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Cramér-Rao Bound for Location Systems in
Multipath Environments

Maria J. D. Rendas, Associate Member, IEEE, and José M. F. Moura, Senior Member, IEEE

Abstract—We study the Cramér-Rao lower bound for source
Jocalization in the context of multiple stochastic sources, mul-
tipath propagation, and observations in an array of sensors.
We derive a general expression which is then specialized to sim-
pler configurations and related to results previously reported
in the literature. The special case of a single stochastic source
in a multipath environment is treated in detail. We assess the
relative importance for source localization of the temporal
(multipath) and spatial (array baseline) structures of the in-
coming wavefield. We show that for an array of K sensors the
multipath contribution to the Fisher information matrix can be
interpreted as the contribution of K independent arrays whose
size depends on the number of spatially resolved replicas. We
analyze the degradation due to unknown source spectra. When
the source spectrum is completely arbitrary, source location is
not possible with a single sensor. If a parametric form of the
source spectrum is available, we show that the multipath struc-
ture can be used to locate the source. In particular, localization
with a single sensor may then be possible.

1. INTRODUCTION

HE paper considers the localization of acoustic

sources in the ocean. The source location is estimated
from the directions of arrival (DOA’s) of the wavefronts
present. The current discussion focuses on passive sys-
tems, but many of the concepts and results are relevant to
active systems as well.

In the past, we have considered ranging by exploring
the spatial curvature of the incoming wavefront, either
with an extended array of sensors [12] or with an array
synthetically generated by the relative motions [8], [9].
This procedure was carried out in the context of homo-
geneous medium, where the effects of media boundaries
were neglected. We showed that the relevant information
is contained in the direct source/receiver path.

The presence of boundaries or inhomogeneities in the
propagating channel resulting, for example, from a non-
zero velocity gradient, gives rise to a complex multipath
structure. Multipath is usually ignored or taken as a deg-
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radation effect that deteriorates the performance of sys-
tems based on direct-path-only propagation. Here, we take
a different route and address the question of what can be
gained if the location systems explore to their advantage
the additional information encoded in the temporal struc-
ture of the observed wavefield, i.e., in the set of interpath
delays. This approach is becoming increasingly relevant
due to the progressive silencing of underwater platforms.
The paper studies the local performance of location sys-
tems that explore in a coherent way the information in the
intersensor and interpath delays. We derive the Cramér-
Rao bound for the errors in the location estimates. This
paper considers the following:

1) multipath: Each source is received by the array as
the superposition of several attenuated and delayed
replicas;

2) stochastic multiple sources: The signals corre-
sponding to different sources are stationary wide-
band Gaussian signals, not completely correlated
(coherent) with each other;

3) time invariant delays: Source and receiver have no
relative motion;

4) known array: The observations are obtained from a
multisensor array of known geometry and location.

Going beyond the single path/direct propagation frame-
work, the above assumptions may still be unrealistic in
many practical problems. The context of Gaussian signals
is fairly common in analytical performance studies. The
effects of sensor uncertainty and of array calibration have
been the object of recent studies. Motion and tracking
considered previously in [10], [11] are ignored here. In
the sense that we do not address many of these issues, our
results correspond to a ‘‘best”’ scenario.

Some authors have studied the Cramér-Rao bound for
wide-band stochastic source signals of known spectral
density function. In [2], the Cramér-Rao bound is stud-
ied, considering an array of two sensors and two propa-
gation paths (direct path and surface or bottom reflected
path). In [3], [4], the importance of the multipath contri-
bution for the range-only estimation problem is studied
for two coherent paths. In [6], {7] the closely related
problem of delay estimation for wide-band source signals
with observations in a single sensor is addressed where
the number of paths is confined to three. In [19], the Cra-
mér-Rao bound for the estimation of the location param-
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eters of an arbitrary number of partially correlated nar-
row-band sources is presented. This work uses an
unknown deterministic model for the source signals.

Here, we consider the case of an arbitrary number of
coherent replicas of an arbitrary number of partially cor-
related wideband stationary sources received over an ar-
bitrary number of sensors. We address both the case of
known and of unknown source spectra. In doing so, we
consider a model for the signals different from the one
used by [19] and go beyond the simpler contexts of [2],
(31, 141, [6]. [7].

In focusing on the multipath/stochastic multisource
problem, the paper generalizes work previously reported
in the literature. Briefly, the major points are as follows.

1) Presentation in Section III of a general expression,
(3.11), for the Cramér-Rao bound (CRB) on the error of
the location estimates. This expression is valid for mul-
tiple stochastic sources of known spectral density, multi-
path propagation, and multisensor arrays. The expression
is highly compact. To provide insight into the result, we
interpret it in the context of high signal-to-noise ratio
(SNR)/uncorrelated sources and in the case of multiple
sources/large uniform array/single propagation path.

2) Interpretation of the inverse of the CRB, the Fisher
information matrix (FIM), as the sum of two terms, one
related to the spatial structure of the incoming wavefields
(array effect) and another to its temporal structure (mul-
tipath effect). We show in Section III that these two terms
have remarkably distinct asymptotic behavior with SNR.
While the first grows without limit with SNR, the second
attains a limit that is dependent on the geometry of the
problem. Intuitively, the residual error associated with lo-
calization using the temporal structure has to do with the
error incurred in estimating the source signals.

3) Consideration of the special case of a single source
in a multipath environment that leads, in Section IV, to
(4.4)-(4.7). These equations describe the CRB in terms
of an orthogonal projection matrix and they provide fur-
ther insight into the different behavior of the spatial and
temporal effects. By restricting further the problem, we
show how previously reported results are recovered for
the single source/single path [18], single source/single
sensor [14], single source/single sensor/two paths [5]
problems.

4) Quantitative assessment of the multipath contribu-
tion to the CRB for the case of a single source, see Section
V, in particular (5.18). This result generalizes to a differ-
ent context the bound for a two path configuration con-
tained in [4]. The multipath structure is interpreted in
terms of a virtual array. First, we show that the additional
virtual sensors arising from the secondary paths contrib-
ute significantly only if they are spatially separated. In
fact, the number of *‘virtual’’ sensors that have a positive
impact on the system performance equals the number of
groups of resolved paths. This means for example that
with a single (spatial) sensor, the technique of ‘‘multipath
ranging,” e.g., see [17], cannot have a performance
which is comparable to the ‘‘virtual’” sensor technique

used for triangulation. Second, we prove that the perfor-
mance of a system that uses the multipath structure is not
worse than that of a system accounting solely for the spa-
tial array effects. In fact, for the case where P paths are
resolved, we show that the resulting gain has the form of
the CRB for an array of P sensors receiving a single path,
where both spatial and temporal effects are combined.

5) Study in Section VI, see (6.45), of the problem of
unknown spectra for a single source/multipath context and
its impact on the multipath effects contribution. We dem-
onstrate that, when the spectra is completely unknown,
the information corresponding to the temporal structure is
lost. This result means that a single sensor cannot locate
the source. It is also proved that lacking knowledge of the
signal only affects the multipath contribution to the CRB,
not the term corresponding to the spatial contribution. The
analysis suggests that the method of *‘multipath ranging’’
may be severely adversely affected when the source spec-
trum is unknown. When the spectrum is parameterized by
unknown parameters, we show that the information con-
tained in the multipath structure can be used to advantage.
In particular, single sensor localization is possible. We
quantify the loss term for this case with respect to the case
of known spectrum. This loss depends on the specific
spectral parameterization.

The paper does not assume any particular propagation
model. All the results remain valid as long as the observed
signal is the superposition of attenuated and delayed rep-
licas of the source signal, corrupted by additive noise. In
a companion paper [16], we conduct an extensive numer-
ical study of the Cramér-Rao bound, using a bilinear ap-
proximation to the velocity profile. In the next section,
we describe the model and notation used.

1I. MoODEL AND NOTATION
A. Problem Formulation

Consider the general case of several radiating sources,
each propagating to the receiving array through multiple
paths (Fig. 1.) Each source signal is a zero-mean wide-
band Gaussian signal, which can be partially correlated
with the signals emitted by the other sources. Coherent
signals are assumed to come from the same source.

Let «, be the vector of parameters that describes the
location of source s. For this general configuration, the
signal received at sensor k in the array is given by

5 P
n@ = 2 2 ayst = ) + i

k=1, ,KteT 2.1
where
S number of sources,
P number of paths for source s,
K number of sensors,
Qrsp attenuation from source § to sensor k through

path p,
Ty  delay from source s to sensor k through path p,
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source
receiver

Fig. 1. Geometry.

s,(f) signal emitted by source s,
w,(f) observation noise at sensor k, statistically inde-
pendent from the source signals.

Since the present paper is concerned with the Cramér-
Rao bound, we assume that S and P are known. In 2.1
all the propagation parameters that define the medium’s
response (Py, Qisps Tisp) depend on the source locations o;.
However, we assume throughout this study that P, and
ay,, do not vary significantly with o, and consider only
the dependency of the travel times on «, as it is indicated
in (2.1). Accordingly, we make the following assump-
tion:

Assumption 2.1 (Invariance of Py and ay;,): Ina neigh-
borhood 9« ) of each source location

P(x) = Py(ay), €M), s=1-"",8§
2.2)
0ays,
— =0, aedy); s=1, , S
da |,
k=1, K, p=1,+-,P.
(2.3)

Consider that the observation interval is large com-
pared to the signals’ correlation time (large time-band-
width approximation) and compared to the interpaths de-
lays. The Fourier components of the received signal
become then uncorrelated and given by

s P
re(w) = SZI 21 akspej“’”""ss(w) + wi(w)
=1 p=

k=1, ,K 2.4)

For each source, define the K-dimensional vector h, with
kth component:

PI
[hs(w)]k = Zl akspejw”dp k= 1, st K,
p=

s=1,,8 2.5)

Let r(w) be the vector that collects the K observations
(2.4):
s
r) = Sgll 5o(@) hg(w) + W(w). (2.6)
For each frequency bin, A is the vector that combines the
coherent replicas received from source s. It will be re-
ferred to as the resultant vector. Being colinear with A,

the combination of the replicas corresponding to source s
is thus confined to a one-dimensional subspace of C¥, the
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K-dimensional complex vector space where the observa-
tion vector r(w) takes value. For a single propagation
path, h; reduces to the steering vector for source s which
is usually parametrized by the direction of arrival (DOA).
For multipath situations, the resultant vector h, plays an
analogous role, defining the direction of the K-dimen-
sional space CX that corresponds to the position of the
source s. For a given source location, the resultant vector
is itself a fixed linear combination of P, steering vectors,
each corresponding to a single path.

Finally, let H be the (K X $) matrix with columns /:

H(w) = [h(@hy (@) " hs(@)]. @.7

The covariance matrix of the vector r () can then be writ-
ten as

S,(0) = Hw)S,(@H" (@) + Z(w) (2.8)

where S, (w) denotes the covariance matrix of the source
vector':

S.(w) = E{s(w)s” (@)} (2.9)

and I (w) is the covariance matrix of the observation noise.
For simplicity, we assume that the noise is spatially in-
coherent:

T(w) = S,k (2.10)

where S, () is the power spectral density of the noise.

B. Nomenclature

We present here some definitions that are used through-
out the paper.

One-Form: The “‘one-form’’ 1, is the n-dimensional
vector with all its elements equal to one.

Derivatives: The following two notations for the first-
order partial derivative are used indistinctively: dx/da =
%, When « is an n-dimensional vector and x is a scalar,
%, is the n-dimensional row vector: Xy = oy 0" Xaule
When x and o are vectors of dimensions m and n, respec-
tively, X, is the (m X n) matrix of generic element:
[xa]U = xia,'

vec(d): Let a; be the ith column of the (n X m) matrix
A. Then vec (A) is the nm-dimensional column vector: vec
)7 = fal - - ap.

e is the exponential matrix of matrix 4.

8;; is the Kronecker symbol.

I denotes the identity matrix of order K.

F(c) denotes the Fisher information matrix for the vec-
tor of parameters o.

A% 4™ = 141

diag (x): Let x be an n-dimensional vector. Then diag
(x) denotes the (n X n) diagonal matrix, with generic ele-
ment: [diag (x)]; = X0y

A = B means that A — B is a positive semidefinite
matrix.

'E denotes the mean value operator.
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Vector notation: When we drop the subindex in a se-
quence, we mean the column vector that stacks the in-
dexed variables, i.e., for the sequence {r,} K.\, r denotes
the K-dimensional vector with generic component 7.

(x, yy: Let x and y be elements of an Hilbert space H.
Then (x, y) denotes the inner product of x and y. When
H is finite dimensional ¢x, y> = x"y. For the infinite
dimensional space £ 2 of square integrable functions, we
use {x, yy = fx(0)* y(1) dr.

III. CRAMER-RAO BOUND MULTIPATH/MULTIPLE
SOURCE

In this section, we derive the Cramér-Rao bound (CRB)
for the general multiple source/multipath/multiple sensor
problem with wide-band source signals of known spectra,
and interpret the resulting expression in terms of physi-
cally meaningful parameters. Finally, we consider limit-
ing behaviors of the CRB.

A. Derivation of the General Expression

Based on the model presented in the previous section,
we establish in the sequel the CRB for any unbiased es-
timate of the location of the S sources. Throughout this
section, we assume that the source spectrum is known to
the receiver so that the only unknown entities in the re-
ceived spectral density matrix are the locations of the
sources.

Assumption 3.1 (Known Spectra): The spectral density
matrix S, of the sources is known.

Definition 3.1 (a): Define the 2 S-dimensional vector

ol = la] -+ af] 3.1
where each o, is the vector of range (R;) and depth (Y;)
for source s: al = [R,Y,].

1t is well known that the CRB is given by the inverse
of the Fisher information matrix (FIM):

CRB (a) = F(e)™". (3.2)

In the Gaussian stationary case under consideration, the
generic element of this matrix is given asymptotically (in
the large sample limit) by Whittle’s formula [2], [21]

95, (w) 95, (w)

(F@)y = = Str 95,(@) g1y 549 g1 L
Voo 4rm do, © doy; @) fae-

(3.3)

In this equation N is the number of (temporal) samples,
which, assuming sampling at the Nyquist rate, equals

N = 2BT (3.4)

where B is the bandwidth and T is the observation inter-
val. Approximation (3.3) gives the FIM as the integral of
the FIM for the same problem at each single frequency.
This is equivalent to saying that the processing is done
independently at each frequency (in a statistical sense),
which is valid in the large BT (i.e., large N) limit.

Partition (3.1) of the vector « implies the following
partition for the FIM:

Flay) Floy, ap) " ° Flay, o)

F(as)
F(w) =

5:(015, 0(]) g(aS)
(3.5)

In (3.5), F(a;) = F(ay, o;), and each (2 X 2) subblock
is
3s, . as,

N _ _
Flow, @am = 4 S tr {a’n,- st o S; ‘} dw (3.6)

and n and m take values on {R, Y}.
Using Woodbury’s identity in (2.8)°

s = si U, — HS,S' + H'H'HY1. 3.7

n

Since each h, depends only on the position of source s

3S,  Ohy po.m on
Por _ T iyt 4+ H. 3.8
aR, @R’ % 3R, (3.8)
3S, 0Ohy y,u an

L= + Hs, 3.9
AR A % 3y, (3-9)

where s, denotes the sth column of the source spectral
density matrix:

S = fse} - |ss]- (3.10)

Using (3.7)-(3.9) in (3.3), we obtain (see Appendix A)
the following result:

Fact 3.1 (Multiple Source, Multipath CRB): Let the ob-
servation model be described by (2.1) where the source
signal covariance function is known. Then, the Cramér-
Rao lower bound for the location parameters a is given
by

=1 N H -1 H =1
CRB (@)” = Tn {Re {[(S,H"H(S,S;" + H'H) ")
® (1,1})] o DS 'D}
+ Re {D"H(S,S;" + H'H)™!
o (5,57 + H'H) "TH'D*}} dw. (3.11)

In (3.11) @ denotes the Hadamard (element-by-element)
product of matrices

[A4 o Bl; = ayb; (3.12)
and ® denotes the Kronecker product
anB - a,B
A®B=| - : (3.13)
amB - a.,B

2For simplicity, we drop the frequency dependency in the rest of the
paper.
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The (K X 28) matrix D groups all the derivatives of the
resultant vectors h, with respect to the source location pa-
rameters R, Y;:

_ [‘L”l oh, 9k,
3R, 3Y, 4R,

3.14
1A (3.14)

aRs 0Ys|

B. Interpretation of CRB

To clarify the meaning of (3.11), consider the follow-
ing rewriting of (2.4) that emphasizes the spatial depen-
dency of the received sequence. We exchange the subin-
dex k with the argument w and use the definition (2.5) of
the resultant vector h; to get

s
et = 2 sthk) + wi k),

k=1,---,K

(3.15)

The (super) index w is held fixed. Recall that w¥(k) is a
(spatially) white noise process, with zero mean and co-
variance given by (2.10) and that s is a zero mean ran-
dom vector with covariance matrix S, given by (2.9).

Consider now that {h,(k)},—, ... s are known func-
tions of k. In the location problem, this assumption
amounts to knowing the location of the sources. As in
[13], the minimum mean square efror estimate (MMSEE)
of s*is

§¢ = (5,8 + H'H) 'H"r* (3.16)
the covariance matrix of the signal MMSEE is
p, & S,HYH(S,S, ' + HYH)™ (3.17)
and the mean square error matrix
T, L 8,58 + HIE)™. (3.18)

Using these definitions in (3.11):

., N
CRB (o)™ = o S Re {(PS ® (1,11) o (DS D)

+ <D”H T, s,;') 1o} <D”H I, s,,-1>} do.

(3.19)

Thus, we see that the first term of the CRB is proportional
to the product of the signal’s estimated covariance P, and
the inner product of the steering vector’s derivatives D,
taken in the norm of the observations’ covariance miatrix
S,.

We establish a parallel between (3.19) and [19, eq.
(E.8g)] showing heuristically that the first term of (3.19)
is the stochastic equivalent of the CRB for the unknown
deterministic signal case. To do that, we relate some of
the statistical quantities appearing in (3.19) with their de-
terministic equivalent. Take the source signal as deter-
ministic, which is the context of [19]. Then i) there is no
signal estimation error, so I, = 0 and the second term of
(3.19) vanishes; ii) P, is reinterpreted as the temporal sig-
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nal covariance matrix S;; iii) finally, the observations’ co-
variance matrix S, is reduced to the noise covariance ma-
trix §,. Equation (3.19) is then rewritten as

CRB (o) = % S S8, ® (1,1]) © DD do.

(3.20)
Equation (3.20) is identical to [19, eq. (E.8g)]. This anal-
ogy suggests that the second term in (3.19) is related to
the stochastic character of the source signals.

In the following subsections, we consider two limiting
situations: large signal-to-noise ratio (SNR) and uncor-
related sources (Section III-C) and large array size (Sec-
tion III-D). For each case, we present a simplified expres-
sion for the CRB, and relate it to expressions presented in
the literature.

C. High SNR and Uncorrelated Sources
Consider the case of uncorrelated sources for which

S, = diag {S;» * " » S5}
For very high signal-to-noise ratio
S,
2 Rl =1 S

and (3.11) can be simplified, using the following rela-
tions:

S,S7' + H'H)™' - H'H)™ (3.21)

and

1 1
s g0~ HH"H)'H") & 5 P; (322
where P denotes the orthogonal projection operator in
the orthogonal complement of the space spanned by the
columns of H. Using these relations, (3.11) simplifies to

CRB (o)™
N

T or

S Re {SL [S, ® (1,12)] @ (D"Pj;D)

+ DYHHIHY ! o (D”H(H”H)“)T} do.
(3.23)

Large values of the signal’s covariance mean that the
uncertainty about the signal’s distribution is large, simi-
larly to what happens in the unknown deterministic model.
Thus it is not surprising that (3.23) closely resembles the
CRB for this problem derived using a deterministic signal
model. In fact, the first term in this expression coincides
with the CRB expression given by Stoica and Nehorai in
[19], where a deterministic model is used for the source
signals. The two expressions should not be the same since
in our case the information with respect to the source lo-
cation is in the covariance of the process, while in [19] it
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is in the mean value of the process. In the case of a sto-
chastic source signal with known spectrum, as we assume
here, the CRB must contain an additional term, reflecting
the prior knowledge about the source covariance matrix.
Note, however, that the additional term in (3.23) is in-
dependent of the signal-to-noise ratio and becomes neg-
ligible for high signal-to-noise ratios. In this situation, the
impact of the prior knowledge is not important, since the
signal is well estimated in either case, and the two expres-
sions agree.

D. Multiple Source, Large Uniform Array, Single Path
P =1

For a single propagation path, {P, = 1},_; ... s, H
coincides with the steering matrix for the incoming inco-
herent S wavefronts. Instead of definition 3.1, consider
(just for this subsection) the following alternative defini-
tion of «a:

Definition 3.2: Consider the case of a uniform linear
array with S impinging planar wavefronts. We define o
as the S-dimensional vector of the directions of arrival
(DOA’s).

For the particular case of uniform linear array and
planar wavefronts, let the intersensor spacing be constant
and the number of sensors grow. Then the following re-
lations hold (see [19, appendix GJ):

1
lim = H'H =1

(3.24)
K— oo
2 oy .
lim — H'D = jI (3.25)
K— o K-
3y
lim — DD = I. (3.26)

K=o

Using these in the general equation (3.11) yields for high
values of K

-1 N K4 Ss -1 H -1
CRB (@) i 6 S_(S"S’ + H'H) ' dw. (3.27)

n

For the high signal-to-noise ratio situation

NK (S,
CRB (0)”! = i e g S— dw. (3.28)

This expression for a single path multiple source problem
agrees with the large array size limit presented in [19] if
we consider narrow-band signals. It shows that in the large
signal-to-noise ratio limit, the estimates of the several
source positions depend on the signal-to-noise ratio. This
large array size limit is of questionable application since
a large array is inconsistent with the planar wavefront as-
sumption. From our point of view, the relevancy of the
results in this and the previous subsection lies in the fur-
ther insight they provide into the general CRB expression.
For actual evaluations of the CRB, one should resort to
the general expressions.

IV. SINGLE SOURCE (S = 1)
A. Mulitpath/Multiple Sensor
In the case of a single propagating source (S = 1), the
general expression (3.11) simplifies considerably. In this
case the source covariance S, is a scalar and the resultant
matrix H reduces to a single vector i. Then

oy |2

S, S+ HIH™' = @.1)

where we defined

ELS, + SIAl*% 4.2

The inverse of S, is obtained making H = h, i.e., a single
vector, in (3.7)

S
L 1 <1K - ihh”).

s, £ (4.3)

Using these in (3.11) and after algebraic manipulations
(see Appendix B) we obtain the following.

Fact 4.1 (Single Source, Multipath CRB): Consider the
single source/multipath problem version of (2.1), where
the spectral density function of the source is known. Then,
the Cramér-Rao bound for the location parameters o is

N ont | oh
CRB (o) ' = — S {Kl Re E— P} —3

2T da Jda
nt dh
+ K> Re a——h Re lh —!tdw (4.4)
oo do
where
s?
= 25 |nl? 4.5
K= 5 Il @5
S:
K, =2 £ (4.6)

and P} denotes the orthogonal projection matrix in the
orthogonal complement of the resultant vector h:

1

— — hh".
12

Py = I 4.7

O

Expression (4.4) is the CRB when a single source is re-
ceived over several distinct paths and has been presented
in [15]. We point out that the two terms in this expression
do not have a one-to-one correspondence with the two
terms in (3.11). There has been a rearrangement of the
detailed structure of (3.11) to obtain (3.19).

1) Interpretation: Expression (4.4) has an interesting
interpretation in terms of the dual temporal/spatial do-
mains of variation of the observed wavefield. The first
term is related to the information in the spatial domain,
measuring how much the resultant direction vector h
changes with source position. The second term is related
to the temporal structure. As we will see in Section VI, it
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represents the additional information about the source lo-
cation due to knowledge of the source covariance matrix.

To get further insight into the nature of the second term
in (4.4), let us rewrite its («, 3) element as

Re {Aln} Re {n"hy}
K K

= kZl Re {hXh.} 2. Re {hhy}.
= =1

k

4.8)

The component at sensor & of the resultant vector A, is the
sum of the P incoming replicas at sensor k, and is given
by (2.5). In vector notation

4.9)

hy = a[ek

where we defined

A

& & [ejwrkl I

e ijkP]

(4.10)

and a, groups all the attenuation coefficients for sensor k.
Alternatively, we can write &, as

b = pee™ @.11)

where p;, € R is the modulus of the complex number 4,
0y € [—m, w] is its phase, and they both depend on the
travel times {r,,},_ . Using this, we can write

[ha]k = ejak([ i)a]k + jpk[aa]k)
resulting in

4.12)

Re {[h¥1ih} = [ polios (4.13)

which finally gives the following expression for the (a,
$8) element in the second term of CRB (o) ™"

K K
Re {ih} Re {h'hs} = 2 (LoJko) 2 (Loslen).-

(4.14)

Equation (4.14) expresses the second term as the product
of two factors, each one being the inner product of the
vector of derivatives of the amplitudes of the resultant
vector (p,) by the vector of amplitudes itself (p):

Re {iflh} Re {h"hs} = plpoTpg. (4.15)

To have a more precise idea about the dependency of this
term on the delays {7y, }, we rewrite it in terms of the
individual travel times. We begin by noting that

pi = aleela, = alAay (4.16)
where we have defined the (P X P) matrix Ay:
[Ailyy = e, @.17)

Using these equations, we obtain for the derivative
[bk]u

1
[ e]a w @0 )" Im {A} ey 4.18)
k

and

ks

K
[0dape = B 2 (@ © [7) Im {Ada.  (4.19)
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We have used here the vector notation introduced in Sec-
tion II-B where by 7, we mean the vector with components
Tip» P = 1, - -+, P. We can finally write the right-hand
side of (4.14) as

K K
2 [odabe 2 [ hilsor
k=1 k=1

K
= o’ lg‘l (@ © [7]o)  Im {Ac}a;

K
. El (@ o [7)s)" Im {A}a.  (4.20)

This term is dependent on the sine of the time differences
of arrival at sensor &:

Im {A}),, = 4.21)
yielding for (4.14) an expression with the general form of
the single sensor case, see [14, eq. (23)] and Section IV-
C. Note that in (4.20) no intersensor delays appear. The
expression is only dependent on the interpath delays. This
shows that the second term of (4.4) is only dependent on
the signals’ temporal structure (multipath) and not on their
spatial structure (intersensor delay for the same path).

We finally point out another important characteristic
that distinguishes this term from the (spatially related) first
term in (4.4): for each frequency component it has rank
1, while the first term has rank min {dim (@), (K — 1)}
(refer to (4.4)).

2) Behavior with Signal-to-Noise Ratio: The two fac-
tors K, and K, exhibit different variations with signal-to-
noise ratio. While K|, — o, where Sg/S, = o, K, tends
to

sin w(7y, — Tiy)

S 2
Ial*

As long as the received signal energy is different from
zero, i.e., |h| # 0, this limit is finite. For this reason,
we will often refer to the second term in (4.4) as the ‘‘sat-
urating term’’ of the CRB. The same behavior has already
been noted [5], [4] for the multipath contribution to the
FIM of the range-only estimation problem with P = 2
(two paths).

In Section V we treat the case of a single source in full
detail, analyzing the influence of the temporal and the
spatial structure of the incoming wavefield in the location
performance. Since particularly simple expressions are
obtained when, in addition to single source (S = 1), we
assume single propagation path (P = 1) or single sensor
(K = 1), we present here the CRB for these two situa-
tions.

K, 4.22)

B. Single Source, Single Path (S = 1, P = 1)
For this case, see (2.5)
h = (4.23)

ak e JIWTK
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ie.,

Pe = & (4.24)
and according to assumption 2.1

by =0 (4.25)

and the ‘‘saturating term’’ of CRB(«) is zero, (4.15),
leaving just the first term in (4.4).

Definition 4.1 (8): Consider the single source/single
path version of (2.1). Define the vector of delays relative
to sensor I:

9T= [0 Ty, — T) * TK_TI]' (426)

Definition 4.2 (a): Consider the single source/single
path version of (2.1). Let a be the vector of attenuations
from the source to the different sensors:

a’ =[a, a, - agl. 4.27)

Fact 4.2 (Single Source/Single Path CRB): Consider
the single source (S = 1), single path (P, = 1) version of
(2.1), where the source spectrum is known. Then the Cra-
mér-Rao bound on the error of the source location is

_ N 30" aa” 30
CRB = — S Kiw?— e had
(o) 7 e 90 A, I Tal? A, P dw

(4.28)

where @ and a were defined in definitions 4.1 and 4.2,
respectively, K; was defined in (4.5), and A, = diag {a}.

Equation (4.28) follows immediately from the first term
of (4.4), and coincides with the expression given for this
simple case in [18]. It confirms our previous discussion
about the ‘‘saturating term’’ in the CRB, that vanishes in
this case since there are no interpath delays.

C. Single Source, Single Sensor (S =1, K = 1)

The case of a single receiving sensor is particularly in-
teresting, since in this case all the information about the
source location is contained in the multipath delays. In
this case, h is a complex scalar and (from (4.7)), Py =
0, leaving just the second term in (4.4).

Fact 4.3 (Single Source/Single Sensor CRB): Consider
the single source (S = 1), single sensor (K = 1) version
of (2.1), where the source spectrum is known. Then the
Cramér-Rao bound on the error of the source location is

., N ontt *
CRB (a)”! = > S K, Re EE h} Re {N%} dw
(4.29)

where K, was defined in (4.6). [
Using (4.21) and the equations that precede it, we ob-
tain the following expression:

CRB (o)
N P P
_ N 2 T ; _
27 S Kyw pgl T n§| @ sin (7, = 7)
P P

DI a,, sin (7, —

g=1 m=1

)Ty dw  (4.30)

where 7,, is the 2-dimensional row vector of derivatives
of the delay 7, with respect to the location of the source.
This expression is given in [14] for the single sensor case.
Using (4.14) with K = 1, and the definition of K; in 4.6),
the integrand of (4.29) can be written as

on# 4 Oh

K2 Re {E h} Re {h a}
1 st %%’ 1(6mE\OME
T2(S, + 802 da a2 da

do

where p is introduced in (4.11) (because K = 1 we omit
the subindex) and the received energy E is in (4.2). This
last equation shows that the contribution of each fre-
quency to the FIM is proportional to the variation of In
E, the logarithm of the received energy. The frequencies
at which this variation is more rapid are those that give a
larger contribution to the FIM. For two propagation paths,
it is shown in [5] that the integrand of (4.29) is maximized
when the paths have equal factors which occurs in the
vicinity of the frequency for which the received energy is
Zero.

Equation (4.30) shows that the CRB decreases with the
temporal resolvability. It indicates that to obtain an ac-
ceptable performance, high signal bandwidths may be re-
quired. For each frequency, this term has rank one. Then,
the estimation problem will be singular unless as a func-
tion of w there is sufficient variability on the 2-dimen-
sional vectors Re {(dh"/da)h}. In particular, for nar-
row-band signals no estimation will be possible.

Fact 4.4 (Single Narrow-Band Source, Single Sensor):
For a narrow-band source and a single sensor, the FIM
matrix is singular.

The proof is trivial considering the single-frequency
limit of fact 4.3, when the integral reduces to a single
frequency contribution.

V. INFLUENCE OF SPATIAL AND TEMPORAL STRUCTURE

In this section, we analyze the multipath contribution
to the CRB on the location parameters of a single radiat-
ing source. We assume assumption 3.1 is valid.

Classical methods for source location with array obser-
vations are based on the estimation of wavefront curva-
ture and orientation at the receiving array. In these sys-
tems, only the spatial structure of the wavefield is
analyzed. With the use of more sophisticated propagation
models, increasing interest in assessing the temporal
structure of the observations arose [2], [4], [1], [20]. Here
we evaluate, for a multipath model, the impact that tem-
poral processing may have in the quality of the estimates.

To simplify the analysis, we consider in this section the
case of a single propagating source. For this case, see fact
4.1, the CRB on the location of the source is given by
(4.4). According to assumptions 2.1 and 3.1, the resultant
vector h depends on the source location « through the set
of travel times 7, (refer to (2.1)).
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To make the study of the impact of the temporal struc-
ture of the observations clear, we decompose each indi-
vidual 7, into a multipath (6,,) and an intersensor (6;)
component:

Tkp=Tll+0 +0

mpp Skp

p=1_-,P (6.1

This decomposition is illustrated in Fig. 2. We distin-
guish two kinds of delays: i) the intersensor delays 6,
that are the delays for path p at sensor k relative to the
arrival time of the same path p at the reference sensor 1;
ii) the interpath delays 6,,,, that measure the difference of
the arrival time of path p at the reference sensor 1 relative
to the arrival time of the reference path 1 at the same sen-
sor.

Definition 5.1 (8,,,): Denote by 0, the P-dimensional
real vector of generic element

ampp':T]p_Tllv p= 1, T 7P- (52)

Definition 5.2 (6,): Denote by 0, the (K X P) real ma-
trix of generic element:

eskp = Tip — Tips

p=1,-+-,P. (5.3)

This decomposition of the travel times into interpath
and intersensor delays although resembling the set of in-
terdelays used in [4] is distinct from it. In [4], the authors
introduced an extended, linearly dependent set of param-
eters consisting of the same set of intersensor delays as
used here, (5.3), plus, in addition, the set of all interpath
delays at all sensors, not simply at the reference sensor as
done here. In contrast with [4], the set of delays we use
is linearly independent.

One of the goals of this study is the evaluation of the
potential increase in performance due to the information
in the multipath replicas. Using (5.1), we are able to keep
the set of delays observable by the array (6;) and isolate
in the vector of interpath delays (6,,,) the parameters that
define the temporal alignment of the several wavefronts.

Systems that use spatial/temporal models and those that
are based only on spatial structure are naturally compared
in terms of the sets 8,,, and 6,: while the first kind of sys-
tems consider both 6, and 6,,, as unknown parameters de-
pendent on the source location, the latter consider only 6,
dependent on source location with 6, being treated as an
unwanted parameter that has to be estimated along with
source position and whose presence implies a degradation
in performance.

For simplicity, we make the following assumption.

Assumption 5.1: The attenuation factors do not depend
on sensor index

a,q, = a,,,

e, N \
711\ N \ np

sensor k
\ = b, —'x \
T - sensor K
o \\ path 1 path p A\p.an.h P

Fig. 2. Decomposition into multipath and intersensor components.

sensor 1

sensor 2

Definition 5.3 (A): Let A be the (K X P) steering ma-
trix, whose columns are the steering vectors for the P in-
coming paths. A describes the wavefront shapes at the
receiving array corresponding to the P distinct paths:

1 e 1
ejw(m -y ... ejw(sz—np)
A= 5.5
ejw(7Kl‘Tll) e ejw(TkP—ﬂP)

Definition 5.4 (b): Let b be the P-dimensional vector
that groups all the interpath delays and attenuations, i.e.,
b describes the temporal structure of the signal impinging
at reference sensor 1:

b7 = [a, azejw(ﬂz—ﬂl) e (7IP'711)].

(5.6)

ape’®
Using these definitions

h = Ab 5.7
where A (steering matrix) depends only on the intersensor
delays 6,, and describes the wavefront curvatures at the
array, and b depends on the attenuations {a,} and mul-
tipath delays {6, }.

Definition 5.5 (6): Let 6 be the (P + KP)-dimensional
vector of real parameters

87 = 6., vec (6)7]. (5.8)

According to the temporal and spatial references cho-
sen, 6, = 0, and {03,,7}5:1 = 0, so that we have in fact
only KP — 1 nontrivial parameters. Since all information
is encoded in the observation’s covariance matrix, which
is insensitive to absolute time reference, 7,; is not an ob-
servable parameter. To obtain simpler expressions, we in-
clude the trivial parameters 0,,,, and {0;,, } £_ in the anal-
ysis, which is possible since their derivatives with respect
to the source location are identically zero.

Using the chain rule of derivatives, we write the FIM
for « in terms of F(6):

30T a0

F(o) = . F(O) Fy (5.9
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where 30 /3« is the (P(K + 1) X 2) matrix of first-order
derivatives®:

36" [0, 007
— =% (5.10)

- da da

dor
and the generic element of F(6) is given by (3.3), with 6,
substituted for o;.
Partition of the vector 6 into multipath and intersensor
parameters induces a corresponding partition on the F(6):

5, F (B, 0,
ff(a)=[ Onp) Oy )J (5.11)
SF(03‘1 emp) 5(03)
Using
oh
%, jwAB (5.12)

where B = diag (b) (see (5.6) for the definition of b), and

a6,

where the (P X P) diagonal matrices A; = diag (a;), in
the general expression (4.4), yields

= jwlb 4| - |b,4,] (5.13)

N
F,,) = . S w?{K, Re {B*A"P} 4B}

+ K, Im {B*A" Ab}

“Im {(B*A"Ab)"}} dw (5.14)

47
+ K, Im {b} Af Ab}

[F0,)],, = S w’{K Re {b} AP} A,b,}

“Im {(bFATAD)"}} dw (5.15)

N
[5,. 0,,)], = o S w*{K, Re {braliPi AB}

+ Ky Im {b} 4/ ap}
“Im {(B*A"Ab)"}} dw. (5.16)

Using (5.10) and (5.11) we write CRB(a) ™' as the sum
of four terms:
T

a0 ,,,

a9, 09, 907
F — + =
aa (O,np b4 03‘ ) aa aa

80,, 907 a7
CRB!(a) = — 4+ g,) 2
(@) da da ) do

+

p

a9,
- 5, 0,,) F (5.17)

We note that in general the estimates of the spatial and
temporal delays are not independent, i.e., the off-diago-

nal subblocks in F(6) do not vanish.

*For simplicity we use from now on 6, for vec (8,).
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Let CRB,,_,,,1 denote the term in the right-hand side of
(5.17) that depends only on the interpath delays’ deriva-
tives:

_ N
CRB™!(w),, = yp S w’{K| Re {y A"P} 4y, }

+ K Im {y1, 4" Ab}

CIm {5, 4" A"} do (5.18)
where we have defined
aemp
Y = diag (b) —. (5.19)
do

This term would equal CRB(w) ™! if the intersensor de-
lays were known. It gives a measure of how relevant the
multipath structure of the observations is to the estimation
performance. In the following, we analyze the behavior
of this term under different limits of spatial resolution. A
detailed study of the frequency regions where these ap-
proximations are possible has been made in [3] for a linear
uniform array and P = 2, with particular source/array ge-
ometries.

We want to stress that the expressions obtained here are
dependent on the decomposition of the travel times that
we used throughout this study (5.1). Instead of keeping
all the intersensor delays and defining as temporal param-
eters the interpath delays at the reference sensor, we could
do the opposite, defining instead a vector of interpath de-
lays at each sensor and a single vector of intersensor de-
lays that would describe the spatial alignment of the sev-
eral paths. Not only do we think this decomposition more
natural (since sensors are distinct physical entities that can
be independently assessed, while path contributions are
not individually measurable), but it also has the advantage
of being adequate to our study of the improvement in per-
formance of systems that use all the delays in the observed
wavefield when compared to systems that do only spatial
processing.

A. Interpretation of the Multipath Contribution to the
FIM

The previous expressions show that the multipath con-
tribution, CRB (a),;,,l, to the Cramér-Rao bound depends
on the matrix A”A. This term is the generalized beam-
pattern of the array that describes the amount of interfer-
ence between each pair of paths.

We analyze the multipath contribution CRB (a),;p', for
two extreme beampatterns: i) 474 = KI, which occurs
when the steering vectors are approximately orthogonal,
i.c., the array is able to separate the paths, and i) 4774
= K117, when the incoming wavefronts are undistin-
guishable, i.e., they are all within the main lobe of the
array, their separation being smaller than the Rayleigh
resolution limit. Condition i) will usually be valid at low
frequencies, while condition ii) may well be violated at
high frequencies. A more restricted version of this prob-
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lem is considered in [4]. We will also consider an inter-
mediate case (iii) below.

i) In the first case, (A”A = KI), it is easily shown,
using the definition of P, that

A"PA = KPj; (5.20)
where P;- denotes the (orthogonal) projection matrix on

the orthogonal complement of the vector b. Furthermore,
in this case the ‘‘saturating term’’ in (5.18) is zero, and

i N a6, aa’
CRB (a)y, = K 5 S Kio® 5 A, <I” - ||a||2>

30,

A, 9o dw
which is K times (4.28) and A, = diag {a} is as in fact
4.2. Thus, when the impinging wavefronts are well re-
solved, the multipath contribution is equivalent to having
K identical virtual arrays operating independently, each
one with P sensors, observing a single impinging wave-
front, with steering vector

b(w) = ¢“ra (5.22)

where 6,,, = diag (6,,,). Note that the virtual array no
longer has identical sensors: the vector a, of attenuation
coefficients which in general has distinct entries, de-
scribes the gain of each of its sensors. Since the paths are
well resolved by the array, the contribution of each path
at each sensor can be estimated and considered as inde-
pendently observed. In this analogy, the combined effects
of array geometry and wavefront shape are subsummed
by the vector b(w) that describes the relative attenuations
and delays for the P incoming paths at the reference sen-
sor. Here, we may not control b(w) by designing the re-
ceiving array, as it happens with the ‘‘physical’” array.

We see that multipath results, in some sense, in an in-
crease of the spatial aperture of the array. The efficiency
with which this ‘‘synthesized’’ array locates the source
depends, of course, on the particular locations of the re-
ceiver and the source, and also on the medium’s charac-
teristics.

We see that the geometric argument underlying the
technique known as ‘‘multipath ranging’’ can be carried
over to predicting the system’s performance only in the
limit of perfect spatial resolution. Multipath ranging [17]
interprets each secondary path arriving at a sensor as a
virtual sensor whose position relative to the physical sen-
sor is determined by the differential delay between that
path and the principal (reference) path.

ii) We analyze now the case of unresolved paths (ap-
proximately colinear steering vectors):

(5.21)

A4 = K11 (5.23)
Using this approximation in (5.18), we get
N 80,2,,
CRB (a),,, = K — S 2 Im ) b*
(a)mp r sz e mib %} bp

00,
- Im {Z beH} % do (5.24)

P Jda
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which is K times the single sensor expression (4.29). This
situation corresponds to K independent single sensors ob-
serving the superposition of the P incoming paths. Thus,
when the paths are not resolved by the array, the multi-
path contribution reduces to the expected incoherent sum
of the contribution of each single sensor.

iii) The two extreme cases above suggest that the mul-
tipath component may be interpreted as the contribution
of K virtual arrays, whose sizes are equal to the number
of spatially resolved replicas. To validate this hypothesis,
we consider the intermediate case:

—lm 11] 0 --- 0 N
0 1,1,
A4 =K (5.25)
0
. o . T
L 9 Q lnrlﬂr_
where L;n; = P.

In this case, we have r “‘clusters’” of rays, that are re-
solved by the array, although the n; rays within “‘cluster’’
i are not resolved.

Using this approximation in (5.18), we get

. N ad" | od
CRB (Ot)mp = Ki; Kl Re Ex_Pd £

H
+ K, Re %d Re dTﬁq dw (5.26)
oo ox

where we have defined the r-dimensional vector

15 1,0

d2 (5.27)

17 11b"

and

b' = [0]I,| 0]b. (5.28)

Comparing this with the general expression (4.4), we see
that the multipath contribution is equivalent to that of K
fictitious arrays of r sensors each, the component of the
resultant vector for sensor i being the coherent sum of the
unresolved replicas in ‘‘cluster’’ i.

Fact 5.1: Consider the single source version of (2.1),
where the source signal has a known spectral density
function. Furthermore, assume that the P incoming paths
are grouped in r ‘‘clusters,’’ so that the beampattern ma-
trix can be approximated by (5.25). The multipath con-
tribution to the Fisher information matrix is equivalent to
the contribution of K fictitious arrays, each one with size
equal to the number r of “‘clusters.’’ The steering vector
for each equivalent array is given by (5.27). Its compo-
nent for sensor k is the superposition of the unresolved
paths in the corresponding ‘‘cluster’’ k.
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1) General Case: The three points discussed above are
particular cases of the following fact, which is obtained
using the spectral representation theorem for the beam-
pattern matrix.

Fact 5.2: Consider the single source version of (2.1),
where the source signal has a known spectral density
function. Furthermore, consider the spectral representa-
tion of the beampattern matrix

A A = UAUY (5.29)

where U is a (P X r) matrix verifying U U = I, and A
is the (r X r) diagonal matrix of the positive eigenvalues
of A"A. In general, r < P. Then, the multipath contri-
bution to the Fisher information matrix is equivalent to
the contribution of a fictitious array of r sensors, with
resultant vector:

d =AU (5.30)

Note that i) is obtained from fact 5.2 making r = P, A
= Klp and U = I, ii) corresponds to r = 1, A = K, U
= l/Kl/2 1p, and to recover iii) we make: A = K diag
(n;)7_, and take U as the block-diagonal matrix U = diag
(}’l; 12 1!1,’);: 1-

B. Gain Due to Temporal Structure

Considering the limiting case of perfect spatial resolu-
tion, we determine the gain of systems that use the infor-
mation in the set of interpaths’ delays over systems that
use only the information in the intersensor delays, 0,. Re-
fer to (5.17). Let CRB (a);" be the term of CRB ()~
dependent only on the intersensor delays’ derivatives:

a6,

da’

It would equal CRB ()" if the interpath delays (i.e.,
vector b) were known.

If only the set 6, is used in a constructive way to locate
the source, i.e., if the differential delays 6,,, are modeled
as unknown deterministic variables independent of source
location, the CRB on the location vector « is given by

o, ae] .
CRB (o), = 5= CRB (8,)
(64

07 a0
CRB (a)p4 = a(; CRB (8,)"" E (5.31)

where CRB (8,) " is calculated using the formula for the
inversion of a partitioned matrix on the complete FIM,
(5.11), yielding

CRB (os)_l = g(or) - g(en emp)g(emp)_lg(gmpv 9\)
(5.32)

We compute in this section the difference between the
FIM for systems that use a complete spatial/temporal
model of the incoming wavefield, given by (5.17) and that
we will denote here by CRB (a)sgé/(em, and the FIM for
systems that use only spatial information, given by (5.31)

G = CRB (@)giiem — CRB (@)i- (5.33)

This difference gives us the gain in information due to
constructive use of the temporal structure of the field.
Denote by £ the loss term in (5.32):

£ = F(O,, 0,p) FO0p)” FBrp, 05).

When the several paths are completely resolved, A"A =
KI, (situation i) in the last section}), we show in Appendix
C that the loss term is given by
|
L=a ®IP} @, (5.34)

where P} is the projection matrix on the orthogonal com-

plement of @ and & = [®;, * -, ®,.], where
(@1, = S w?K, Re {bf AL ABA]'}
=K g w’ K, do. (5.35)

The matrix ®, depends only on the interpath delays at each
sensor, i.e., of the temporal resolvability of the paths at
each receiving sensor.

After several algebraic manipulations we obtain for the
gain of the systems that use the complete model of the
observed field:

G =VP;V (5.36)

where

In this last equation the trivial parameter 6,5, has been
reinserted in 6,,,. It shows that the CRB for the complete
model is not larger than the CRB for systems based only
on spatial structure.

We point out that, as it should be expected, (5.36) in-
volves the matrix P}, that has rank P — 1, since only P
— | additional degrees of freedom have been added to the
model, defining the temporal alignment of the received
paths at the reference sensor.

VI. UNKNOWN SOURCE SPECTRAL PARAMETERS

In this section we drop assumption 3.1 of known source
spectral density function used in the two previous sec-
tions. We consider two distinct situations: (Section VI-A)
S, (w) is completely arbitrary, and (Section VI-C) Ss(w)
has a known parametric form, with unknown determinis-
tic parameters. In the first case, the FIM for the location
parameters reduces to the first term of the FIM for the
known spectral density function case. When there is a sin-
gle sensor available to locate the source, the FIM is zero
and no estimation is possible. In the second case, besides
the first term of the FIM for known source spectrum, there
is an additional term that depends on the uncertainty about
the spectrum, and source estimation can still be possible
with just a single sensor.
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A. Nonparametric Spectra

When the source spectral density function, S;(w), is not
known it must be estimated along with the location pa-
rameters of the source. The FIM for the vector of source
locations still follows (3.3), but the CRB must now be
computed from the FIM for the extended parameter vec-
tor, as follows.

Definition 6.1 (B): Let 3 be the extended parameter
vector:

8" =la"n"]
where « is the vector of source location parameters de-
fined in Section Ill, definition 3.1, and vy groups all the
parameters that define the source spectral density.

Assumption 6.1 (Completely Unknown Spectrum): The
source signal spectral density function is completely un-
known to the receiver.

Consider a discretization of the frequency domain. De-
fine element i of 7 as the value of the source spectrum at
frequency w;:

n = Ss(wi)’

where L is the number of discrete frequencies.
The CRB for « is the upper (P(K + 1) X P(K + 1))
block of CRB (8) = F(8) "

F@)  Fo, n)}
Fn, o) F()

where F(«) is the FIM for o when the source spectrum is
known, given by (4.4).

Using the formulas for the inverse of a partitioned ma-
trix, we obtain, assuming FIM() is nonsingular,

6.1)

i=1,-,L 6.2)

F(B) = [ 6.3)

CRB (@) = [F(a) — Fla, DFm) ™ 'Fn, )], (6.4)
Using the Woodbury formula on (6.4), yields
CRB (o) = F(a)™' — F() ™' F(a, )
C[F) + Fn, o) Fa) T Fle, M1
- F(n, ) F() (6.5)

The last term in this expression represents the degradation
due to the fact that % is not known and must also be esti-
mated along with «.

Definition 6.2 (£(c, 3)): Denote by £(a, 1) the loss
term in (6.4):

L, 1) = Fee, NF) ™' Ty, a). (6.6)
With this definition
CRB (o) = [F(a) — £(a, ] . 6.7)

To determine the new entries in $(3), we begin by noting
that

95, (w)
aSs (O),' )

= h)h®(w) 8@ —w), i=1,°""
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This fact implies that the summation over frequency in
the FIM expression will degenerate into a single fre-
quency contribution. We can now compute

N 1

P= T II* 8. 9
[5mly = 4~ Ea) [LICR) 6.9)
Similarly, for the cross terms we obtain
N Ss(wj) .
(S w)y = 20 72, () Re {h(ay)ahle)}

(6.10)
resulting, for the (i, j) element of £(a, 1)
(L, My = 2 Sler, 1) F) ™ Sl o)

_ N 528y

o)’ Re {A(oy) h(w))}

27 1
+ Re {h(e) Thiwn),} 6.11)

which in the limit tends exactly to the second term of
(4.4). We conclude thus that the ‘‘saturating term’” of
(4.4) is precisely the information that is lost when the
source spectral density is not known.

Fact 6.1 (Single Source of Unknown Spectrum/Multi-
path CRB): Consider the single source version of model
(2.1), where the source signal spectrum is not known.
Then the Cramér-Rao bound for the error on the location
parameters o is

N . .
CRB (o)~ = 7 S K, Re {h"'P h,} dw. (6.12)

Noting that for K = 1, P; in (6.12) is zero, and con-
sequently the CRB will grow to infinity, we get the fol-
lowing.

Fact 6.2 (Single Source with Unknown Spectrum/Single
Sensor CRB): The Fisher information matrix of the source
location parameters for a single sensor observation (K =
1) of the multipath propagation of a single stochastic
Gaussian source signal with unknown spectrum is zero.

B. Dependence on the Beampattern

To study the dependence of the CRB for unknown spec-
trum on the beampattern matrix, we consider the decom-
position of CRB () ' on its four components, as in
(5.17). Since the difference between known and unknown
spectrum is the presence or absence of the ‘‘saturating
term’’ of (4.4), each component is still given by the same
expression, with K, = 0.

Thus, the interpretations in Section V carry over to this
case. Namely, we can state the following:

Fact 6.3 (Single Source with Unknown Spectrum/Clus-
ters of Paths CRB): Consider the single source version of
(2.1), where the spectrum of the source signal is not
known. Furthermore, assume that the P incoming paths
form r ““clusters,’’ so that the beampattern matrix can be
approximated by (5.25). Then, the multipath contribution




2606 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 39. NO. 12, DECEMBER 1991

to the Fisher information matrix is equivalent to the con-
tribution of K fictitious arrays, each one with size equal
to the number of ‘‘clusters’’ r. The steering vector for
each equivalent array, d, is given by (5.27). Its compo-
nent for sensor k is the superposition of the unresolved
paths in the corresponding *‘cluster’’ k.

The CRB is given, for this case, by

H

Kﬂ SKI Re{ad P; a—dzdw

27 do

CRB (a),, = (6.13)

d

where d was defined in (5.27). Making r = 1 in the last
fact, we get the following.

Fact 6.4 (Single Source with Unknown Spectrum/Sin-
gle Cluster CRB): Consider the situation of fact 6.3, when
the number of clusters r is equal to one, i.e., all the paths
impinging on the array are spatially close. Then the mul-
tipath contribution to the Fisher information matrix for
the source location is approximately zero, showing that
these parameters are not useful in determining source lo-
cation. The performance is entirely dependent on the spa-
tial processing.

Note that even in the absence of spectral information,
the modeling of the interpath delays can be useful, as it
is implied by the analysis in Section V, of the situation of
perfect spatial resolution, that remains valid when the
source spectrum is not known.

C. Parametric Spectra

We consider in this section the case where a parametric
expression for S;(w) is available.

Assumption 6.2 (Parametric Form of Spectrum): The
source spectrum is known to the receiver, except for the
L-dimensional vector of unknown deterministic parame-
ters :

Si(w) = S;(wim). (6.14)

O

As for the case of completely unknown source spec-
trum, n must be estimated along with the location param-
eters a. The CRB is still given by expression (6.4) or
(6.5). Since
a8, (w)

D) _ iy nt () 222

(6.15)
dm; on;

in this case integration over frequency will not reduce to
a single frequency contribution as before.
Simple algebraic manipulations lead to

35,@) 1, . _ 138, 4
——371,- S (w) = E————am hh (6.16)
which together with
a5, (w) oh 4 S oh Ss . u ]
S, == | +h—\I——=hh
da; ) = S, _aa, h E da; < E

(6.17)

imply the following expressions for the different sub-
blocks of the FIM:

B IA]* 88(w) " 3S() |

Fn = 47 S E? 371 311 (6.18)
N (SRl (ar™ ) 3S(w)

F(a, ) = . S 2 £ Re . h ;61, dw. (6.19)

Using these equations, we get for the loss term 6.6)
_N SRR (0r™ ) 08
m = vy S E? Re do 'k an
H Ill* 38(w)” 8S(w) w] ‘
E* an an
S, Al 38@) " o {0k
. > —_ .20
g £ 3 Re o dw. (6.20)

1) Single Unknown Parameter: Consider the case of a
single parameter, i.e., L = 1, when F(n) becomes a sca-
lar. For this case the loss term is

N (] s, @)llh@)l?
27

L(a,

Re {hf (@) h(w)} S, (@)S,,(w2)

Ez(wl)
S, (@)l ,
: —%)7(;2‘;’2— Re {h(en) " ho(w2)} doo, dey
la)*
S () 8 (@ w) dw
(6.21)
Define
1A’
d(w) = ¢ Ew S;, (w) (6.22)
where
Ia@*
2 _ | MU 2
= S Ez(w) SSn(w) dw. (6.23)
Define also
X(wi, wn) = ¢(w)(w2). (6.24)

Let 8, be the one-dimensional space spanned by the func-
tion ¢ (w). Then, the integral projection operator in S is
Ps :

Fe

Ps, [v(w)] = S X(w, w;)v(w) dw,. (6.25)
Finally, we define
w) = 5@ pe (! (w)h(w)} € R*.  (6.26)

E(w)

With these definitions, we can write the loss term as
N
L =— S S V(w; ) X(wy, wy) v(w,y) dw; dw,. 6.27)
s

Since Ps, is a projection operator

Ps,[Ps,[v(w)]] = Ps,[v(w)]- (6.28)
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&£ can be written

N
£ = P (P, [v(w)], Ps, [v()]) (6.29)

where the inner product is the usual £? inner product.
We can now write the CRB for the case of parametric
spectrum which we denote by CRB,,, as

N
CRB (@ = F(@) = — (Ps,[0(@)], Ps,[o(@)] 7.

(6.30)

Remember that F(«) is the FIM under assumption 3.1, of
known spectrum, and can be written as (see fact 4.1,
equation (4.4)):

F(a) = CRB (o) + %’ (w), v() Ty (6.31)

where CRB (a);,k is the FIM under assumption 6.1 (see
fact 6.1, equation (6.12)). Using these two equations, we
can write

CRB (a);,s = CRB (o)t + G(ex, 1)

where G(«, ) is the information gain with respect to the
complete unknown spectrum case:

(6.32)

N
Glom = — (PEIv)], P& lvw]’y.  (6.33)

From this form of G we can conclude the following.

Fact 6.5: Let G be defined by (6.33). Then

N T
0=¢g =< p (v(w), v(w)" ). (6.34)
The proof of this fact is trivial, considering a generic
quadratic form of G and using the properties of norm and
of projection operators.

The two extreme cases in fact 6.5 are particularly in-
teresting, since they correspond to the two situations pre-
viously analyzed:

i) No spectral information § = 0, i.e, FIM(a)p, =
FIM(«),,. To have the above relation, it is necessary that
the vector of functions v(w) be colinear with its projection
in 8,. Using their definitions

5 (@)
E(w)

G lial®

— =3

C Ew 7@
where C) is an arbitrary constant. This equation is equiv-
alent to

Re {A, (0)*h(w)} = (6.35)

i) J
e HAPS )] = C.— [lIEIPS(@)]  (6.36)
o2 an

where C« is an arbitrary constant.

We get the intuitively pleasant result that no spectrum-
based information retrieval is possible when the variation
of the observed signal energy is the same with respect to
the location parameters or the spectral parameters.

ii) Complete spectral information § = N/7 (v(w),
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v(w) "), i.e., FIM(a)p,, = FIM(). Again, using the same
kind of arguments, we can conclude that to have no in-
formation loss, the vector v(w) must be orthogonal to the
function ¢ (w). This condition is equivalent to

Lo

1 X .
Fi) oy IS @)1 de = 0

)
[ 2 tiaes. o
&

i=1,2. (6.37)

This equation means that the variation of the signal en-
ergy with respect to the spectral parameter must be or-
thogonal to its variation with respect to the location of the
source so that uncertainty about » does not affect the es-
timation of a.

2) Arbitrary number L of Spectral Parameters: The
case of an arbitrary number L of unknown spectral param-
eters can be treated in the same way as we did for L = 1.
Define the L-dimensional vector:

lh@)l? .,
E@) S, (@) "

Note that F(n) is the (L X L) Gram matrix of the functions
{¢Li } 1L= 1

or(w) = (6.38)

Fm) = T = (d(w), (@7 (6.39)
which we assumed nonsingular. Define the equivalent to
the kernel X(w,, w,) for this case:

Xi(wy, wp) = ¢L(w|)TPL_1¢L(w2)-

Let 8, be the spaced spanned by the functions {or. 30
This subspace has dimension L. Let v(w) have the same
definition (6.26). Then, the loss term £ is given by

(6.40)

£ = g SS (@) X(w), ) v(w;) | dw, dw, (6.41)
which is exactly the same expression as (6.27). The dif-
ference between the two cases lies in the dimensionality
of 8,4, which is 1 for a single unknown parameter and n
< L in the general case. The gain term G is
N 1 1 T

G = p (Ps, [v(w)], Ps, [v(@)] ) (6.42)
where Pg, is the projection operator in the orthogonal
complement of 8,,. Fact 6.5 still holds for this general
case.

The analysis of the two extreme cases i) and ii) must
now be done taking into consideration the new dimen-
sionality of 8,.

i) Now, instead of requiring colinearity with a single
function of w, we must require that all the components of
v(w) belong to 8, i.e., to have § = 0, there must exist
a (2 X L) matrix T such that

v(w) = T, (w). (6.43)

Note that if for a given subset of the unknown parameters
this condition is satisfied, then it will be trivially satisfied
for the complete vector 5, showing that having additional
unknown parameters cannot remove ambiguities.
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Consider the discrete frequency version of the FIM. To
avoid confusion, let the number of frequencies be denoted
by W. Within this framework, the kernel X(w;, w;) in-
stead of being defined in an infinite dimensional space,
would be defined in a W-dimensional space. All the above
equations hold, with a reinterpretation of the inner prod-
uct. If W = L, the subspace 8, has full dimension W, and
its orthogonal complement is trivially equal to the zero
vector. In this case, condition (6.43) is satisfied and G =
0 always. The case of unknown spectrum of Section VI-
A can be considered as the limiting case where both W
and L tend to oo.

ii) The condition for no information loss is that all the
elements of v(w) belong to 84,

S vi(w) ¢ (w) dw = 0, vi, j. (6.44)

Consider a fixed spectral parameter vector 7, of dimen-
sion L. If we add another unknown parameter 7; 4, the
subspace 84, is a proper subspace of 8 4L, and conse-
quently G, = G, ;. as it should be expected.

Fact 6.6 (Single Source Parametric Spectrum/Multi-
path CRB): Consider the single source version of model
(2.1), and assumption 6.2. Then, the Cramér-Rao bound
for the location parameter o is given by

CRB (a)”' = CRB (&)jk + G, m)  (6.45)

where CRB (at), is the CRB under assumption 6.1 and
G(a, 1) satisfies fact 6.5, and is given by

N . 1 T

g = p (P, [v(w)], Ps, [v(@)] ) {6.46)

where Pg, [*] is the projection operator into the orthog-
onal complement of 8,

8o = span {¢, ;i =1, - ,L}. (6.47)

The functions ¢, and v(w) were defined in (6.38) and
(6.26), respectively.

VII. CONCLUSIONS

We derived the Cramér-Rao bound for the general
problem of multipath and multiple stochastic sources. We
considered the cases of known source spectral densities
and unknown power spectral densities. Our study evalu-
ates the increase in performance provided by the multi-
path structure. It shows that the contribution of the mul-
tipath delays to the Fisher information matrix can be
understood as the result of the spatial processing of a vir-
tual array, whose geometry is dependent on the multipath
structure and whose size depends on the numbers of spa-
tially resolved replicas. The influence of uncertainty about
the source spectrum was studied. If the source spectrum
is completely unknown, estimation is not possible with a
single sensor. However, if a parametric form of the spec-
trum is known, there is still some gain due to the exploi-
tation of the signal structure at each sensor, and estima-
tion may be possible even with a single sensor. We

analyzed the Cramér-Rao bound expression for several
important simple cases, and in doing so we recovered
expressions previously reported in the literature.

APPENDIX A
DEerivaTiON CRB (o)
Using
3S, Ohy w.u ont
= T R Al
do; O S S doy; A1)
and (3.7) yields
85, S = 1 (S, 5,578 S8 + HYHY'H”
da; S, !
+ Hs,h"{I — H(S, S + HPH)Y'H].
(A.2)
Since
sis;! = el (A3)

where e; denotes the ith canonical vector, we get

as,

ST = hyel(s,S " + H'H) ' H”
da;

+ sl Hsh" [l — H(S,S,' + HYH) ™ 'H"].

n

(A.4)
Finally, we obtain

3S, _, 8S, .,
— 5
aa,' Sr aa] "

= h,el(S,S7" + H'H) '"H"he]

(8,87 + H'H)"'H"
+ ha,’eiT(SnS;l + HHH)-IHHHSJ'}.ZJHS,_I
+ Hs;htS Vhye] (S, + HYH)'HY

+ Hs;ht S, Hs;h S, (A.5)

Using the properties of the trace operator

as as,
o Svl r S:]
tr {aa,. ’ da; }

=el(S,857" + H'H)™!

- H"hye] (S, + HYHY '"H"h,,

+ el(S,8;" + H"H) ' H" Hy;hj'S b,
+ hiS  hy el (S, + HYH)~'HHs;
+ kS Hs;h 5 S, Hs;. (A.6)

This equation can be written in matrix form using the def-
inition of the Hadamard product (see (3.12) in the main
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text)
s, _, 9, _
tr{as,lb—&;s,'}
= [(5,8;" + H'H)"'H"D);
o [(8,87' + H'H)'H"DJ;
+ (5,8 + HYH) 'H"HS,],; o [DYS'DJ;
+ [(H"S;'DY; © (5,8, + H'H)"'H"HS,];
+ [DYS;'HS); o [DYS ' HS,); A7)

where © denotes the Hadamard (elementwise) product of
matrices (see (3.12) in the main text), and D is defined
by (3.14). Using in the previous equation the following
easily verified relation:

S;'HS, = H(S,S;' + HH)™! (A.8)

we obtain, after some algebraic manipulations, the fol-
lowing expression for the generic element in the integrand

of (3.3):
. as, g as, 5!
r
aa,» 4 301, "

= [2Re {(S,H"H(S,S;" + H'H)™' ® (117))
o (DS,'D)D"HS, S, + H'H)™)
o (D"HS,S + H'HY Y)Y},

where ® denotes Kronecker product, see (3.13). The
Kronecker product with the outer product of two 2-di-
mensional ‘‘one-forms’’ enforces the same multiplier for
each (2 X 2) subblock of D corresponding to a pair of
sources, in agreement with the fact that the term multi-
plying ha,h,,j does not depend on whether we take deriv-
atives with respect to range (o« = R) or depth (o« = Y).
Using (A.9) in the FIM equation (3.3) yields (3.11).

(A.9)

ApPPENDIX B
DERivATION OF CRB FOR SINGLE SENSOR

Using (4.1) and (4.3) in (3.11) we get

- N S2|nl? . S .
CRB™! = — S S pH - Z et
() > Re { 3 "I hh™ | h

SN
+ hfh (E) hTh}
Noting that, using the definition of E (4.2)
S 1 S
E  [nl*  ElnlP

and regrouping terms, we obtain

(B.1)

(B.2)

N . :
CRB™! (a) = > S K, Re {hfP; h}

+ K, Re {h""h} Re {h"h} do (B.3)
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where K, and K, are defined in fact 4.1, equations (4.5)
and (4.6), respectively, which is (4.4) in the paper.

AppPENDIX C
DERIVATION OF THE Loss TErM, (5.34)

The expression of the loss term involves the inverse of
the FIM for the multipath delays, given by (5.21). Until
now we were able to keep the P-dimensional vector of
interpaths delays, including its first trivially zero com-
ponent. To be able to invert F(f,,), however, we must
exclude 6,,,, from the analysis, and consider (just in this
Appendix) the following redefinition of 8,

Orp = [Ompy =+ * Ooips]-

The matrix of derivatives is now

where 0 is a P — 1-dimensional vector with all its com-
ponents equal to zero, and B is the lower right-hand side
P — 1-dimensional subblock of B. Define, correspond-
ingly, @ as the vector that groups the attenuations of paths
2 through P. Simple algebraic manipulations give

N
g(emp) =K— S O)ZKI AESaAE dw
4

where S, is the nonsingular (P — 1) X (P — 1) matrix

aa’

llall®
and A; = diag {a@}. Note that S, is not the projection
matrix on the orthogonal complement of @. Its inverse is
T

Se=1Ip-1 —

A
Ql

Sa' =Ip_y +
a

—o

For the cross term, we obtain
N
EF(OS,,, 0mp) = E S szl Re {b;‘A;l\I/} dw RaAE

= ®!R,A;

where @, is defined by (5.35) in the main text, and ¥ is
the diagonal matrix of generic element [¥]; =
6,-,—8”“"’0’"”', and the P X (P — 1) matrix R, is defined by

<[]

To establish (5.34) we need to prove that

aa’
llall?

>

R

R,S;'Ry = P;

which involves some simple algebraic manipulations.
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