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LD’-ARMA Identification Algorithm

M. Isabel Ribeiro, Member, IEEE, and José M. F. Moura, Senior Member, IEEE

Abstract—This paper presents the LD>-ARMA identifier, a
novel algorithm that solves the essentially nonlinear autore-
gressive moving-average identification problem with a linear
procedure, in two steps: an order selection algorithm followed
by an ARMA parameter estimator. The determination of the
AR and MA coefficients involves the solution of two dual sys-
tems of linear equations. These systems decouple the estimation
of the autoregressive (AR) component from the estimation of
the moving average (MA) component. The selection of the num-
ber of poles p, and of the number of zeros qo is accomplished
by a scheme that minimizes the mismatch of the data to each
proposed ARMA (p, g) model. Simulated experiments on the
proposed order selection procedure are presented. The statis-
tical analysis and extensive simulation results are discussed in
a companion paper.

I. INTRODUCTION
A. ARMA Estimation

An important question in many problems is that of fit-
ting models to a series of measurement points. The
available a priori information and the ultimate purpose of
the model may change with the specifics of each appli-
cation, e.g., econometric time series analysis, speech
processing, bioengineering. Accordingly, there are alter-
native standard classes of models to fit the time series.
Among them, the autoregressive (AR) and the autore-
gressive moving-average (ARMA) models play a relevant
role.

In the absence of the moving-average (MA) part, the
estimation of the process parameters has relatively well-
established methods [16], [19]. These explore the linear
relations between the autocorrelation function and the AR
coefficients, by solving the Yule-Walker equations. In
contrast with the linearity displayed by the estimation of
AR processes, ARMA identification is a nonlinear prob-
lem. Optimization techniques based on the maximum-
likelihood (ML) estimator [2], [15], and on nonlinear least
squares techniques [14], have been applied to this prob-
lem. A common approach is a three step sequential pro-
cedure based on the modified Yule-Walker (MYW) equa-
tions (see e.g., [10], [11], [14], [31]). First, a sample
autocovariance function is estimated from the data. Then,
the AR component is obtained, and finally, the MA coef-
ficients follow as a function of the previously computed
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AR coefficients. Similar sequential estimation procedures
but based on the reflection coefficient sequence are pre-
sented in [5], [6], [18], [21].

A trend in spectral estimation studies, e.g., [30], is to
solve a basically nonlinear problem by a linear procedure.
In this paper we take the same point of view and solve the
nonlinear problem of ARMA identification by a linear,
dual, decoupled procedure—the LD*~ARMA algorithm,
which estimates independently the AR and the MA coef-
ficients. Characteristics of our proposed technique in-
clude the following:

¢ The linearity of the algorithm. The determination of
the AR and of the MA coefficients, as well as the order
selection, involves only the solution of systems of linear
equations.

¢ The duality of the procedure. The AR and the MA
estimation are obtained by the same type of operations—
the solution of a system of linear equations.

¢ The decoupling of the AR and of the MA component
procedures, i.e., neither of them depends on previously
estimated values of the other, thus differing from reported
techniques.

® The use of a sample reflection coefficient (RC) se-
quence instead of a sample covariance sequence like
MYW-based ARMA algorithms. The present ARMA es-
timator may be thought of as a square-root MY W-type
algorithm exhibiting the improved stability properties
known to square root algorithms. '

B. Order Selection

In any identification sheme, the structure (e.g., the
number of poles p, and of zeros q,), if unknown, has to
be determined prior to or within the estimation procedure.
Two standard techniques for model order selection, the
AIC [1] and the MDL [29], obtain the number of poles
and zeros by minimizing a functional that accounts for the
residual power and for the overparameterization.

The 1d>~ARMA identification algorithm detailed in this
paper accomplishes the order selection by a scheme that
minimizes the mismatch of the data to each proposed
ARMA(p, g) model, no residual power minimization
being performed. Thus, unlike AIC and MDL proce-
dures, the overall identification algorithm is based on a
single pass over the data, since there is no need to esti-
mate the cross-correlation sequence between the data and
the error process. Once the number of poles and zeros is
selected, the algorithm simultaneously provides the esti-
mated values of the parameters of the AR and of the MA
components of the corresponding model.
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In Section II, we formulate the identification problem
for ARMA processes, state the hypotheses underlying the
paper, and discuss a particular solution structure that
solves it. Useful notation is introduced in Section II. In
Section IV, the required theoretical relations are de-
scribed. The order estimation algorithm is discussed in
Section V, stressing the linearity, the duality, and the de-
coupling of the LD’~ARMA procedures. We introduce
the functional to be minimized, present required proper-
ties, and propose the selection scheme for the number of
poles and zeros. In Section VI, the LD’ ARMA imple-
mentation is presented. Some simulated examples com-
pare the described order selection algorithm with the AIC
criterion introduced by Akaike [1], and with the MDL
suggested by Akaike [4], and Rissanen [29]. A compan-
ion paper [28], carries out the statistical analysis of our
algorithm and illustrates its behavior with a set of exten-
sive simulation results.

II. PROBLEM FORMULATION

Let {yo, ¥1, * * * , ¥} be a finite sample of length L
drawn from a stationary scalar process {y, } satisfying the
recursion

po q0
Yn + 'ZI AiYp-i = 0|:en + Z bien—i} (1)
i= i

=1
where {e,} is white noise, with zero mean and unit vari-
ance. The process {y,} is an ARMA(p,, ¢o) process.
Model (1) is assumed to be stable and minimum phase,
the numerator and denominator polynomials of its transfer
function

q0
B = 2 bz, b=1,
PO .
A@ = 2 az”, a =1 @)
i=0
having no common roots. The vectors
b = [bl b2 tt bqo]T’ a = [al a **°° aIIO]T (3)

collect the MA coefficients {b;} and the AR coefficients
{a;} of the process. No assumption is made on the rela-
tion between p, and ¢g,. In particular, in AR studies, g, =
0, whereas p, = 0 leads to the identification of MA pro-
cesses.
The ARMA identification problem is now stated. Given
a set of observations, {yy, ¥, *** , y._} from an
ARMA(py, qo) process, find estimates of the number of
poles Py, of the number of zeros qo,/gf the AR and of the
MA components, & and 5, and of o7, i.e., determine the
unknown parameter vector
6 = [po, 40, @, b", *1". “
The solution adopted in this paper for the ARMA iden-
tification problem is represented in Fig. 1. The parallel-
ism in this block diagram emphasizes the duality and the
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Fig. 1. Solution structure.

decoupling of the AR and of the MA estimation proce-
dures.

Starting from the set of observations of the ARMA(py,
go) process, the identification algorithm obtains a second-
order characterization in terms of a sample reflection coef-
ficient (RC) sequence. From this, the algorithm computes
the associated prediction and innovation filters’ coeffi-
cients. The relationships between these filters, the RC se-
quence, and the ARMA(p,, ¢o) process will be detailed
later in this section. Then, the algorithm iterates among
three steps:

Step 1: Hypothesizes that the data corresponds to an
ARMA(p, q) model.

Step 2: Obtains the estimated values of the AR and of
the MA components of the corresponding model. These
are the solution of two decoupled systems of linear equa-
tions.

Step 3: Tests the hypothesis.

The stopping condition of the algorithm is determined
by the hypothesis validation (step 3). When the hypothe-
sis is accepted, the corresponding pair (p, q) defines the
estimated model structure, its AR and MA coefficients
being given by step 2. If the hypothesis is rejected, the
identification scheme iterates on (p, g).

For the sake of clarity, we describe briefly the kind of
operations performed in steps 2 and 3. The two systems
of linear equations considered in step 2 are constructed
from the coefficients of increasing order prediction and
innovation filters. The number of unknowns and the num-
ber of equations of each system is consistent with the pair
(p, ¢) considered in step 1. The decoupling of both sys-
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tems is clear from Fig. 1. The duality of the two estima-
tion procedures will be proved in Section IV. The hy-
pothesis validation (step 3) is carried out by minimizing
a functional d. For each pair (p, q), d is evaluated by
using the current estimates of the AR and of the MA coef-
ficients and two sets of linear algebraic relations between
these.

In the remaining of this section, we present the predic-
tion and innovation filters associated with the ARMA pro-
cess and its second-order characterization given by the re-
flection coefficient sequence.

A. Prediction/Innovation Filters
Let {v,}

s Yn-1] ®

be the innovation sequence associated with the ARMA
process (1) and represented by

Uy = Yy — E[y;«,'y()» Yis * 0

A4,) = §) alz”, ab=1 )
the corresponding prediction error filter of order n, i.e.,

n
o= A aly., aj=1 @
iz
Notice that a}, the coefficient of order n of the nth order
filter, is the reflection coefficient of order n of the ARMA
process. We will denote it alternatively by ¢, = a”. From
the definition of the innovation sequence, it follows that

[8]
Up = Y v_ E[yn|v(), [Z VIR 70 | (8)

leading to

M=
~3
<
E)
L
3
I
—_

Yn = )]

i=0

il

where the set {W], 0 < i < n} collects the coefficients
of the innovation filter of order n, represented by

B,(2) = .§O Wiz (10)

As n goes to ®, A,(z) and B, (z) represent long AR(n) and
long MA(n) models which are equivalent to the stable,
minimum-phase original ARMA model. This corresponds
to the Wold and the Kolmogorov decompositions, respec-
tively.

In [8], the coefficients of the prediction error filters a?
and of the innovation filters, W7, are expressed as a func-
tion of the discrete Kalman-Bucy filter dynamics for a
model with noise free observations. The modifications of
these for the total correlated noise model of (A.5), (A.6)
is carried out in [24]. See also [12]. In the next section
we will use these coefficients to define two lower trian-
gular matrices that play an important role on the estima-
tion algorithm.

III. NoTATION
In this section we present useful notation. For the pairs
(P, 9) and (po, qo), define
Po = max {po, 9o} P = max {p, q}.
In the sequel, the subindex N stands for the highest order
prediction and innovation filter used by the estimation
procedure. Unless otherwise stated, the lines and columns

of the matrices are numbered starting from zero. Let Q (k)
be the vector of order g,

Q) = (k) Dk) - QW) Po<k=<N
(1)

with elements, ©;(k), specified later and let J, be the per-
mutation matrix of order n, i.e.,

0o .
J, = : , VmeEN. (12)
1 0
1
Throughout the paper, we make the convention
ai =W} =0, fori>n, ori<0. (13

Define the lower triangular, unit diagonal matrices of or-
der N + 1 as

- -
1
a 1 0
Wy'=| a3 da? 1
| _anw a%—] a, 1_
-, _
W) 1 0
We =1 w2 w2 1 (14)
| Wy W, e WY1

These matrices play a key role on the dual ARMA es-
timation procedure. The following commments explain
their meaning and clarify some options taken on the es-
timation algorithm.

Comment 1: The lines of matrices Wy' and Wy, collect
the coefficients of the successively increasing order pre-
diction and innovation filters up to order N. This may be
represented as
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1 1
z—l ZflAl(Zfl)
will z72 | =] 2746 |
2V | Lz Maye™h
-7 — 1 -
Z—l Z—IBI(Z—I)
wy | 22 | = 2B (15)
| | LBy

with A4, (z) and B, (z) defined in (6) and (10). An interpre-
tation of the columns of Wy in terms of a time-varying
impulse response is given in [13], [15].
Comment 2: The set of polynomials {A4,(z), A,(2),
, Ay(2)} correspond to increasing orders AR models
that can be approximately considered equivalent to the
ARMAC(py, ¢o) process. Similar comments hold for
{B\(2), By(2), * * - , By(2)} and a set of increasing order
MA models.

Comment 3: The reflection coefficient sequence {aJ,
al, a3, - -+, a¥} associated with the ARMA(p,, o) is
the first column of Wy '.

Comment 4: The matrix Wy is the Cholesky factor of
the Toeplitz autocovariance matrix of the process Ry

Ry = WyDy W{/

where [Ry]; = r(|i — j|), and r(k)
The diagonal matrix Dy in (16) is

Dy = diag (dy, d;, - * * , dy) amn

where d,, collects the power of the innovation process In
a similar way, Wx' is a Cholesky factor of Ry v

Comment 5: In spite of the relationships between Wy
and W' with the autocovariance matrix Ry, the identi-
fication algorithm of this paper does not start form an es-
timated value of Ry, no Cholesky factorization being per-
formed. Instead, it estimates the prediction and the
innovation filters’ coefficients directly from the data.

Define Ay as a band diagonal, lower triangular, Toe-
plitz matrix of order N + 1, constructed with the AR coef-
ficients of the ARMA(py, go) process

(16)
= E[y(n + k) y(m)].

o -
a 1
a, a 1 0
Av = ap, a, 1
Ay, a 1
0
ay, R T

18)
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Let 8y be a lower triangular, band diagonal matrix given
by

T

0 Q.F0) -+ WPl

0 Q.0 - M1

i QN) -+ 1|
where the entries on the shaded area are not used in the
ARMA estimation algorithm.

The following definitions consider a block partition of
the matrices W' and Wy, for each pair (p, 9) € N X N.
The notation is also particularized for (p, ¢) = (Po, 90)-

Consider the blocks of Wy' and Wy represented in Fig.
2, with the displayed dimensions. For the sake of clearity
we explicitly represent the elements of N,(k, p, ¢) and
n{(k, p, q), using (14)

k_
akfz a —g+1
Nl(k’ P, q) =
k-2 k-2 k-2
ay-3 Qr-3 ap -1
k=1 k-1 k-1
A1 Gr-2 tap
T Lk kL ok
nl(kv D, ‘I) - [ak A ap+1]- (20)

Vector n! (k, p, g) collects the k — p highest order coef-
ficients of the kth prediction error filter, while matrix N, (%,
P, q) stacks these for the filters from order k — 1 to k —
q. Similarly to (20), the elements of N,(k, p, ¢) and n» T(k,
p, q) are obtained from (14) and Fig. 2(a). Correspond-
ingly equivalent comments hold for the matrix Wy in Fig.
2(b), with the roles of p and g interchanged..

Define the matrix 9T (N, p, ¢) and the vector m(N, p,

q) by

M, p. 9
. M{(p +1,p, 9

M N,p,=|—""""—

MI(N, p, @)

ml(ﬁ» p, ‘I)

ml(l_) + 1) p, ‘I)

mN, p, 9 = (21

| m®V, p. 9)
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N (k,p,q] Na(kng) | |4 Mi(k,p,q) Ma(dp, g} | P
uf(k,p,q] nf(k,p,q) i (k,p,¢) |m(k,p,4)
k-p 4 k-q q

line k line k

(a) (b)
Fig. 2. Block partition of W' and W,.

To simplify the notation, we omit in the above matrices,
the explicit dependence on p and g when these equal the
true model order parameters, i.e., p = py and ¢ = ¢.

IV. PARAMETER ESTIMATION: BAsic RELATIONS
We derive a set of relations satisfied by the elements of

Wy and W5' which are the basis for the AR estimation,
for the MA estimation, and for the order selection scheme.

A. Basic Relations for AR Estimation

Let Ay be the matrix (18). We will prove that 8y in (19)
is

Ay - Wy = By.

It is easy to see that By is lower triangular and unit diag-
onal as Ay is in (18) and Wy is in (14). Result 1A proves
that 8y is the band diagonal, non-Toeplitz matrix in (19).
Result 4A in section IV-C will define the band diagonal
elements of By.

Result 1A: The elements of Wy satisfy

(22)

Wi+ aWiZ! + aaWiZZ + -+ + a,, W20 = 0,

@+l<i<kp,<k=<A. 23)

Proof: In Fig. 3, we present a geometric interpre-
tation of result 1A. The left-hand side of (23) is the prod-
uct of the line k of Ay by the column k& — i of Wy. From
(22), this product equals [By]; - ;, which, for the range
of k and i defined in (23), corresponds to the dashed area
in matrix 8y represented in Fig. 3.

To prove that the right-hand side (RHS) of (23) is zero
involves two arguments, the Cayley-Hamilton theorem
for area I and the theory of the invariant directions of the
Riccati equation for area II. See Appendix 1 for the
details. 0

Result 1A says that the AR coefficients define a linear
combination of the elements on the same column of the
matrix Wy. Each combination defined by (23) corre-
sponds to a null element of 3y below its main diagonal,
as shown in Fig. 3.

With the block notation M (k) and m,(k) introduced in
Section III and grouping all £ — g, equations in (23) for
the same value of k, i.e., in correspondence with all the
zeros in line & of By, we obtain a set of linear equations
satisfied by the AR component coefficients.

An Bn

Line k column k — i

Fig. 3. Geometric interpretation of result 1A.

Result 1B: The AR component satisfies the system
of linear equations

M{(K) J,a = —mk), Po<k=<N (24
O
Using (15), the result 1B may be interpreted as
Po k—go—1 }
2 a,< 2 Wf:;,-z‘f> =0, vz (25
r=0 j=0

that represents a linear combination of the first k — ¢,
coefficients of the polynomials {z=*"7VB,_, (z7"),

-, 27*B,(z™")}. As (25) holds for every z, it corre-
sponds to a set of k — g, linear equations.

Now, collect the linear equations corresponding to all
the zeros of areas I and II in Fig. 3 using the definitions
(21) forp = pgand q = ¢,.

Result 1C: The AR component satisfies the system of
linear equations

M'(N) J,@a = —m(©N). (26)

Result 1A states that each linear combination corre-
sponds to a zero of 8y below its main diagonal. Result 1B
collects all these combinations corresponding to the zeros
of By in line k. Finally, result 1C represents the system
of linear equations in correspondence with all the zeros of
By below its main diagonal (see the shaded area in Fig.
3).

B. Basic Relations for MA Estimator

For the MA component and the entries of Wy !, we de-
rive a set of linear equations using

ByWy' = Ay. 27

These equations are dual from those obtained for the AR
component.
Result 24: The elements of W5' satisfy

af + QkyaiZ! + Qkyatzi + - - - + QkakzL

=0, (28)

Proof: Using the structure of the matrices 8y and
W', in (27), the left-hand side (LHS) of (28) is the prod-
uct of line k of B by column k — i of W', For the range
of indices in (28), the element [Ay]; 4 - ; is zero (see (18)),
thus concluding the proof. d

pot+l=<i=<k p,<k=<N.
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An

a

col\mlk—(

Fig. 4. Geometric interpretation of result 2A.

‘

Fig. 4 is a geometric interpretation of this result. It is
dual of Fig. 3.

Result 2A states that the coefficients of vector Q (k) in
(11) define a linear combination of the elements of the
same column of the matrix W,Gl. The same combination,
i.e., with the same coefficients, holds for the first k — p,
columns of W5'. Consequently, a system of k — py linear
equations may be established in correspondence with all
the zeros on line k and below the main diagonal of Ay in
Fig. 4. Result 2A generalizes to all the first k — pg col-
umns of Wy' the corresponding relations for the first col-
umn (set of reflection coefficients), contained in [8]. As
before, a matrix version results by using the notation of
Section III.

Result 2B: The vector Q (k) satisfies the system of lin-
ear equatiops

Ni(k) J, k) = —mk), VP <k=N. (29

O

This result may be interpreted in terms of increasing
orders prediction error filters. Using (15), (29) may be
rewritten as

q0 k—po—1
z Qr(k)< 2

ai::_,-z*f>=0, vz (30)
f=0

that represents a linear combination of the first k — pg
coefficients of the polynomials {z™*794,_,(z7"),

-+, 27*,(z™H}. As (30) holds for every z, it corre-
sponds to a set of k — g, linear equations.

Note that since £ (k) depends on k& there is no analog to
the matrix result 1C.

The MA estimation procedure is based on result 2B and
on the following result which relates the MA component
of the process with the asymptotic (k = o) value of Q (k).

Result 34:

klim Qk) = b. 31
Proof: See Appendix 1. (]

Equation (31) relates the MA component of the process
with the asymptotic value of Q (k). In the sequel, we refer
to the vector € (k) as the MA component. This is an abuse
of notation, since, by result 3A, only asymptotically does
Q (k) converge to b. In the following result we discuss the
rate of this convergence. This clarifies when, for practical
purposes, £ (k) can be taken as b.

1827

Result 3B: The rate of convergence of (k) to b is de-
termined by the second power of the zeros of the original
ARMA process. '

Proof: See Appendix 1. O

Given the set of reflection coefficients {c|, ¢;, * * - ,
i}, or equivalently the coefficients of the prediction error
filters up to order k, the MA estimation problem is solved
by obtaining the vector (k) as the solution of the system
of linear equations (29) (see result 2B), and letting & —
o,

C. Basic Relations for Order Selection

When the correct number of poles py and the correct
number of zeros g, are not known a priori they have to
be obtained prior to the estimation procedure. Here we
present a set of coupled relations satisfied by the vectors
a and Q (k) for known p, and ¢g,. These are the basis for
step 3 of the order selection algorithm proposed in Section
V.

Using (22), the nonnull elements on line k of 8y are
obtained next.

Result 44: The elements Q;(k), 1 < i < q, are given
by

WE+ awtZ! + aaWi22 + -

+ a, WiZp = Q.(k)

l<i=<gqgn,po<k=<N. (32)

Proof: The LHS of (32) is the product of the line k
of Ay by the column k& — i of Wy. From (22), this product
equals [ Byl «-» Which, for the range of k and i defined
in (32), corresponds to the band elements of By in line k.
Result 2A holds by defining

[Byvlkk-i = Li(k). (33)

We can use the notation in Section III to write (32) in
compact form.
Result 4B:

M (k) J,a + myk) = J, Q). (34)

The biocks in the previous algebraic relation are rep-
resented in Fig. 5. :

By now using matrix equality (27), we establish a set
of linear algebraic coupled relations between a and (k)
involving the elements of Wy '. These are dual from those
contained in results 4A and 4B.

Result 5A: The coefficients a;, | < i < p,, are given
by

ak + Qkyakz] +92(k)a{.‘:2? + o+ Qulalz® = a,

Proof: The LHS of (35) is the product of line k of
By by the column k — i of Wy'. From (27), this product
equals [Ay]y i -; which, for the range of k and i defined
in (35) and the structure of Ay, equals a;. O
The matrix version is given next.
Result 5B:

NI(K) 1, %) + nytk) = Jo@, Po <k <N. (36)
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QT (k)
Fijg. 5. Blocks presented in result 4B.

For the matrix equality Ay Wy' = By, the blocks in the
previous algebraic relation are dual from these repre-
sented in Fig. 5.

D. Polynomial Interpretation

The results presented in Section IV-A through -C may
be interpreted in ferms of the polynomials A4,(z”") and
B,(z™Y. In fact, from (22), we have

PO
(] -1
j§0 ;2 ¢ ”Bk—j(z )

q0
= z~*-90 EO Q-jKz7, Posk=N (37

while (27) 1quls to

qo0
j§0 szg(kgj)Ak_j(Z_‘l)
po

= z~k-p0) ,-Zo a,_;Kz7, Py<k=<N. (38
Notice that the LHS of (37) ((38)) is a linear combination
of increasing order innovation filters (prediction error fil-
ters). Results 1A to 5B hold by equating the correspond-
ing powers of z in both sides of (37) and (38). Also, it is
clear frqm the two above equalities that the AR compo-
nent is computed from a set of increasing orders MA
models and that, asymptotically, the same happens for the
MA component and increasing orders AR models.

V. ARMA IDENTIFICATION: ORDER SELECTION

This section presents the order selection scheme for an
ARMA(py, g9) process. When p, and g, are not known a
priori, the number of poles and zeros as well as the AR
and MA components are estimated through a scheme in
Fig. 1 that iterates on the number of poles p and the num-
ber of zeros g. In this case, for each pair (p, g), we hy-
pothesize that the data corresponds to an ARMA(p, q)
process and evaluate the AR and the MA components of
this model. This is a model fit procedure, accomplished
by the solution of two systems of linear equations (see
step 2 in Fig. 1). These systems are based on those de-
fined in results 1C and 2B in Section IV for (p,, go) but
hypothesizing that p and g are the correct model orders.

For (p, ¢) # (po, qo), the evaluated ARMA(p, q)
model does not coincide, in general, with the original pro-

cess. The order selection algorithm is based on a model
mismatch evaluation. A functional d quantifies this mis-
match. For each pair (p, q), d is evaluated using the AR
and the MA components of the fitted ARMA(p, g) model
and the two sets of linear algebraic relations. These are
established similarly as the coupled relations in results 4B
and 5B in Section IV but admitting now that p and g are
the correct model orders.

In this section, we assume that all required quantities,
namely, the coeflicients of the prediction error and of the
innovation filters, are available. In practice, these quan-
tities are estimated from the finite sample of data avail-
able.

A. Model Fit

We admit that p and g are the correct model orders and
fit an ARMA(p, g) model by solving the two systems of
linear equations defined similarly to (26) and (29) (see
step 2 in Fig. 1).

Definition 1: Let 'a(N, p, ¢q) be the minimum-norm
vector x that minimizes the Cartesian norm

I, p, dpx + m@N, p, l, N =p +q. (39)
a

Definition 2: Let 'b(k, P, ¢) be the minimum-norm
vector y that minimizes the Cartesian norm
INTk, p, 9y + mitk,p, Dll,,  p+4qg =<k =<N.
(40)
O

Depending on the rank of the system matrices in (39)

‘and (40), the minimum value of the Euclidean norm in

these expressions may not be attainable by a unique so-
lution. Here the uniqueness is obtained by using the min-
imum-norm solution.

The vectors 'a(N, p, g) and 'b(k, p, g) are taken as the
AR and the MA component estimates of the ARMA(p, q)
process fit to the given data. In general, for an arbitrary
pair (p, g), there is a nonzero error associated with the
two systems of linear equations presented above. Let

eMA(No D, Q) = [p+quA(N’ D, q)!

< [V ematN, p, @)|"emaN, p, )]
(41)

be the vector of errors associated with (39). Likewise,
define ‘e r(k, P, q) to be the error associated with (40).
Using the matrix notation defined in Section III, expres-
sions for these errors follow by replacing the vectors x
and y in (39) and (40) by the corresponding solutions, 'a
and 'b.

Result 6:

eMA(Na p, q) = mT(N9 p, q)-,p la(N’ P (1) + m(N’ ps q)
(42)
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“es(k, p, ) = N1k, p, 9], 'bk, p, @) + ni(k, p, g),

pt+tqgq=<k=<N 43)
or, equivalently, using (42) and (41)
‘emaN, p, @) = M (k, p, 9)J, 'a(N, p, )
+ my(k, p, q). 44)
O

Note that the independent vector m(N, p, gq) in (39)
collects elements from line p + g up to line N of Wy, (see
(21)), while n,(k, p, ¢g) in (40) only contains entries in
line k of Wy'. The superindex used on the error notation
in (43) and in the right-hand side of (41) stands for the
line to which the error corresponds. Therefore, the error
associated with (39), ema(N, p, q) in (41), collects those
obtained in correspondence with linesp + ¢, - -+, Nin
WN.

In the upper part of Fig. 6, we represent graphically the
operations leading to the two sets of vectors {'b, *esp}
and {'a, N }. The duality and independence of the two
procedures is preserved when the correct model order is
not known.

B. Model Mismatch

When (p, q) # (po, qo) there is, in general, a mismatch
between the hypothesized model and the correct one. A
quantification of this mismatch is proposed. The first step
of this quantification uses two sets of coupled and linear
algebraic relations defined, for each pair (p, g), as in re-
sults 4B and 5B. If we plug the vector 'a on the (p, ¢)-
version of restilt 4B, we should obtain a replica of 'p.
Similar comments hold if we plug 'b on the (p, g)-version
of result 5B. This suggests the following definitions:

Definition 3:

bk, p, 9) = Mi(k, p, 9)J, 'a(N, p, @) + myk, p, g),

45)
[

p+qsk‘sN.

Definition 4:

2a(k, p, @) = N3k, p, @J, 'b(k, p, g) + nyk, p, q),

(46)
O

These operations are represented in the bottom of Fig.
6.

p+qg=<k=<N.

C. Functional d
When p = py and g = gy, we naturally have, according
to Section IV,

'a(N, po, q0) = “a(N, po, g0) = @ @7

lb(kv Po, q()) = 2b(k7 Po> qO) = Q(k) (48)
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Fig. 6. Steps 2 and 3 of the identification algorithm.

49)

*exr(V, Po» 40) = 0. (50)

These equalities do not generally hold for (p, q) # (po,
9o)- .

Therefore, for an arbitrary pair (p, q), we evaluate the
mismatch between the correct ARMA(p,, qo) and the as-
sumed ARMA(p, q) model as the distance between four
pairs of vectors. For each pair (p, q), these correspond to
those shown in the first and second terms of the above
equalities.

Definition 5: For each pair (p, q), the functional d(N,
D, q) is given by

“emaN, po, 4o) = 0

dN,p, @) = dag(N, p, @) + duaN, p, @) (51)
with
N 0k—p
dar@N, p, @) = k=rta 'a(N,p, )
_ [keAR(kv p, Q):| . (52)
‘ak, p, 9) |lI,
N I 0
k—q
U R
usV. p- ) k=p+q {'b(k, ) )]
B {"eMA(N,p, q)} 53)
bk, p, 9 |,
where |- || is the Euclidean norm. O

D. Properties of d

We present properties of d(N, p, g) that will clarify
how d is used in selecting the order. The analysis consid-
ers the pairs (p, ¢) belonging to the four distinct areas
shown in Fig. 7.

Pl. v(p, q) € Areal, d(N, p, q) # Ofor N = py +
90-
P2. v(p, q) € Areall, d(N, p, q) # OforN = p +
4o-
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Fig. 7. Distinct areas for the analysis of d.

P3. v(p, q) € Arealll, d(N, p, q) # O for N = p, +

q.

P4. d(N,p, qy) = 0forp = py, N = p + q,.

P5. d(N, py, q) = 0forg = gy, N = py + q.

In Fig. 8, we sketch the locus corresponding to P1 to
P5. The symbol 0 represents the set of pairs (p, g) where
d is zero, while the shaded area represents a nonnull value
of d. The white triangles in Fig. 8 are not covered by
these properties.

The proof of these properties is based on the analysis
of the solution of (39) and (40) as well as their associated
errors. Due to their similarity we will briefly discuss the
general case with z being the minimum norm vector that
minimizes the Euclidean norm ||Az + b|l,, with 4 an m
X n matrix, with m < n and rank A = k < n. The so-
lution of this minimization problem is given by z = ~4'b,
where A is the Moore-Penrose inverse of 4 [22]. For a
full rank matrix, A" = (474)'A7 [22]. If the independent
vector b belongs to the range space of A, the error asso-
ciated with the minimization is zero.

For the properties P1 to P3, notice from Fig. 7 that the
ARMA(p, q) models computed for areas I-III have a
number of poles p less than the true value p, and/or a
number of zeros q less than g,. For these models, the in-
dependent vectors m and n; in the minimization problems
(39) and (40) do not belong to the range space of the cor-
responding matrices, 9 7 and N7 [25]. This leads to non-
null associated errors and, consequently, to a nonnull
value of d (see (51)-(53)), justifying P1 to P3.

For ARMA(p, q) models corresponding to area IV, i.e.,
with both p and g greater than or equal to their correct
values pg and g, the errors ‘e,z and ey, associated with
(39) and (40) are zero. In particular, this holds for the set
of ARMA models considered in P4, i.e., with the correct
number of zeros g, and a number of poles p greater than
or equal to the correct one p,. For these latter models in
P4, the vectors, 'b, %b, 'a, and %a given by definitions 1
to 4 are pairwise equal. Together with the null errors, this
leads to a null d (see (51)-(53)), justifying P4. The lo-
cation of the zeros corresponding to 'b coincide with those
of the correct ARMA(py, go) model while the vector 'a €
RP? leads to p poles at the correct locations, the remaining
P — Do being at the origin. A dual explanation holds for
P5. See [25] for a proof of these properties. For additional

Fig. 8. Locus of the functional d considered in P1 to PS.

properties of the functional d and for a particularization
to the class of Butterworth processes see [25].

E. Order Selection Algorithm

From the above discussion and list of properties, it re-
sults that for N = p, + qo, a perpendicular pattern of the
row with p = p, and the column with g = ¢, arises on the
table of d, as shown in Fig. 8. This pattern is established
for N = p, + qo, and the length of its row and column
increases as N increases. Every ARMA(p, ¢) model with
(p, q) in the pattern has the same spectrum as the one
corresponding to the intersection point [25]. In fact, the
additional p — p, poles or ¢ — g, zeros of these models
are located at the origin. The order selection algorithm
identifies this pattern and chooses the model with the
smallest number of parameters. For the exact knowledge
of the reflection coefficient sequence, this model has p,
poles and g zeros. Define the sets

I(N,p, q) = {(p, 9): dN,p,q) =0V p +q >N}
(54)
£p, 9 = an 9(N, p, 9) (55)

where N stands for set intersection. For each value of N,
the set (N, p, q): i) does not include the orders (p, g) of
ARMA models for which d(N, p, q) # Ofor N =z p +
q,ie., {(p, 9: d\N,p, q) # 0, p + q < N}. These
models are definitely not the correct one; ii) collects all
the models for which there is not enough information for
an accept or reject decision, i.e., {(p, ¢): d(N, p, @) =
0,p+q=<N}or{(p,q:p+q>N}.
The properties of d yield

® = {(p, 9: (p = Po: 9 = q0)
V(p=pe,qg=qg0)} CELP 9

i.e., models corresponding to the perpendicular pattern @
with (pg, go) as its intersection point are a subset of £ (p,
q). The model order (py, qq), i.e., corresponding to the
true orders, is obtained as the order of the model
ARMA(p, q) belonging to £(p, q) with the smallest
number of parameters

arg min {p + q}. (56)

(Po> q0) =
: P.9eL(p.q
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) .

When the order has been decided, the algorithm accepts
the vectors 'a and 'b from the previous step 2 as the AR
and MA parameter estimates. In the next section we mod-
ify this selection scheme for the case where the exact re-
flection coefficient sequence is replaced by an estimated
one.

VI. LD?>~ARMA ALGORITHM IMPLEMENTATION

In practice, the identification has to be carried out based
on a finite sample of length L. The proposed identification
algorithm is implemented following the lines in Section
V. The nonavailable quantities, namely, the successively
increasing order prediction and innovation filter coeffi-
cients, are replaced by suitable estimates. Let § represent
the estimated value of a quantity s. Then, starting from
the set of observations, {yo, y1, - * * » y—1}, the LD*~
ARMA iterates as:

1) It obtains an estimate of the reflection coefficient se-
quence {é,, &, * * * , éy, * - -} using the Burg technique
[9]. —

2) Computes the estimated matrix Wy' for increasing
values of N using point 1 above and the Levinson algo-
rithm. P A~
3) Computes Wy by a recursive inversion of W'.

4) Hypothesizes that the data belongs to an ARMA(p,
q) model, where p + ¢ < N.

5) Fits the ARMA(p, ¢g) model to the data, by solving
(39) and (40) with the corresponding matrices replaced by
its estimated values. The solutions are the AR and MA
component estimates of the assumed model. If p, and g,
are known a priori, the correct model structure is assumed
in point 4, with no further processing being needed. If
not, it proceeds to step 6.

6) Evaluates the model mismatch, d(N, p, q), by com-
puting the vectors in definitions 3 and 4 in Section V with
the corresponding matrices replaced by its estimated val-
ues.

7) Tests the hypothesis. Due to the estimation errors
on the reflection coefficient sequence, the functional prop-
erties P4 and P5 do not hold exactly. Therefore, the order
selection procedure implements

(P, §) = argmin {p + q} (57

P.9eL(p.q)
modifying the definition presented in Section V of the set
£(p, g) as

Nmax

£p, g = NQ1 IV, p, 9 (58)

IN,p, 9 = {(p, 9: AN, p,q) < eVp + q> N}
(59)

where € is a small positive constant and Ny, is the max-
imum number of reflection coefficients estimated from the
data.

If the hypothesis is accepted, the identification proce-
dure is completed. Otherwise, it returns to point 4.
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TABLE I
Poles Zeros ¢’
Example 1 0.9 -0.5 1
ARMA(, 1) -0.8
Example 2 0.95 exp [4j50°] 0.95 exp [£)70°] 1
ARMA(6, 4) 0.9 exp [1/90°] 0.95 exp [£j110°]
0.95 exp [+/130°]
Example 3 0.95 exp [+j40°] 0.95 exp [+j65°] 1
ARMA(6, 4) 0.9 exp [+j90°] 0.95 exp [+j115°]
0.95 exp [+/140°]
TABLE 11
EXAMPLE 1
=250 L =500 L = 1000 L = 5000
LD? 46 62 85 100
AIC 54 43 45 45
MDL 91 96 98 100
TABLE 11
EXAMPLES 2 AND 3
Example 2 Example 3
LD? © oL
e=102 AIC MDL e =0.07 AIC MDL
L = 500 24 30 39 27 16 21
L = 1000 37 30 38 63 14 20
L = 5000 96 49 51 100 21 22

In the algorithm, points 1 and 3 are not essential, i.e.,
alternative estimates for Wy and W' can be used, e.g.,
[15].

Although a more thorough analysis of the algorithm is
presented elsewhere [28], here we compare briefly the or-
der determination characteristics of the LD’~ARMA with
the Akaike information criterion (AIC) introduced in [1]
and the MDL suggested by Akaike [4], and developed by
Rissanen [29]. The simulated results count the number of
correct order selections (p = pg, § = ¢o), over 100 in-
dependent Monte Carlo experiments for the ARMA pro-
cesses with pole-zero location displayed in Table 1. The
AIC and MDL procedures were implemented using the
software package in [3].

The results for example 1 are presented in Table I1
where ¢ = 0.05 is the threshold considered for the LD’
order selection algorithm (see (59)). The results of ex-
amples 2 and 3 are displayed in Table I1I.

Tables II and III confirm the well-known statistical in-
consistency of the AIC. On the contrary, the error in
choosing the correct order goes to zero as L — oo for both
the MDL and the LD? algorithm. In example 1, which is
a low-order ARMA model, for small sample sizes, MDL
outperforms the LD’~ARMA algorithm. When the order
of the ARMA system increases as in examples 2 and 3,
the LD>~ARMA seems to have the upper hand over both
AIC and MDL. The convergence of LD? is clearly faster
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as exhibited by the results for L = 5000 in example 2 and
for L = 1000 for example 3.

VII. CONCLUSIONS

The LD*~ARMA identifier described solves the nonlin-
ear ARMA identification problem. It combines an order
selection scheme with a linear, dual, decoupled algorithm
for the estimation of the AR and of the MA components.

The essence of the algorithm explores linear relations
between corresponding lag coefficients of successively
higher order linear predictor and innovation filters that are
fit to the data. The coefficients of these linear relations are
exactly the AR parameters and (asymptotically) the MA
parameters. These linear relations are of two natures: the
uncoupled systems (26) and (29), which only involve
either the AR or the MA coefficients; and the coupled re-
lations (34) and (36), which express the AR (MA) param-
eters in terms of the MA(AR) parameters. By solving the
uncoupled systems independently, we decouple the AR
and MA estimation procedures. The order selection
scheme uses the coupled system of equations. Once we
have potential candidates for the AR and for the MA pa-
rameters, these are introduced in the coupled relations.
The order estimate minimizes the resulting mismatch.

In practice, to use the algorithm described here, we first
need to obtain suitable estimates for the coefficients of the
higher order linear predictor and linear innovation fits to
the data. We use estimates of these quantities obtained not
from the covariance sequence but from the sequence of
reflection coefficients. Section VI has presented simula-
tion examples that compare the order selection capabili-
ties of LD?, AIC, and MDL. It is apparent that LD? and
MDL are both consistent, and that as the order and com-
plexity of the ARMA model increase, LD? exhibits a
faster convergence rate. The companion paper [28] ana-
lyzes the statistical performance of the LD? identification
algorithm and presents simulation results that further de-
tail the behavior of the algorithm and compare it with other
competing techniques.

APPENDIX |
MARKOVIAN/INNOVATION REPRESENTATIONS

The ARMA(p,, go) process admits a Markovian rep-
resentation of order

Po = max {po, g0} (A.1)

given by
Xnt1 = Fxn + 8én (A~2)
vy, = hx, + oe, (A3)

where x, € RP°; the matrix F and the vectors g and 4 have
consistent dimensions with those of x,,; and x, is a random
vector with zero mean-and covariance matrix P, satisfy-
ing

Py = FPF" + gg™. (A.4)

In representation (A.2), (A.3), the state and output noises
are totally correlated. For p, < gq, the order of this state
representation requires the introduction of additional poles
at the origin. Alternative parameterizations are given in
[6], 18], [15].

The discrete time Kalman-Bucy filter associated with
(A.2), (A.3) leads to an innovation representation of

{y}:

fop1 = Fi, + ko, (A.5)
Yo = hi, + v, (A.6)
% =0 (A.7)

where {v,} is the innovation sequence associated with the
ARMA process, defined by (5). This process is white,
with zero mean and variance

d, = E[v;] (A.8)
given by
d, = hP,h" + ¢° (A.9)
where P, satisfies the discrete Riccati equation
P,., = FP,FT — k,d kT + gg" (A.10)
k, = (FP,h" + go)d," (A.11)

with initial condition P, given by (A.4). In (A.5), k, is
the filter’s gain given by (A.11).

Proof of Result 1A: The result is proved separately
for the elements of By in areas I and II (see Fig. 3), and
characterized by

[BnIkk—i € Area I iffpy < k <N,
O<sk—-i=<k-p—1
(A.12)
[Bvlkk-i € Areall  iff py < k < N, :
k~po<k—i<k=—gq — 1.
(A.13)
The product of line k of Ay by column k — i of Wy
leads to

po )
WE+ 2 aWi) = [Bli-i (A9

where W7 satisfies (13). Solving iteratively the state equa-
tion (A.5) and comparing with (9), yields for k = 0

0, fori < 0
wt =141, fori =0 (A.15)
hF k., . fori > 0.

For the set of indices k and k — i belonging to area I,
the right-hand side of (A.14) is zero due to the Cayley-
Hamilton theorem when applied to matrix F. Therefore,
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all the elements in area I are zero. For area II

g+ 1=<i=<py, PpPo=<k=<N (A.16)

which means, together with (A.1), that this area is non-
empty iff po = po < g or, equivalently, iff F is a nonsin-
gular matrix. Replacing (A.15) in (A.14) for the set of
indices (A.16) and using the Cayley-Hamilton theorem
on F

Po

[Bvlik-i = a; — _ZA ahF' ™"y,
j=i

The Riccati equation associated with the ARMA(py, go)
scalar process (1), has py — ¢, independent invariant di-
rections, the set of vectors {(F~")/h", 1 < j < p,} being
a basis of the invariant direction space, i.e., P,(F~")/h"
=0forn = j,j < py — qo [7]. This result, and the fact
that the first p, — g, values of the anticausal impulse re-
sponse of (A.2), (A.3) are zero, leads to

» 1 forj =1
hF 7k, = (A.18)
0 for2 <j =< py— qo
Rewriting (A.17) as
po—i+1
[(Bylei-i = ai — ath_]kk—i - ,22 ai+jfth_jkk7iy
j=

and using (A.18), it follows that all the elements on area
11 are zero, concluding the proof. O

Proof of Result 34: The proof is in two steps. First
we establish a closed form for Q;(k) as a function of the
solution of the Riccati equation (A.10). Second, the value
of Q;(k) as k — oo is obtained from the asymptotic behav-
ior of the Riccati equation and from the Markov parame-
ters of the model’s process. In order to simplify the proof,
we will consider that py = ¢o. See [25], for arbitrary p,
and g,.

From (32), Q;(k), 1 < i < gq is the product of line i
of Ay by column k — i of Wy, i.e.,
Q) = W+ }3‘ awi . (A.20)
=
Replacing (A.11) in (A.15) and this last equation in
(A.20) yields

Qk =a + { 2 a; hFP,_h"
j=1

+ ,-=Z. a,._,th"go}dkl,-. (A.21)

The two representations of the ARMA process (1) and
(A.2), (A.3) are equivalent. Consequently, the transfer
function @ (z) of the corresponding models are equal

—Z =g+ h(izl - F)'g. (A22)
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Expanding both sides of (A.22) in a power series of
z7!, and equating the coefficients in the same powers,
yields

i—1
ob; = a;0 + _ZO aGhF'~'7lg,  i=1. (A23)
=
Replacing (A.23) in (A.21) and using (7), the coefficients

Q; (k) may finally be written as
Q.k) = [b,—az + ‘ZO a,-thka_,-hT}d[_',-. (A.24)
i=

As k — oo, the solution of the discrete Riccati equation
(A.10) goes to zero, [8], [25], and thus from (A.24), re-
sult 3A immediately holds. O

Proof of Result 3B: From (A.24), the evolution of
Q, (k) is determined by that of the solution of the Riccati
equation Py (A.10). Therefore, the rate of convergence of
Q;(k) to b; is governed by that of Py to its steady-state
solution, the null matrix. We discuss the rate of this con-
vergence by using the theory of the invariant directions of
the Riccati equation [7]. As in result 5A, we will consider
Do = qo. See [25] for arbitrary p, and g, as well as for the
generalization of this result for multivariable ARMA pro-
cesses, where we use results of the invariant directions
for multivariable systems from [23].

Let S be a linear transformation of order p,, whose first
Po — ¢o lines are a basis of the space of invariant direc-
tions of the Riccati equation (A.10) [7]:

ST = [WF~YhF~"| - - - |hF~P°799|ST]  (A.25)

and S, is any go X po matrix such that S is nonsingular.
Under the transformation S, the solution of the Riccati
equation (A.10) is given by [7]

0(po~qo) X (po—qo) 1_ 0(p0'qo> qu}

P, = SP,.ST =
= sns7= | e

quX(po—qo)
k = Po — 9o (A.26)

where Q, satisfies a reduced g, order discrete Riccati
equation

O = FnQuF}, — Ok + 2,87

k= py— qo (A.27)
ko = (FpQh] + ngf)dl:] (A.28)
d, = ORT + 0% (A.29)

and {Fy, &, h,, o} is a reduced order system obtained
from {F, g, h, o} under the transformation S and the block

partition
F 12} {g" 1 }
= | g, =8¢ = -
Fy & d 82

(A.30)

Fy

F=SFs™! =[~
FZI

E = hS_l = [il]lilz].

From (A.26), the rate of convergence of P, is that of
Oy, this being determined by the rate of convergence to
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zero of

@, = Ak~ Po—q0Ig7A =Tk~ (po—qo)] (A.31)

where U is a constant matrix, A = diag {\, i = 1,
“*,qoyand {N,i=1, -+, gy} are the unstable eigen-
values of the Hamiltonian matrix associated with the re-
duced order Riccati equation (A.27)

s = {(R’)" R ' H b/’

:’, R=Fy - g/

0 R’
(A.32)
Thebcharacteristic equation associated with (A.32) is
given by
det (M — 3C) = det (\] — RT) det (M — (RT)™))
(A.33)

its zeros being pairwise inverse. Finally, we prove that
the eigenvalues of R

{A:det M = R) = det W — Fy, + g,h,/0) = 0}
(A.34)

coincide with the zeros of the reduced order system {Fy,
&2, by, 0} and these with the zeros of the original system.
The zeros of the system (A.2), (A.3).are unchanged under
a coordinate transformation, being given by

{Nidet[o + AOM — F)™' g] = 0}.  (A.35)
The determinant in (A.35) is
det [o + AN — F)™' g]
(42 ~ ~
= m det [N\l — (F — gh/a)] (A.36)

From the transformation S in (A.25) and using (A.30),

F-gh/o= ["svo—qwxwo-w

0(po—qo)><qo ]
A.37
Fi, — gk /o ( )

Fy — 8ha/o
and
det [\ — (F — gh/o)]
= N""®det [N ~ (Fy, — g:h,/0].
Also, from (A.36),

(A.38)

det [0 + A, (N — Fyy)™' 8]

9 ~ .~
= G ou — B N~ P — & /o)

(A.39)

which together with (A.34), means that the eigenvalues
of R coincide with the zeros of the reduced order system.
From (A.38), these zeros coincide with the qo nonnull ze-
ros of the original system. This concept is related to a
result from optimal control connecting the closed loop
system poles to the nonzero open loop transfer function
zeros [17].
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