical since
a possible model mismatch may cause the divergence of the
beamformer output. For instance, using a reduced order model
in order to decrease computational complexity can be re-
sponsible for severe performance degradation. The discussion
of these relevant problems, which have been addressed by
several authors in a number of papers, is beyond the scope
of this paper; see [1], [8], [12]-{14], [18], [25]. Nevertheless,
for the important applications considered in Section I, prior
knowledge of the desired signal is available, enabling the
specification of an accurate signal model. Here, to avoid
unnecessary complications, we proceed in the simple context
of a first-order signal, whose complex envelope is specified by

ok +1) = fo(k) + u(k + 1), (3.22)
.’E(O) =g

k=0,1,...

where the condition |f| < 1 insures stability. The initial
condition ¢ is a zero mean complex random variable with
variance Py, and u(-) is a complex white sequence with spec-
tral level R, that is statistically independent of zo. For both
zo and u(-), the inphase Re{-}(Re{-} denotes real part) and
quadrature Im{-}(Im{-} denotes imaginary part) components
are statistically independent and identically distributed.

B. Self-Adjusted 1, -Recursive Beamformer

We first consider the recursive implementation of the Iy
beamformer. The /; inversion problem is formulated as fol-
lows: Given the set of observations Zr41 = {z(m)}5t}
and the model (3.22), determine the sequence of estimates
{#(m)}F+},. By analogy with the Kalman-Bucy filtering
theory, the {; cost functional is written as

Sy =2y Ll 4 1) — a@)z (e + 1)

n=1 \/j\;
+ afll w(k) = #(k) sy + 1 ulk +1) 3]

(3.23)

where ||()[|%-1 = () R7(-), and P(-) is the error covari-
ance. The problem is to compute z(k), z(k+1), and u(k+1)
that minimize (3.23) subject to the constraint (3.22). We use
Lagrange multipliers. Let Li4, be the Lagrangean

= Jk+1(xk+1,zk,uk+1)
+ 2Re{v*[z(k + 1) — fz(k) — u(k + 1)]}

where v is the Lagrange multiplier. Equating to zero the partial
derivatives of the Lagrangean with respect to z(k), z(k + 1),

Lyt
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and u(k + 1)
aP7Y(E)[z(k) — #(k)] — fv* =0
—aH(9)Q Yk + 1)[2(k +1) — a(@)z(k + 1)] +v* =0
lu(k +1) —v* = 0.
(3.24)

These are necessary conditions for the existence of a minimum.
In (3.24), Q1(-) is as defined by (2.17). This nonlinear system
of equations can be linearized by approximating the residues
(2.14) by

re(k+1) =2(k+1) —a(f)ir(k+1)

where &1 (k + 1) is the predicted value of z(k 4 1) given the
previous estimate Z(k) = E{z(k)|Z:}:

Zk(k +1) = E{z(k + 1)|Zkc} = fa(k).
Using this linearization, the solution of (3.24) implements the

{, beamformer by a time-recursive algorithm, here denoted as
the [;-recursive beamformer.

1) Initialization:

£(0)=0
PO)=P =1
2) Prediction:
gr(k+1) = fi(k) (3.25)
Pi(k+1) = |f|*P(k) + R. (3.26)
3) Residues and adjusted gain:
re(k+1) = z(k +1) - a(G).ik(k +1) (3.27)
Q' k+1) Z T_W (3.28)
a1 H -1
EH(k+1)= 1+ ‘1113:22 i i;aHEzgg E:Ii;a(ﬁ)
(3.29)
4) Filtering:
#k+1) =drk+ 1)+ K¥(k+re(k+1) (3.30)
5) Updating of the error covariance:
P(k+1)=[1- K¥(k+1)a(8)] Pe(k + 1)
x [1—a®(0)K(k +1)]
+KH(k+ DR, K(k+1)
(3.31)

where P(-) denotes the error covariance conditioned on
the predicted residues.

Equations (3.27)~(3.30) show the property of the I; beam-
former of adjusting itself to high values of the components of
the residues, as mentioned before.

The derivation of this algorithm was based on the as-
sumption of uncorrelated observation noise and signal. If the
observation noise is correlated with the desired signal, as it
is the case when multipath propagation occurs, the algorithm
can be easily modified using the well-known augmented state
vector technique [14].
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C. lz-Recursive Beamformer

Model (3.22) may also be used to derive a time-recursive
implementation for the /; beamformer. The functional to be
minimized subject to the model restriction (3.22) is now

Tis1 = |lz(k +1) — a(®)z(k + 1]

+ allo(k) = &)1 + llulk + D% .
(3.32)

The result of this minimization problem is specified by a
discrete Kalman-Bucy filter matched to the signal model
(3.22).

l2-Recursive Beamformer:

1) Initialization:

2) Prediction:
Use (3.25) and (3.26).
3) Kalman gain:

a ' Po(k+ 1)a¥ ()R (k +1)

14 a 1Pk +1)a(§)Rz'(k + 1)a(h)
(3.33)

Kk +1) =

4) Filtering:
Use (3.30).
_ 5) Updating of the error covariance:

Pk+1)=[1-K*(k+1)a(8)] Pc(k +1)
+(1-a)KH(k+ 1D)R,K(k+1) (3.39)

The structure of this algorithm is similar to that of the ;-
recursive beamformer. There is, however, an important
difference. When comparing (3.33) with (3.29), we see
that the ly-recursive beamformer lacks the adjustable
feature of the /; beamformer since the Kalman gain in
(3.33) is completely specified by the prior knowledge
about the observation noise.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the [; and
I, beamformers. First, we study the behavior of the MMSE
beamformer in the presence of correlated arrivals. We show
that the MMSE beamformer uses this correlation to improve
the output signal to noise ratio, in contrast with the MVDR
beamformer, which exhibits signal cancelation [10], [20],
[21]. Second, we compare the performance of the [ and /4
beamformers. Two situations are considered: 1) directional
signal in white noise and 2) directional signal in white noise
and unexpected impulsive noise. In both cases, the statistics
of the background white noise and the signal model are
assumed known. This study emphasizes the robustness of the
I, approach when unexpected noise conditions occur, like
the impulsive noise field. We show that, in the first case
1), the two beamformers have similar behavior, whereas in
situation 2), they behave quite differently: The I beamformer
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is strongly affected by the impulsive noise, whereas the /;
structure strongly attenuates the unexpected noise impulses.

We restrict our attention to the case of linear and uniform
arrays. In this case, the Vandermonde steering vectors a(f)
specifying the directions of arrival are defined by

a(8) = [l,e_j“’”(o), . e*fwo(N-”*(")]T (4.35)
with
d .
7(0) = p sin(6) (4.36)
where
d intersensors distance
¢ propagation velocity
# angle of arrival measured from broadside.
The observations are
z(k) = a(@)z(k) + s(k) + w(k) (4.37)

where z(-) is the desired signal, s(-) models disturbances such
as a directional interference or unexpected noise, and w(-) is
an independent space/time white noise field with covariance
matrix

Ry, =021 (4.38)

A. Correlated Arrivals: MMSE Beamformer

In this section, we concentrate on the behavior of the MMSE
beamformer when correlated arrivals are observed. For this
case, vector s(-) in (4.37) is

s(k) = a(6;)zi(k) 4.39)
where z;(-) is a directional interference arriving from 6;. The
signal and interference covariances are R, and R;, respec-
tively. With generality, we assume that signal and interference
are correlated, the correlation factor being defined by

_ Bfa(R)sr(0)}

4.40
TR, (4.40)

The output of the MMSE beamformer is (see (2.7))
#MMSE(RY = R, R 2(k) (4.41)

which, with our assumptions and after some algebra, yields

2
Zw R, +(1~|p|*)RuR;
j_MMSE(k)Zi( 2 Re+(1-1pl%) o

N A )

o2 T a*(1_ 1.2 .
+ NpVRwRZ BA(I |P| )RZRlaH(gl))z(k)
4.42)
where
o2 2 a2
A= (Ww) + (Ww) [Rz + R +2v RmRiRe{ﬁP}]

+ (1= 18P) (1 - 1]*) Re B; (4.43)
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and
B= —aH(9 Ja(6) = |Ble’*.

The parameter 3 measures the spatial coherence between the
arrivals. Using (4.42), (4.37), and (4.39), it can be shown that
the MMSE beamformer output error covariance PMMSE —
E{|a(k) — £MVSE(k) 2} is

2

PMMSE - 0'12‘, %Rz + (1 - lplz)RzR1

(4.44)

N A

These are new analytical results that can be used to study
the behavior of the MMSE beamformer. We will consider
two limiting cases: i) uncorrelated {p = 0) and ii) coherent
(lpl = 1) arrivals.

1) Uncorrelated Arrivals: We assume uncorrelated arrivals,
ie., p = 0 (see (4.40)). Let the signal/noise and the interfer-
ence/noise ratios be defined by

(4.45)

R.
N Gm o
R;

Then, from (4.42)—(4.44), we can compute the values of the
MMSE beampattern at the look (f) and interference (6;)
directions, which are

SNR

1|82 ;R

B(6) = 1+INB (4.48)
1+SNR 1 - |8 B 558,
and
1 SNR 18]
B(6;) = 4.49)
1+INR1+SNR1 -~ |ﬁ|2——lf}‘§R —li’g{}R
respectively. Dividing (4.48) by (4.49)
INR
B(6) 1 - I6I° L INR
—~ =(1+INR)—————— (4.50)
B ~ TR

we conclude that, at the interference direction, the MMSE
beamformer puts a null whose depth increases with INR. This
behavior is similar to that of both the MVDR and MNPDR
beamformers. However, and contrarily to what happens with
these beamformers, the gain of the MMSE beamformer at the
look direction is no longer unity (see (4.48)). This is balanced
by a stronger noise rejection that leads to a smaller output
error power, as we now show. In fact, for the case under
study, (4.45) takes the form

o2 SNR 1
PMMSE w . (451)
‘N 1+SNR 1- |82 1-1:\11%11 14S_NR

On the other hand, using (2.11), (4.37), and (4.39), we can
compute the output error power of the MVDR and MNPDR!
beamformers as

o?
PMNPDR _ Tw 1

2 _INR °

N 1—|BQ 1+INR

' We recall that for this case, i.e., uncorrelated arrivals, the MVDR and
MNPDR beamformers are equivalent. Hence, PMVDR — pMNP

PMVDR _ 4.52)
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Dividing (4.51) by (4.52), the error power
PMMSE SNR SNR
~— 14 SNR 1+ SNR

confirming the above assertion.
2) Coherent Arrivals: We consider the other limiting case
where

PMVDR PMNPDR 4.53)

p= ej¢P (454)

i.e., except for a phase difference, signal, and interference
differ only on their power levels. The output of the MMSE
beamformer (see (4.42) and (4.43)) is

:LA,MMSE(k)
_1 SNRa® (8) + VSNRINRe’¢»aH (8;)

= k
N 1+ SNR + INR + 2v/SNRINR|B|Re{e’ (¢ +45)} 2(k)
(4.55)

where we used definitions (4.46) and (4.47). From (4.55), we
compute the values of the MMSE beampattern at the look and
interference directions. Doing so, we obtain the ratio

|1 + INR |,3'6J(¢6+¢p

B(®) _

) ‘|5| + /%ez’(wwa

3) Orthogonal or Well-Separated Arrivals: For orthogonal
or well separated arrivals (]3| ~ 0), ratio (4.56) is determined
by SNR/INR. In distinction with what happens in the case
of uncorrelated arrivals of the last paragraph, the MMSE
beamformer exhibits two peaks (one at the look direction
and the other at the interference direction) whose amplitudes
depend on SNR and INR. Instead of rejecting the interference,
the MMSE beamformer uses its correlation with the desired
signal to combine coherently the two replicas.

4) Close Arrivals: For close arrivals (|3| ~ 1), the gains
of the MMSE beamformer at the two directions 6 and 6; are
practically equal. For a better understanding of what happens
in this situation, we analyze the expression of the output error
power. With |3} ~ 1 and using (4.44) and (4.54), (4.45) yields

(4.56)

PMMSE _ SNR
s 1+ SNR + INR + 2v/SNRINR cos(¢,)
4.57)
In the case of zero observation noise (02, = 0), PMMSE = @,

This means that in the absence of observatlon noise, the
output of the MMSE beamformer gives the actual value of the
desired signal. This behavior is quite different from that of the
MVDR beamformer, which, for this case, cancels the signal
of interest [21]. Although signal cancellation does not occur
when MNPDR and DS beamformers are used, the performance
that is obtained is poorer than that of the MMSE beamformer.
Noticing that, with regard to the MNPDR beamformer, (4.52)
is also verified for correlated arrivals, it can be easily verified
that in the present situation, i.e., 8 ~ 1 and o2 = 0, the
error covariance at the output of the MNPDR beamformer
is approximately given by the covariance of the coherent
interference, R;. This is also true for the DS beamformer. As
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we see from (4.57), the behavior of the MMSE beamformer
depends on the particular value of the phase difference bp-
Since

—1 < cos(¢,) <1 (4.58)
we establish the bounds
f’_tzu_ SNR < pMMSE
2 —
Ny (VSRR + VIRR)
o2 SNR
< - 4.5
Sw 4.59)

1+(\/s—N—R_\/m—R)2’

The lower and upper bounds are achieved when signal and
interference are inphase and 180° out of phase, respectively.
We analyze this expression for three relative levels of SNR
and INR.

Case 1 : SNR > INR: Under this condition, the two
bounds in (4.59) are approximately equal, which means that
MMSE _ os SNR

F ~ N 1+SNR’ (4.60)
This is to be expected since it corresponds to the situation
where the interference is absent.
Case 2 : SNR ~ INR: Using this assumption in (4.59)
yields

N 1+ 4SNR

When ¢, = 180° (upper bound in (4.61), the error power at
the output of the MMSE beamformer equals the signal power
R,. This means that, for coherent close arrivals approximately
180° out of phase, the MMSE output power is zero. However,
we are not talking about array signal cancellation but rather of
an effective absence of the signal in the received waveform.
In fact, the assumed conditions are equivalent to saying that
at each sensor the array is observing only noise. When,
at each sensor, the incoming coherent signals are added
instead of being subtracted, PMMSE decreases significantly
and approximates the lower bound in (4.61).

Case 3: SNR < INR: As in case 1, the two bounds in
(4.59) are approximately equal:

(4.61)

PMMSE _ ﬁ SNR )

N 1+INR

The output error power of the MMSE beamformer decreases
when INR increases.

Fig. 1 illustrates the behavior of both the MMSE and
MNPDR beamformers, as predicted by (4.51), (4.52), and the
bounds in (4.59), for the case of spatially close signal and
interference (|8| ~ 1). We can see that the MMSE beam-
former outperforms the MNPDR beamformer in all situations,
particularly for the case of coherent arrivals.

The analysis presented enables us to conclude that the
MMSE beamformer presents a superior performance when
compared to the MVDR, MNPDR, and DS beamformers, its
major advantage resulting from the coherent combination of
correlated arrivals in multipath scenarios. In these situations,

(4.62)
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Fig. 1. Output error power: (a) As a function of INR; (b) as a function of
SNR.

the MVDR beamformer exhibits signal cancellation, whereas
the MNPDR (DS) beamformer rejects (attenuates) the corre-
lated replicas of the desired signal as if they did not convey
relevant information.

B. Directional Signal in White Noise

In this section, we analyze the performance of both the
I; and l, beamformers when the only disturbance in the
measurements is white, i.e., in (4.37), the component s(-) = 0.
The signal model (3.22) is assumed known. Below, quantities
that are subscripted by [; refer to the I} beamformer and
likewise for lo.

1) First-Order Analysis—Bias: We compute the bias of the
I; and I, beamformers. Let the errors at the output of the [
and [, beamformers be £, (-) and &, (-), respectively. From
(A.83) and (A.84) in Appendix A, and using the facts that

E{u(-)} = 0 and E{w(-)} = 0, we get the difference
equations
e’
E{e,(k+1)} = Wﬂ;{%(m} (4.63)
and
E{Ell (k + 1)I{Tm(m + 1)}5;1:0}
_ af
a+ Po(k + 1)1, Sony Irk, (k + 1)|1
- E{e, (k)|{rm(m + 1)}n o }- (4.64)
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Since |f| < 1 and a > 0, (4.63) and (4.64) are asymptotically
stable difference equations so that

Ve, (0) : |E{er, (k + 1)}|k:>°0 (4.65)

and
Ve, (0) : |E{er, (k + D|{rm(m + 1) ’,3,=0}|k:; 0 (4.66)

i.e., the [ and [; beamformers are asymptotically unbiased.

Notice that the convergence rate in the [; case is directly
controlled by the absolute value of the predicted residues.
Smaller values of the predicted residues induce a faster con-
vergence rate. On the contrary, the convergence rate of the
bias at the output of the l; beamformer is prespecified by the
assumed statistics.

2) Second-Order Analysis—Error Covariance: For the pur-
pose of simplicity, assume that o = 0, i.e., that there is no
prior knowledge about the desired field z(-). From (A.85) and
(A.86), we get

02
Pk +1), = 22 (4.67)
and
N -2
Pk +1), = o2 2n=t e (k+ V)] (4.68)

N _
(Xn=t Ire (B + 1)|71)2
respectively. Let 7,;, and ry.x be, respectively, the minimum
and the maximum values of the lengths of the predicted
residues at time k + 1 over all the array sensors. The
conditional error covariance (4.68) takes values in the interval

2 2 2 2

"min Tw "max Tw
Tmin Tw < pky 1), < mexTw o (469)
2. N 't N

In the weak noise case (small values of o’fj), it is likely that the
dispersion of the predicted residues is small, i.e., Tmin = Tmax-
Hence, with high probability

P(k+1), ~ P(k+1),. (4.70)

In other words, for small values of the observation noise
power, the [s-recursive and the [;-recursive beamformers
present, with high probability, similar values for the condi-
tional covariance of the output error. In Section V, we will
verify by simulations this to be in fact the case.

Using the inequality

N N 2
VE, D Ir, (k+ 1) 72 < (Z |7k, (k + 1)|‘1) 4.71)
n=1

n=1
and (4.68), we can write

7.2 0,2

min 2
T‘ﬁ S P(k+ 1)11 < Tye

max

4.72)

Even when the noise is strong, in which case the residues with
a large dispersion are typical, the conditional error covariance
P(k + 1);, is upper bounded by the observation noise power.
No such constraint exists for P(k + 1);,; therefore, depending
on the noise samples, events like

P(k+1), < P(k+1), 4.73)
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have nonzero probability. This observation will be used in the
following subsection.

C. Unexpected Impulsive Noise

We study here the behavior of the /; and [, beamformers
when unexpected impulsive noise occurs. This may represent
unmodeled failures of sensors or spiky noise not accounted
for in the model. This is taken care of by introducing the term
s(-) in (4.37) when analyzing the beamformers but designing
these assuming that no component s(-) is present in (4.37), i.e.,
that the only disturbance present is white noise. This means
that the observed measurements do not follow the conditions
under which the beamformers were designed. We analyze the
situation where unexpected impulsive noise is present.

1) Model of the Impulsive Noise Field: At each sensor, the
impulsive noise sample s, (-) is defined by the product of three
jointly independent random variables (r.v.): a time-indexed
Bernoulli r.v. 5(-), a spatially indexed Bemoulli r.v. T',
and a space/time indexed zero-mean Gaussian r.v. v, (-) with
variance o2. The Bernoulli variables 3(-) and T',, control the
instants and sensors at which there may occur impulses. If
p and py are the probabilities of the events 4(-) = 1 and
', = 1, respectively, then the probability of an impulse
occurring is p px. When this happens, the unexpected impulse
8n(+) = vn(*) is characterized by the statistics of the Gaussian
1.v. o (+). This construction of the impulsive noise is such that
the total noise field, i.e., background white noise w(-) plus
impulsive noise s(-), follows the well-known Gauss-Gauss
mixture model.

2) l; Beamformer: Using (A.87), we get the difference
equation

E{en, (k+ 1) [{rm(m + 1)}o}
a+ Pu(k+ 1)y, Yoy Irw, (6 + 1)
x E{et,(k)[{rm(m + 1)}h o}

4.74)

This result is formally analogous to (4.64), except that here,
the predicted residues have an additional term s(-). Neverthe-
less, since (4.74) is still an asymptotically stable difference
equation, the result (4.66) remains valid. This means that in
spite of the disturbance s(-) not accounted for in the obser-
vations model, the [;-recursive beamformer is asymptotically
unbiased.
Consider again the case a = 0. From (A.87), we have

611(76 + 1)

_ T an@lre, (b + D wa(k + 1) + su(k + )
Yonsi Irk, (k + 1)1

(4.75)

Suppose that this is the first-time impulses occur, after a long
absence of impulses, is at time k+1, i.e., that S(k+1) = 1 and
that p is sufficiently small so that it is reasonable to assume

. Bk —2),B(k — 1), B(k) = 0.
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When the unmodeled noise is much stronger than the back-
ground noise at the malfunctioning sensors, i.e.

o2 > o 4.76)
the probability of the event
lsn(k + 1)] > |wa(k+ 1) @77

is high. Under these conditions, the predicted residues in those
malfunctioning sensors have large absolute values, and (4.75)
can be approximated with high probability by

_En-p %Ol (k + 1| twn(k +1)
Yonoplre (k+ 1)1
(4.78)

where L is the number of failing sensors. The error covariance
conditioned on the residues is then

Yn_p e (k+ 1|72
3-

(Cnr e (b +1)17Y)
This formula accounts for those sensors whose residues depend

mainly on the background noise. As in Section IV-B (see
(4.70) and (4.67)), we conclude that

E[l(k + 1) ~

o (k+1) =0y, (4.79)

Uu)
agll(k-i-l): oL

(4.80)
In the presence of strong impulsive noise (see (4.76)), the
error covariance at the output of the !;-recursive beamformer
depends essentially on the power of the background noise. If
the probability of the occurrence of impulses is small, then
the likelihood that only a small number L of sensors fails
is large and (4.80) approximates (4.70), i.e., the I, -recursive
beamformer behaves much like in the background-noise-only
case. This result shows the robustness of this algorithm to the
presence of outliers.

3) I Beamformer: Assuming the conditions of the previous
paragraph, we can conclude that the error at the output of the
lo-recursive beamformer is also asymptotically unbiased and
that its covariance is

o2 e
_1&+PP#<7 .
N N

oz, (k+1) (4.81)
When the impulsive noise is strong, the second term dominates
the first in equation (4.81), and therefore, ”?;2 depends mainly
on the power of the unexpected impulses. This is in sharp
distinction with (4.80) and says that the performance of the I,
structure deteriorates sharply when outliers are present.

V. SIMULATIONS

In this section, we discuss results of simulations performed
under distinct scenarios representing the situations considered
in the last section. The observations are synthesized using the
model (4.39). The involved directional signals follow the 1st
order discrete state representation (3.22).
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TABLE 1

SCENARIO 1

Direction Mean Power
a=1 (degrees) (linear unities)
Signal 0 1
Interference 1 -15 1
Interference 2 10 1
Noise — 0.5

A. Performance in White Noise and Directional Interferences

Here, we study the behavior of both the I and l; beamform-
ing algorithms in the presence of directional interferences as
well as their performance as a function of the background
white noise power. We consider a situation where a coherent
replica of the desired signal is present.

Scenario 1: Consider a linear array of N = 10 equally
spaced sensors. The intersensors distance is half the wave-
length. Table I specifies the conditions of the experiment.
The desired signal is observed at broadside (§ = 0°) in
superposition with two directional interferences arriving from
# = —15°,10°, and 3 dB stronger than the white noise field.
The source at # = —15° is a coherent replica of the desired
signal. The source signal and the interference at 6 = 10° are
uncorrelated.

Fig. 2 depicts a phase plane representation of the estimation
error, i.e., quadrature component versus inphase component.
The location of the gravity center of the spot determines
the expected value of the error, whereas its covariance can
be qualitatively evaluated by the concentration of probability
mass. An estimate of the error covariance is also presented. Re-
sults of the same experiment performed with the /;-recursive
algorithm are shown in Fig. 3. We observe that the two
algorithms have a comparable behavior. In particular, notice
the similarity between the phase plane representations of
the error, confirming the analytical conclusions obtained in
Section IV-B. Fig. 2(b) shows the beampattern of the Iy
recursive beamformer for a look direction § = 0°. This was
computed using the time average of the Kalman gains as
array coefficients. Notice that, as predicted by the analysis,
the I, beamformer exhibits two main peaks corresponding to
the presence of two well-separated coherent replicas of the
desired signal and a null at the direction of the uncorrelated
interference.

B. Performance in the Presence of Impulsive Noise

In this section, the assumed observations are disturbed by
an unexpected impulsive noise field.

Scenario 2: The conditions of scenario 1 are retained. Table
I specifies the parameters characterizing the impulsive noise
term. Fig. 4 shows a typical record of the magnitude of the
observations process in different array sensors. Notice the
occurrence of high amplitude impulses contrasting with the
typical values of the observations.

In Figs. 5 and 6, we show the results obtained for the
I3-recursive and ;-recursive algorithms, respectively. Notice
the factor of ten difference of scales in Figs. 5(b) and 6(b),
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Fig. 4. Magnitude of the observations at different sensors.

showing clearly that the input impulses are replicated at
the output of the lo beamformer, while they are practically
eliminated in the estimate provided by the I; beamformer.
As predicted by the analysis, the estimated error power at
the output of the /; beamformer is much lower than that of
the Iy beamformer, illustrating its robustness with respect to
the unmodeled impulsive noise term. On the contrary, the
impulsive noise strongly affects the performance of the Iy
structure. For this case, the estimated error power is of the
same order of magnitude of the approximated result obtained
in Section IV; see (4.81).

VI. CONCLUSION

In this paper, we considered the design of beamforming
structures using the inverse problem approach. Within this
framework, the goal is to obtain a space/time processor that
yields the best waveform estimate, given a set of noisy
spatial and temporal measurements and according to some
prespecified optimization criterion. Two kinds of inversion
strategies were considered based on [; and /; norms.

Using this approach, we showed that the general solution
for the I, beamforming problem is provided by the MMSE

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 6, JUNE 1994
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Fig. 5. lz-recursive beamformer in impulsive noise: (a) Phase plane repre-
sentation of the error; (b) time evolution of the error.

TABLE 1
SCENARIO 2

Impulsive Noise

p=04
pg =04
a? = 2500

beamformer. We developed the [; beamformer and empha-
sized its adaptive characteristics. Time-recursive algorithms
for both the /; and I, beamformers were derived using the
Kalman-Bucy filtering theory.

The paper studies the performance of these algorithms,
showing that in the Gaussian noise case, both beamformers
have identical behaviors. We then studied the MMSE beam-
former in the presence of correlated arrivals. This beamformer
uses in a constructive way the correlation between the replicas.
This is in distinction with the MVDR beamformer, which
suffers from the well-known effect of signal cancellation and
contrasts with the MNPDR (DS) beamformer, which nulls
(attenuates) the correlated arrivals. Finally, we compared the
I; and l beamformers when unexpected impulsive noise is
present. Although the I, beamformer performance deteriorates
significantly, the {; beamformer due to its adjustable nature is
quite robust, essentially discarding the information provided
by the failing sensors. The simulation results confirm quite
nicely the analytical results.

APPENDIX A
OUTPUT ERROR OF [; AND /5 BEAMFORMERS

Let

e(k+1) = ok +1) — &(k + 1) (A.82)

be the error at the beamformer’s output at time £+ 1. In (4.37),
assume that s(-) = 0. The error £1,(k + 1) at the output of

the I, beamformer can be computed using (3.22) together with
(3.30), (3.33), (A.82), and (3.27):

e e (k) + u(k + 1)]

P (k+1
OL-{—NL(T-:Z-

s12(1‘/‘ + 1) =

Py (k+1)u,
[+3

— % GH(Gw(k+1). (A83)
o+ NEED
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2 2
o P (k+1
Plk+1)y, = < - Pu(k+ 1), + %k ( C ) -
a+ Pe(k+ 1)1, 3 opeg Ire, (B + 1)1~ Lo+ Pe(k+ 1), Xney Ire, (k4 1)
N o2
x w , (A.86)
nz=:1 e, (k + DI
estimation error 25 sstimation ecror l1-recursive beamformer is
2 o2=.2161 N
10 e, (k+1) = ~
| 15 a4+ Pk + 1)y Yns Irea (K +1)| 72
- v ; X [fer, (k) + u(k + 1)]
3 -104 05 _ Pk(k + 1)11
) ) a+ Pe(k+ 1), SN |re, (k+ 1)1
20 [) 20 0 20 40 60 8 100 N o,
inphase component time < Z ay, () [wn(k + 1) +sa(k+ 1) )
@ ® = |7k, (K + 1))
Fig. 6. 1-recursive beamformer in impuisive noise: (a) Phase plane repre- (A8T)
sentation of the error; (b) time evolution of the error.
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