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STACS: New Active Contour Scheme for Cardiac
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Abstract—The paper presents a novel stochastic active contour
scheme (STACS) for automatic image segmentation designed to
overcome some of the unique challenges in cardiac MR images
such as problems with low contrast, papillary muscles, and tur-
bulent blood flow. STACS minimizes an energy functional that
combines stochastic region-based and edge-based information
with shape priors of the heart and local properties of the contour.
The minimization algorithm solves, by the level set method, the
Euler-Lagrange equation that describes the contour evolution.
STACS includes an annealing schedule that balances dynamically
the weight of the different terms in the energy functional. Three
particularly attractive features of STACS are: 1) ability to segment
images with low texture contrast by modeling stochastically the
image textures; 2) robustness to initial contour and noise because
of the utilization of both edge and region-based information;
3) ability to segment the heart from the chest wall and the un-
desired papillary muscles due to inclusion of heart shape priors.
Application of STACS to a set of 48 real cardiac MR images shows
that it can successfully segment the heart from its surroundings
such as the chest wall and the heart structures (the left and right
ventricles and the epicardium.) We compare STACS’ automati-
cally generated contours with manually-traced contours, or the
“gold standard,” using both area and edge similarity measures.
This assessment demonstrates very good and consistent segmenta-
tion performance of STACS.

Index Terms—Active contour, cardiac magnetic resonance
imaging (cardiac MRI), chamfer method, energy minimization,
image segmentation, level set, shape and area similarities, sto-
chastic model, stochastic relaxation.

1. INTRODUCTION

AGNETIC resonance imaging (MRI) is a noninvasive
M tool that can be used to measure the deformation of an
in vivo heart [1]-[3] and to help diagnose the presence of heart
disease by analyzing the heart function throughout the cardiac
cycle. To make this possible, it is necessary to segment various
parts of the heart chambers in a magnetic resonance (MR) image
sequence. In clinical studies, the segmentation task, particularly
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delineating the epicardium and the left and right ventricular en-
docardia, is often performed manually, which is tedious and
time consuming. Thus, in practice, the analysis of the MR data
is limited to a short time sequence per cardiac cycle. To help
expedite this process and facilitate the analysis of more com-
prehensive MR data sets, an automatic and more quantitative
approach for analyzing cardiac MR sequence data is highly de-
sirable. However, to delineate the structures of interest and dis-
criminate them from the background automatically poses con-
siderable challenges.

Most active contour methods [4]-[7] for medical image seg-
mentation are sensitive to noise and initialization due to their
purely edge-based nature. The initial contour must start close
enough to the true boundary for the contour to evolve. Moreover,
turbulent blood flow in some MR images often causes faulty
edges. The papillary muscles and other anatomy parts like the
chest wall pose additional challenges for segmentation because,
although they should be excluded, their MR image texture is
very similar to the myocardium’s texture. To overcome these
problems, we find that it is important to include any available
prior shape knowledge about the structures to be segmented.

This paper describes a novel stochastic active contour scheme
(STACS) for cardiac image segmentation. This scheme is de-
signed especially to address some of the unique problems in car-
diac MR images. We opt for an energy minimization approach
[8] that combines characteristics of curve evolution theory and
statistical modeling of the images to segment a homogeneous
object (the heart and its structures) from the background (chest
wall or other anatomy). STACS has three particularly attractive
features. First, it models the images as samples from random
fields. This stochastic model can be applied to a large range of
images, in particular, when contrast between distinct regions is
difficult to distinguish by the human eye, and other methods
may fail [7], [9]. Second, our method is region-based as well
as edge-based. While the evolving contour attracts to strong
edge points due to the presence of edge-information, the re-
gion-based information helps propagating the contour where
edge information is missing. As a result, our method is less
sensitive to the contour’s initial condition than many previous
purely edge-based snake algorithms. Third, we incorporate prior
knowledge about the shape of the object (the heart and its struc-
tures) into the segmentation scheme, which helps to segment the
heart from the chest wall or the myocardium from the papillary
muscles. From our experience, to achieve successful segmenta-
tion of the heart and its chambers, the energy functional should
adapt dynamically so that, for example, contrast and texture gra-
dients can be the main drivers in the initial steps of the segmen-
tation, while (loose) shape priors can become more significant
toward the end. We achieve this by automatically relaxing the
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relative weight of the different terms in the energy functional
through an annealing schedule. Several shape-based segmenta-
tion methods such as [10]-[12] have recently been described
in the literature. Most of these methods are statistical-based
and need a good training set. However, our approach to include
shape priors is parametric and adjusts the shape by estimating
the shape parameters. For example, the object shapes are as-
sumed to be approximated by ellipses, which are easily param-
eterized and no training sets needed.

Finally, we illustrate the performance of STACS by seg-
menting six cardiac MR sequences of a rat. We compare the
epicardial and the left and right venticular contours obtained by
STACS with the corresponding contours manually segmented
by an expert. We compare them quantitatively using two simi-
larity measures: the area similarity, which is widely used, and
the shape similarly, which we propose here for more accurate
measurement.

II. ENERGY FUNCTIONAL

Given a cardiac MR image, our goal is to develop a method
that automatically locates a contour C that separates the pixels
of the image into two groups: the heart and the background. The
method is motivated by the following four objectives.

e Model Matching: we assume that the intensities of the
pixels inside and outside the heart follow different sto-
chastic models. For pixels belonging to the heart, their
corresponding intensities are modeled by a stochastic
model, say M. For pixels belonging to the background,
the corresponding intensity values are described by
another stochastic model M. A similar approach is
adopted when segmenting the heart structures: the left
and right ventricles and the myocardium.

e Edge Information: the contour should be attracted to clues
given by prominent edges in the edge map of the image.

e Shape Priors: the heart has a nominal contour. We choose
to describe it by a generic shape Cy () parameterized by
the parameter vector § = [f1,...,0,]7. The values of
these parameters §; may determine the detailed size and
shape of the actual heart and are estimated from the MR
image.

e Contour Smoothness: the contour of the segmented heart
should be smooth, not jagged, or too noisy.

We translate these four requirements into an objective functional
J(C) with four terms

J(C) = M J1(C) + A2 J2(C) + A3J3(C) + A\ Js(C) (1)

where .J; (C) incorporates the model matching requirement (re-
gion-based); Jo(C) is the edge-based information; .J5(C) incor-
porates the prior knowledge on the shape of the contour; J;(C)
regulates the smoothness of the contour; and A1, A2, A3, and A4
are parameters that control the relative strength of each of the
terms .Jq, Js, J3, and Jy, respectively.

With the contour C embedded as the zero of the level set
function ¢(x,y)

C={(z,y) € Q: §(z,y) =0} 2)
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the energy functional (1) becomes

J(#) = MJ1(@) + A2 Ja(B) + A3 T3(d) + AaJu(d).  (3)

We detail now each of these terms.

A. Region-Based Term: Model Matching J,(¢)

The goal is to segment the domain €2 of a given image into
two “homogeneous” regions separated by the contour C: the
region inside the contour, €2, represents the object region; the
region outside the contour, {25, corresponds to the background
region. A homogeneous region is a region whose intensity is
well described by the same statistical model, or equivalently,
the same probability distribution. We consider two stochastic
models: the model M describes the statistics of the object and
the model M, represents the statistics of the background. The
segmentation task partitions the image pixels {(7, j) € Q} into
two regions, separated by the contour C. Let 2; and 5 repre-
sent the regions inside and outside C, respectively. If the pixels
belong to the object, then the corresponding brightness values
u; = {uy; : (4,7) € Q4 } are described by the statistical model
M. On the other hand, if the pixels belong to the background,
the corresponding brightness values us = {u;; : (i,7) € Qa}
are described by the statistical model M.

Suppose that the entire image domain 2 has been initially
segmented into two regions by a contour Cgy. To update the
contour Cy, we maximize the probability that u; and u, are
random samples drawn from the object model M and the back-
ground model M, respectively. To achieve this, the contour Cy
changes to C; by moving pixels from €21 to €29, and vice-versa.
We control this updating from Cy to C; by attempting to max-
imize the likelihood function

Jo(C) = p(u| C, M1, M5) 4

where p(u| C, My, M) is the joint probability density func-
tion of the image intensities u given the contour C and the
models M and M.

Let p; and p- be the probability density functions (pdf) as-
sociated with the models M; and M, respectively. Since the
intensities of the pixels inside and outside the contour C are
statistically independent given the contour, (4) is equivalently
rewritten as the product of the two pdfs, i.e.,

Jo(C) = p1(u1 | C)pz2(uz | C). (5)
Taking the negative log, (5) becomes
J1(C) = —In(p1(u;1 [ C)) = In(p2(u2 | C)),  (6)

and maximizing Jo(C) in (5) becomes minimizing J;(C) in
(6). We assume further that the intensities of all pixels within
each region are statistically independent. Therefore

pr(ur|C) = H pr(uij), for k=12 (7)
(4,7)€ Qi

and (6) becomes

> —hpiui))+ Y —In(pa(uiy)). ®)

(i,3)€ (,7)€ Q2

J1(C) =



PLUEMPITIWIRIYAWE] et al.: STACS: NEW ACTIVE CONTOUR SCHEME FOR CARDIAC MR IMAGE SEGMENTATION 595

When the contour C is embedded as the zero level of the level
set function ¢, (8) becomes!

1i(9) = / ~ lnfpa (u(z, 9)He($(2, )
— Infpa(u( )1 - He((z,y)] drdy  ©)

where

He(p) = % [1 + %arctan <%>} (10)

is a regularized Heaviside function representing the pixels
within the contour, 1 — H.(¢(z, y)) is the function representing
the pixels outside the contour, and the integral is taken over
the entire domain 2 of the image. This is the generic form
of the first term to be included in our energy functional, and
p1 and po are the assumed pdfs of the object and background
models, respectively. We assume that both the object and the
background pdfs are Gaussian with means m; and ms, and
variances o? and o3, which are unknown and will be estimated
jointly with the contour.

B. Edge-Based Term Ja(¢)

Analogous to classical snakes [4], we want the contour to be
attracted to prominent edges in the image. We realize this by
minimizing the edge map Y(z,y), which is derived from the
original image u(z, y), along the contour C

7,(C) = /C T(e, ) ds

where ds represents the infinitesimal Euclidean arc length of the
contour C. The simplest edge map, which is commonly used in
several edge-based active contour schemes [4]-[6], [13], is the
magnitude of the gradient of the image u(z, y), i.e.,

T($7y> = —|VG0 *u(a:7y)|

Y

(12)

where G, is the 2-D Gaussian kernel with variance o2,V is
the gradient operator, and * is the 2-D convolution operator.
The 2-D Gaussian kernel is used to smooth out the noise, thus
helping to eliminate spurious edges that may occur after ap-
plying the gradient. However, this also blurs the image. Other
image smoothing methods may be used, including edge-pre-
served anisotropic diffusions [14]-[17], the fourth order PDE
method [18], or the Min/Max flow algorithm [19].

When C is embedded as the zero level set of ¢, (11) becomes

To(g) = /Q T, )| VHe (B, )| d dy (13)

= [ Y@ s bla Vo ldedy (14
where the regularized delta function
15)

defines the pixels that are on the contour C.

IFor notation commodity, we now assume a continuous-domain image
u(x, y) instead of the discrete-domain image u;; assumed in the first part of
the development. Therefore, the summations are replaced by integrals.

C. Heart Shape Prior Term J3(¢)

Due to low contrast and similar textures between the tissues to
be segmented, e.g., the myocardium and the papillary muscles,
the region and edge based terms cannot by themselves segment
the heart and its chambers successfully. Existing active contour
methods [4], [5], [9], [7] do not use available information about
the shape of the contour. In our application, there is reasonable
knowledge about the shape of the heart: the myocardium re-
sembles an elliptical shape. However crude this shape model is,
we can exploit it and regulate the shape of the contour. We ex-
plain how to incorporate a parametrically described shape prior,
as for example, an ellipse, into our active contour scheme. It
is clear that more detailed models for the contour of the my-
ocardium can be used, since the approach to be presented is gen-
eral enough to cover a wide range of shapes.

An ellipse can be described by a conic equation

az? +bry+cyi +de+ey+ f=0 (16)

under the constraint

4ac —b? > 0. (17)
Equation (16) describes the shape with six parameters. It turns
out that an ellipse can be fully described with merely five pa-
rameters [20]. As a result, (16) has one extra degree of freedom,
and we can arbitrarily rescale the parameters a, b, and c. The in-
equality constraint (17) is then equivalent to

dac—b* =¢ (18)
where ¢ is an arbitrary positive constant. If we divide the
equality (18) through by ¢, we obtain a new equality constraint

4ac—b> =1 (19)
where the new parameters a, b, and ¢ are the scaled versions
of the original a, b, and ¢ parameters in the previous inequality
constraint in (17). Collect the ellipse parameters into the vector
0=[abcde f] andletv = [22 2y y? 2y 1]T. We can
then rewrite the ellipse equation compactly as

0'v =0 (20)
under the constraint
0TKO =1 1)
where
o 0 2 0 0 0
0 -1 0 0 0 O
2 0 0 0 0 O
K= 0O 0 0 0 0 O (22)
0O 0 0 0 0 O
O 0 0 0 0 0

Forcing the shape of the evolving contour C to resemble the
ellipse contour C g (#), where

Cy(0) ={(z,9):0"v=0 and 0"K#=1} (23)
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is captured by minimizing the squared distance to the ellipse
contour Cg (6) of the pixels on the contour C. In other words,
we minimize

J5(C) = / Dz, y) ds (24)
Je
where D(z,y) is the ellipse distance function defined as
D(z,y) = azx? + by + éy° + dz + ey + f. (25)

Embedding C as the zero of the level set function ¢(z,y), we
have

T3(9) = /Q D2(2,) 6u($(, )|V bl )| d dy  (26)

where D(z, y) is another level set function, representing the dis-
tance to the ellipse contour Cg (@), and 6.(¢) is the regular-
ized delta function that selectively masks out only the pixels on
the contour C. The parameters a, b, ¢, d, e, and f of the ellipse
are unknown and so they are jointly estimated with the statis-
tical model parameters and the contour itself. We note that other
shape priors can be similarly incorporated—we need only define
an appropriate distance between the desired shape and the cur-
rent shape of the contour. Possible distances are the similarity
measures introduced in Section VI-B.

D. Contour Smoothing Term J4(¢)

Lastly, we want the contour of the segmented heart to be
smooth, or not too noisy. We achieve this by minimizing the
total Euclidean arc length of the contour C [21], [9], [22]. In
other words, we minimize

J4(C) = /C ds

where ds represents the infinitesimal Euclidean arc length of
the contour C. If we minimize J4(C) alone, the contour C
will evolve to become a circle and eventually shrink, to wither
away and disappear. However, when we simultaneously mini-
mize J4(C) along with the other terms in (1), the conjugate ef-
fect of all the terms prevents this, and the effect of the J,(C)
term will be to force the contour to be smooth. Equation (27)
can be rewritten in terms of the level set function ¢(z,y) as

27)

Ii() = /Q 5.($(x. 1)Vl )| dudy  (8)

where 6.(¢) is the regularized delta function.

E. Summary: Energy Functional

Replacing (9), (14), (26), and (28) in (3), we have STACS’s
energy functional. STACS searches for a contour C, which is
embedded as the zero level of the level set function ¢, that min-
imizes the functional

J(#) = MJ1(}) + A2 J2(B) + A3 T3(P) + AaJu()
= /Q A1M1H5(¢(x.,y)) + )\1M2[1 - HF(¢(x7y))]
+ P(z,y) (2, y)) IV p(x,y)| dv dy (29)
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where

(u(z,y) — mk)®

207 for k=1,2 (30)

1
M, = Eln (27r0,%) +

are the negative log of the pdfs of the object and the background
models, respectively; and the potential function

P(z,y) = A2 Y(2,y) + A3 D?(z,y) + A4 (31)
where Y is the edge map given by (12), and D the ellipse dis-
tance function given by (25). The parameters A1, A2, A3, and Ay
control the relative strength of J1(¢), J2(¢), J3(¢), and Ju(¢),
respectively. The means and variances for the object and back-
ground models, m1, 0}, m2, and 03, are yet to be determined.
The edge map Y'(z, y) is static and it is derived only once from
the image w(z,y). The ellipse distance D(z,y), on the other
hand, is dynamic and involves the unknown set of parameters in
the parameter vector @ that defines the ellipse shape.

III. ENERGY FUNCTIONAL MINIMIZATION

We minimize the functional (29) by iterating between three
tasks. In the first and second tasks, we fix the contour C, and
then, first, estimate the parameters my, and cr,% fork = 1,2 of
both models in .J; (¢) and, second, estimate the parameters 6 of
the ellipse contour in J3(¢). In the third task, we fix all these
parameters, and then evolve the contour C, or equivalently the
level set function ¢, so that the functional (29) is minimized.
We explain each of the three tasks in the following paragraphs,
respectively.

Task 1) Estimation of the Stochastic Model Parameters:
The parameters needed to be estimated for the
object and background Gaussian models are the
means m; and the variances U]%, for k = 1,2.
Finding these parameters is straightforward. Fixing
¢, we take the derivatives of .J in (29) with respect
to these parameters and equate the resulting ex-
pressions to zero, then solve for the parameters.
As a result, the estimated means and variances
are simply the sample means and variances cor-
responding to the pixels inside and outside the
contour C, respectively. Given the contour C, they
are the maximum likelihood estimates of the means
and variances of the statistical models My and
Ms.

Task 2) Estimation of the Ellipse Parameters: We describe
how to estimate the ellipse parameter vector § =
[@béde f]T using least squares, [20]. Given a
set of coordinates {(xg,yx) : 1 < k < n} where
n is the total number of pixels on the contour C,
we form the vector v = [27 Zryk ¥i =k yr 1]7.
The ellipse distance D(xg, y), the distance from
coordinate (z,yx) to the ellipse parameterized by
0, is compactly written as 0Tvk, see (20). The sum
of the squared ellipse distances is

n

> (0"vi)> =0"R 6

k=1

(32)
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with

R= Z vivi = Vvv?t
k=1
where V = [vy va -+ v,].
Our goal is to find the ellipse parameter vector
0 that minimizes the sum of the squared distances
'R 0, subject to the constraint 0"K 0 = 1. In-
troducing the Lagrange multiplier 1 and taking the
derivative with respect to 8, we have the generalized
eigenvalue problem, [23]

RO = 1K, (34)
0"Ko=1. (35)

If an eigenvalue-eigenvector pair (u;, w;) solves
(34), so does (i, pw; ) for any constant p. If we let
the solution be § = pw; and substitute it in the con-
straint (35), we have p?w! K w; = 1 or

pi wlK w; wiRw,;

Although there can be up to six eigensolutions, p;
is only valid if the quantity under the square root is
positive. Since R is nonnegative definite and gen-
erally positive definite, p; is only valid when p; is
positive. It has been proven in [20] that there is ex-
actly one solution to (34) under the constraint (35)
that corresponds to the single positive generalized
eigenvalue of (34) and (35).

Task 3) Contour Evolution Equation: In the third task, as-
suming that all parameters are known, we evolve the
level set function ¢, hence the contour C, so that it
minimizes the functional (29). In Appendix I, we
present the Euler-Lagrange equation corresponding
to the functional (29) as

Vo
Vel

. Vo
c=div [ ——
g <||V¢||>

represents the curvature of the contour, and the po-
tential force field

VP =X VY +2X3DVD. (39)
We solve for ¢ in (37) iteratively, using the gradient
descent method, by letting ¢ be a function of time

and replace the zero on the right-hand side of (37)
by the time derivative of ¢. Thus, we obtain the PDE

(33)

(36)

M(M; — My) — VP Pn} 6(H)=0  (7)

where

(38)

0
a—f = |M(My — M) — VP

Vo

-—— — Pkl 6(0).
Nz (@)

(40)

IV. STOCHASTIC RELAXATION: A\-ANNEALING

When segmenting the heart in MR image sequences by mini-
mizing the energy functional (1), which is a linear combination
of the four energy terms, .J; to J; with A1 to A4 as their weighting
parameters, respectively, we encounter an important issue: how
to choose the appropriate values for the weighting parameters A

to \4. Their relative values emphasize differently each of the en-
ergy terms J; to .J4 in the functional. For instance, if one param-
eter \; is much larger than the others, it is expected that the cor-
responding term J; will guide the segmentation. This, of course,
has major implications in the final results. In practice, choosing
these parameters is usually done empirically based on the cumu-
lative experience of the designer, as developed after testing the
minimization algorithm with many different data. In our expe-
rience with the heart MR image sequences, there is no univer-
sally fixed good set of values for these parameters. Our experi-
ence has also shown that in fact the values of these \;’s should
change as the contour evolves, meaning that the functional itself
should evolve over time. Intuitively, when the segmentation is
started, the region and edge-based terms, .J; and .J,, should be
the main drivers of the minimization process, forcing the initial
contour to evolve close to relevant boundaries. This is because
these two terms are image dependent, i.e., derived directly from
the image, and it is important that the contour evolves freely fol-
lowing the local image conditions. At later stages in the mini-
mization process, the shape prior becomes an important feature
because eventually we want the contour to resemble the assumed
shape prior, or at least not be dramatically different. Therefore,
the weights \;’s should adapt and evolve as the segmentation
proceeds.

We present here an annealing algorithm for the parameters
A;’s that adapt their values as the segmentation evolves: initially
emphasizing the terms J; and .Jo with large values of A\; and Ao,
and, at later stages, decreasing their values while increasing the
importance of the shape prior term .J3 through A3. The algorithm
gradually adapts the weighting parameters A1, A2, and A3. We
choose the following annealing schedules
M) = xy(1) - MDA )

Ao(n) = %[/\2(1) — Aa(N)] [+ cos (%)} FA(N) (42)
A3(N) — As(1)
cosh [10 (’]LV—T — 1)]

(41)

Az(n) = + As(1) (43)
where n is the iteration number, /N is the total number of itera-
tions, and \; (1) and \; (V) are the initial and final values of A;,
respectively. The annealing schedule for \; is linear, a common
choice in many applications. The annealing schedule for Ay up-
dates the value moderately in the middle range according to a
cosine function. The annealing schedule for A3 increases from
the initial value A3(1) to the final value A3(/N) most dramat-
ically at the end of the process. We choose A4 to be constant
throughout the minimization process.

We stop the segmentation process by fixing the maximum
number N of iterations. There are other possible stopping
criteria, for example, by controlling the relative change of the
contour and stopping when this change is below a threshold.
To measure the relative changes of the contour, we may use
the shape similarity measure introduced in Section VI-B.
This makes each iteration computationally more complex. By
adopting our simple criterion, we can choose a larger number
of iterations, which gives us confidence, confirmed by the
experimental results in Section VI, that the contour has stabi-
lized. In our experiments, we used a fixed maximum number
of iterations N = 200; and took the initial and final values
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Fig. 1. A-annealing schedule.

for A; and Ay to be, respectively, A\1(1) = Ay(1) = 1 and
A1(N) = Ao(N) = 0.5. The initial and final values for \3 are
0 and 1, respectively. The constant value for A4 is 0.5. Fig. 1
depicts the plots of the A-annealing schedule that we use. Our
STACS algorithm nests two loops: the outer loop sets each \;
according to the corresponding annealing schedules above, and
the inner loop minimizes the energy functional (29) by iterating
between the three tasks described in Section III.

V. DATA AQUISITION

The cardiac MR data that we used were acquired by a
Brucker AVANCE DRX 4.7 tesla system from the Pitts-
burgh NMR Center for Biomedical Research at the CMU
Mellon Institute. An electrocardiogram and respiration-gated
spin-echo cine imaging was used to obtain high-resolution
density-weighted short axis images with:

e 4 cm field of view;

¢ 156 mm by 156 mm in-plane resolution;

e 1.5 mm slice thickness;

¢ one cardiac cycle (about 165 ms) repetition time;

e and 5.5 ms echo time.

VI. RESULTS
A. Comparison With Other Active Contour Methods

We compare the STACS with other active contour algorithms
when applied to a real cardiac MR image. Fig. 2(a)—(c) depicts
the segmentation results obtained with the Xu and Prince’s GVF
snake [7], the Chan and Vese’s active contour algorithm [9], and
our STACS, respectively. The same initial contours, indicated in
dashed blue lines, are used in the three methods. The final con-
tours are shown in solid red lines. Lastly, Fig. 2(d) shows the left
ventricular endocardium contour traced manually by a trained
specialist. We see that the lower part of the contour in the GVF
snake algorithm, which is purely edge-based, fails to capture the
bottom part of the left ventricular endocardium. It evolved out to
track the boundary of the epicardium instead. This is because the
edge information at the bottom part of the left ventricular endo-
cardium s too weak and the initial contour is located alittle too far
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from the endocardium. The result in Fig. 2(b) with the Chan and
Vese’s algorithm, which assumes piecewise constant models, can
delineate the whole boundary of the left ventricular endocardium,
but fails to separate the papillary muscles out of the left ventricle.
The result when applying STACS in Fig. 2(c) shows that the pap-
illary muscles are correctly segmented. The shape priors play a
significant role in segmenting the papillary muscles out of the
left ventricle. Among these three segmentation results of the left
ventricular endocardium by different algorithms, the result from
STACS in Fig. 2(c) shows most resemblence to the contour
traced manually by an expert shown in Fig. 2(d).

B. Quality Assessment

Fig. 3(a) and (b) shows the segmentation results obtained by
STACS and the contours traced manually by an expert on the
same set of 48 cardiac MR images, respectively. Three sets of
contours, representing the boundaries of the left ventricle (LV),
the right ventricle (RV), and the epicardium (EP) of a rat heart
are present (see Section V for details on the MR data). Each
set of contours was obtained separately by STACS. First, we
place a bounding box around the rat heart in each frame of the
cardiac MR image set. This is done automatically by detecting
the motion of the heart through the cycle. Second, we determine
the centers of the left and right ventricles by searching for the
two peaks (one for the LV, the other for the RV) in the horizontal
projection of the image intensity. Details are provided in [24].
We then place, one at a time, two circles centered at these two
points as the initial contours for segmenting the left and right
ventricles. Once the left and right ventricles are segmented out,
a ellipse is placed as an initial contour to detect the epicardium.

Our goal is to find a quantitative method that compares our
automatically generated contours in Fig. 3(a) with the manually
traced “gold standard” contours in Fig. 3(b). We introduce two
similarity measures: the area similarity and the shape similarity.
We explain the methodology of each of them in the following
subsections, respectively.

1) Area Similarity: One of the methods commonly used for
assessing the validation of functional MR image segmentation is
to compare the area of the segmented object in the image against
the one in a reference image [25], [26]. Consider two binary im-
ages A1 and A, whose “on” pixels represent the regions of the
segmented object. The area similarity measure, Sarea € [0, 1],
between the two segmentations A; and A is defined as the ratio
between twice their common area over the sum of the individual
area

2 TL(Al N A2)
n(Al) + ’I’L(AQ)

where A is the element-wise “and” operator, and n(A) repre-
sents the cardinality of A or the number of “on” pixels in the
binary image A. According to [25], Saea > 0.70 indicates an
excellent agreement between the two comparing regions. We
computed this area similarity measure for the segmented LV,
RV, and EP contours. We summarize the numbers in three ma-
trices, one for each contour pairs. Entry (7, j) in each of these
matrices is the appropriate area similarity measure for the (4, 5)
image pair in Fig. 3(a) and (b). We were able to compute the
similarity measure for every pair of corresponding images in
Fig. 3(a) and (b), except for the LV contour in the (1, 3) image

Sarea = (44)
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(b)

(d)

Fig. 2. Comparing the segmentation results of a cardiac MR image using different algorithms. Initial contours are the dashed blue lines; the final contours are
the solid red lines. In (a), Xu and Prince’s GVF snake captures only the upper part of the LV boundary, the bottom part of the contour converges to the epicardium
instead of the endocardium of the left ventricle. In (b), Chan and Vese’s active contour algorithm is used; the LV contour in (b) does not segment the papillary
muscles because there is no information about the global shape of the left ventricle. In (c), STACS segments correctly the left ventricle; it solves the difficult
segmentation of the papillary muscles by using the prior shape of the left ventricle. Among these three LV segmentation results by different algorithms, the result
from STACS in (c) is most similar to the contour traced manually by an expert shown in (d). (a) Xu and Prince’s GVF snake algorithm. (b) Chan and Vese’s active
contour algorithm. (c) STACS. (d) Contour traced manually by an expert.

in Fig. 3(a) where the left ventricle appears to be closed com- SEP =
pletely. The area similarity matrices for the left ventricle, right 096 095 094 0.88 095 092 090 0.92
ventricle, and the epicardium are, respectively 0.97 096 097 091 094 096 095 0.96
SLV = 0.95 095 0.95 0.97 096 0.95 0.97 0.96
0.92 0.85 0.68 0.86 0.71 0.90 0.93 0.97 097 0.95 097 095 096 0.93 0.93
094 091 092 0.92 090 096 0.91 0.86 0.97 0.97 0.97 096 097 096 0.97 0.96
0.87 0.93 0.94 0.87 0.95 0.91 0.90 0.88 0.95 0.95 096 0.96 0.96 0.96 0.96 0.96
0.94 0.74 0.85 0.77 0.85 0.94 0.89 0.92 47)
823 8257) 832 ggg ggi ggg 822 822 We 'obs.erve that, except for the (4, 1.) position, values of the area
45) similarity measure for thej left ventricles have values greater than
GRV 0.70. For the right ventricles, we find 41 out of the 48 frames

area — having area similarity values greater than 0.70, while the re-
0.84 0.64 085 0.73 0.88 0.80 0.90 0.83 maining 7 values are moderately below (or equal to) 0.70. We

0.89 0.83 0.75 086 0.73 0.90 091 0.90 also observe that turbulent blood flows appear in each of the

0.86 0.63 0.83 0.80 0.78 0.92 0.92 0.86 frames with area similarity below 0.70. This turbulent blood flow

0.81 0.65 0.56 0.67 0.85 0.93 0.84 0.91 may be the cause for the less satisfactory performance of the

091 075 0.74 082 0.79 093 0.87 0.90 segmentation of the right ventricle with these images. Finally, all

0.82 0.80 0.65 0.70 0.79 0.89 0.93 0.84 of the epicardium area similarity values are above 0.88, which

(46) indicates excellent results in agreement with the gold standard.
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Fig. 3. Comparing the segmentation results obtained automatically by
STACS in (a) with the “gold standard” hand-traced results in (b): six rat
cardiac sequences of eight frames each throughout one cardiac cycle, and three
contours in each image are the left and right ventricles, and the epicardium. (a)
Contours obtained automatically by STACS. (b) Contours traced manually by
an expert.

2) Shape Similarity: Although the area similarity measure
(44), when comparing two contours, is a good indicator on how
similar their sizes (or areas) and their relative locations are, it
may be less informative with respect to details on the shapes of
the two contours. A pair of very different shape contours may
yield the same area similarity measure as a pair of contours with
identical shape as long as their intersecting regions and the sums
of individual areas inside the contour pair are the same. We dis-
cuss an alternative measure to assess the similarity in shape be-
tween a pair of contours, a modification of the chamfer matching
method. Chamfer matching [27] is a technique for finding a
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match between two contour shapes, where the two contours are
represented in a form of binary edge templates. It is originally
and still often used in image and video processing to search for
an object with a particular shape within an image. In the med-
ical image processing framework, however, chamfer matching
is often employed for image registration [28]. In our case, we
will modify the chamfer matching method and use it to assess
the shape similarity between a pair of contours. We follow the
idea described in [29]-[31] where a modified chamfer measure
is applied to capture human motion in live video (see [31]). We
adjust the similarity measure in [29]-[31] so that our shape sim-
ilarity index emphasizes the difference in shapes rather than the
relative locations of the two comparing contours.

The flow chart for computing our shape similarity measure is
illustrated in Fig. 4. Let C; and C; be two contours. The con-
tour C; is the set of coordinates of the reference contour, or the
gold standard contour, and the contour Cs is the set of coordi-
nates of the contour obtained automatically by STACS, which
we will call the automatic contour. Our goal is to find a similarity
measure Sshape € [0, 1] that quantitatively assesses how similar
the shape of the two contours C; and C, are. Our algorithm
for the determination of the shape similarity measure proceeds
in several steps. First, we generate the binary edge templates,
FE; and E,, where the “on” pixels represent the pixels on each
of the two contours being compared. Second, we propagate the
shape of the contours in each binary edge template by applying
the signed Euclidean distance transform

D(z,y) =
— mi —i)2 — )2, if (z,y) €Q
(i,rﬁlélc\/(m D)2+ (y—4)2, if (z,y) €
i —i)2 D2 if (zy) €Q
uin Ve =P+ g =37 if (a,y) € D
(48)

where (z, y) represents the pixels in the image domain, (i, j) €
C represents the pixels on the contour C, and €2, and €25 are sets
of pixels inside and outside contour C, respectively. For details
on how to implement the signed distance transform, see [32].
Applying the signed Euclidean distance transform (48) to the
binary edge templates £, and E5, we obtain the corresponding
distance maps, D; and D, respectively. These distance maps
simply contain the scaling replicas of the contour shapes, rep-
resented in different level sets, throughout the image domain.
In the third step, we calculate the corresponding phase maps by
taking the inverse tangent of the ratio of the gradient compo-
nents in each distance map, i.e.,

-1 VyDz(xa y)

V.D; (;1: ) y)
where V,D; and V,D; represent the z and y components of
the gradient of the distance map D;, respectively. In the fourth

step, we compute the normalized phase similarity between the
two contours by

D, (z,y) = tan for 1=1,2 (49)

|<I>1—<I>2—7r|

™

Sphaso - (50)

The index Sphase takes values in [0, 1]. A value of 1 for S,hase
indicates that the contours have the same phase and a value of 0
refers to the maximum phase difference of 7. In the final step,
we measure the shape similarity by taking the weighted sum of
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Fig. 4. Flow chart for shape similarity measure.

the phase similarity measure along Cs, the automatic contour,
against C, the reference contour, i.e.,

1
Z Fl(a:,y) Sphase(x7y)

— (51)
n(C2) (z,y)€Cs

Sshape =

where Cs is the set of pixels on the automatic contour, n(Cs)
denotes the cardinality of Cs, or the number of pixels on the
contour Co, and I'y (z,y) € [0, 1] is derived from Dy, the dis-
tance map of the reference contour, as

M}

o2

i) =exp { - 52)
where o2 is a positive constant.

The findings for the quality assessment using shape similarity
measure are given by the matrices

SLV _
shape
0.90 0.83 0.71 0.86 0.66 0.89 0.94
0.91 0.87 0.89 0.88 0.85 092 0.84 0.71
0.71 091 0.89 0.85 0.92 0.87 0.84 0.86
0.89 0.70 0.86 0.75 0.83 0.92 0.87 0.83
091 0.77 0.77 091 0.84 0.91 0.70 0.89
0.80 0.81 0.92 0.83 0.92 0.80 0.68 0.62
(53)
Sihpe =
0.77 0.43 0.86 0.88 0.84 0.80 0.84 0.77
0.86 0.85 0.71 0.83 0.66 0.84 0.88 0.85
0.83 0.68 0.77 0.71 0.77 0.87 0.86 0.79
0.79 0.43 0.64 0.40 0.72 0.89 0.75 0.90
0.88 0.73 0.70 0.83 0.65 0.89 0.78 0.87
0.81 0.87 0.78 0.77 0.67 0.84 0.87 0.68
(54
Siape =
0.92 0.88 085 0.74 0.90 0.77 0.61 0.76
0.90 0.89 091 0.60 0.84 0.89 0.83 0.90
0.85 0.84 0.85 0.88 0.88 0.83 0.92 0.84
0.92 090 0.85 092 0.88 0.88 0.75 0.74
0.92 091 091 0.89 0.90 0.87 0.89 0.86
0.87 0.84 0.90 0.86 0.87 0.89 086 0.91
(35

TABLE 1
AVERAGE VALUES OF THE SIMILARITY MEASURES

LV
0.88 + 0.06
0.84 £ 0.08

RV
0.82 4 0.09
0.77 £ 0.12

EP
0.95 £ 0.02
0.86 £ 0.07

Area Similarity
Shape Similarity

For the left ventricles, most values of the shape similarity mea-
sure are above 0.70. Only five contour pairs have a shape sim-
ilarity measure in the 0.60-0.70 range. We conclude that the
automatic segmentation results for the left ventricles are very
good. For the right ventricles, 38 out of 48 contour pairs have
shape similarity values above 0.70; 7 contour pairs have shape
similarity values between 0.60 and 0.70; and 3 shape similarity
values fall below 0.50. Again, in the image frames with low sim-
ilarity measures, blood flow may have affected the performance
of the algorithm. Finally, we find 46 out of 48 values for the epi-
cardium shape similarity measures to be well above 0.70, indi-
cating excellent segmentation agreement with the gold standard.

C. Discussion

Table I shows the average values of all 48 similarity measures,
categorized by methods and types of contours. From this table,
we can conclude the following.

» Since all average values are approximately 0.8 or 0.9 and
the standard deviations are quite small, we conclude that
our algorithm consistently produces good results.

¢ We observe that the average values for both similarity
measures are highest for the epicardium, and lowest
for the right ventricle. This shows the highly effective
influence of the shape priors that we imposed onto the
heart contours. Since the epicardial boundary resembles
an ellipse shape more strongly than the right ventricular
boundary, our segmentation results reflect better agree-
ment (with the hand-drawn contours) for the epicardium
than the right ventricle. Further, the papillary muscles
and the turbulent blood flow within the left and right
ventricular regions in some of the frames may somewhat
inhibit a good segmentation outcome. To improve the
performance of the segmentation of the right ventricles, a
better model than an ellipse, thus more complicated, may
be easily incorporated into our model by adjusting the
distance function D(z,y) in (25) in J3.
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¢ As may be expected, the shape similarity measures gener-
ally yield smaller values than the area similarity measures.
This is because the shape similarity measure is more sen-
sitive to local discrepancies between the contours than the
area similarity measure, which is a more global measure.

¢ Finally, with an overall average value of 0.88 £ 0.09 for
the area similarity and 0.82+0.10 for the shape similarity,
we conclude that the segmentation results of STACS, in
general, exhibit excellent agreement with the “gold stan-
dard” hand-traced contours.

VII. CONCLUSION

In conclusion, we have designed, developed, and validated a
new active contour scheme for cardiac MR image segmentation,
called stochastic active contour scheme (STACS). The advan-
tages of STACS are threefold. First, STACS assumes stochastic
models rather than deterministic constants. As a result, it can
be applied to a large range of images, particularly when the ob-
jectis difficult to distinguish from the background. Second, since
STACS utilizes both region-based information as well as edge-
based information, the scheme is less sensitive to the contour’s
initial condition and more robust to noise than other purely edge-
based active contour schemes. The stochastic region-based infor-
mation helps propagating the contour when the initial contour is
far away from the object’s boundary and no edge information
is present, thus increasing the capture range. Furthermore, the
balancing between the region-based forces and the edge-based
forces helps stabilizing the contour at the desired true boundary
of the organ part we want to segment. In other words, STACS
is more global, exhibits increased robustness to noise, displays
extensive capture range, and is less sensitive to initial placement
of the contour when compared to other active contour methods.
Third, STACS conveniently incorporates the prior knowledge of
the object’s shape onto the global properties of the contour. This
is adistinguishing feature in STACS. This shape prior that we im-
pose onto the global properties of the contour helps overcoming
the problem with the papillary muscles, whose texture is difficult
to distinguish from the myocardial texture, and the chest wall in
the image, that exhibits very low contrast with respect to the my-
ocardium. We also introduced A-annealing schedules that con-
trol the relative weights of each of the four terms in our energy
functional, so that the minimization process performs smoothly.
Lastly, we validated the performance of STACS by comparing its
segmentation results with the contours traced manually by an ex-
pert, assessing them quantitatively with the area and shape sim-
ilarity measures. Both measures show very good agreement for
all three contours across the 48 test images, i.e., across the 143
contours tested.

APPENDIX I
EULER-LAGRANGE EQUATION FOR THE FUNCTIONAL J(¢)

In Section III, we need the Euler-Lagrange equation that min-
imizes the functional (29), which we restate here for conve-
nience

MM (z,y)He(P(2,y))

+ M Ma(z,y)[1 — He(p(z,9))]

1
+ P(z,y) 6c(p(w, y)[IVP(w,y)|| dody  (56)
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where
My (z,y) = 1ln (2moy) + w fork=1,2
2 20,
(57)
and
P(z,y) = \aX(z,9) + A\3D?*(z,y) + M. (58)

According to the Calculus of Variation [33], [21], the 2-D scalar
function ¢(z, y) that minimizes the functional (56) corresponds
to the one that solves the PDE

OE d (OE\ d (OEY _ 0
9 dx \0p.) dy \9p,)
where

E(}, ¢uy py) = M MiHe(¢) + A Ma[l — He()]

+P6c(¢)y/ 93 + ¢3.  (60)

For notation simplicity, we have omitted the independent vari-
ables (z,y) of ¢, ¢z, ¢y, P, M7, and M,. We also note that

IVo(z, )l = /b3 + ¢5-

Taking the partial derivative of F in (60) with respect to ¢, ¢,
and ¢,, respectively, we have

(59)

(61)

OF
5 = AL (M1 — My)ée(¢) + P 6L(d)\/ 62 + ¢ (62)
oF o
=Pb () — 63
o6, = U Sgw ©
OF by
— =P (p)=—"— 64
50, = " "D Ssw 9
where 62(¢) is the derivative of §. with respect to ¢.
The derivative of (63) with respect to z is
d [ OE e N
— =P, 6. + P&
iz (a,) = P 0O + POy
d [ ¢z >
+Pb(p)— [ —=—=]. (65
Oz (i) ©
Similarly, the derivative of (64) with respect to ¥ is
d (OF by , ;
(=) =P, + P
iy (35,) = PO + PO,

d by
TR (nwn) - €0

Substituting (62), (65), and (66) back into the Euler-Lagrange
(59) and utilizing the fact that

2 2
e Y )
we have
A (M — M)
—P 1851 — Py 1551 5.($)=0.  (68)

—P (H$_¢H) -Pa (n@in)
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We observe that

be b v
P = R
Vol Vel Vol

where - represents a vector dot product, and

() () (%)
dx(uv¢u MTANRZ ver ) 7

Therefore, a compact form of (68) is
o~ (wer).
M(My — My) —VP-—— — Pd —— || b =0
R R R (= I
(71)

VP

P, i (69)

This is the Euler-Lagrange equation corresponding to the func-
tional (56).
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