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Automatic Detection of Regional Heart Rejection
in USPIO-Enhanced MRI
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Abstract—Contrast-enhanced magnetic resonance imaging
(MRI) is useful to study the infiltration of cells in vivo. This re-
search adopts ultrasmall superparamagnetic iron oxide (USPIO)
particles as contrast agents. USPIO particles administered in-
travenously can be endocytosed by circulating immune cells, in
particular, macrophages. Hence, macrophages are labeled with
USPIO particles. When a transplanted heart undergoes rejection,
immune cells will infiltrate the allograft. Imaged by

�
-weighted

MRI, USPIO-labeled macrophages display dark pixel intensities.
Detecting these labeled cells in the image facilitates the identifi-
cation of acute heart rejection. This paper develops a classifier
to detect the presence of USPIO-labeled macrophages in the
myocardium in the framework of spectral graph theory. First,
we describe a USPIO-enhanced heart image with a graph. Clas-
sification becomes equivalent to partitioning the graph into two
disjoint subgraphs. We use the Cheeger constant of the graph as
an objective functional to derive the classifier. We represent the
classifier as a linear combination of basis functions given from
the spectral analysis of the graph Laplacian. Minimization of the
Cheeger constant based functional leads to the optimal classifier.
Experimental results and comparisons with other methods suggest
the feasibility of our approach to study the rejection of hearts
imaged by USPIO-enhanced MRI.

Index Terms—Acute heart rejection, cardiac magnetic reso-
nance imaging (MRI), Cheeger constant, classification, classifier,
contrast agents, graph cut, graph Laplacian, spectral graph
theory, ultrasmall superparamagnetic iron oxide (USPIO)-en-
hanced MRI.

I. INTRODUCTION

H EART failure is a major public health crisis in the United
States. It is the leading cause of death and hospitalization

in this country. For many patients with end-stage heart failure,
heart transplantation may be the only viable treatment option.
Physicians typically assess for cardiac rejection by performing
frequent endomyocardial biopsies. Using biopsy samples, cardi-
ologists monitor immune cell infiltration and other pathological
characteristics of rejection. However, biopsies are invasive pro-
cedures that are subject to patient risk. In addition, due to limited
sampling, biopsies may not detect focal areas of rejection.
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Fig. 1. USPIO-enhanced cardiac MR image where the dark pixels are seg-
mented. Dark pixels correspond to the locations of USPIO-labeled abnormal
cells.

Cellular magnetic resonance imaging (MRI) is a useful tool
to noninvasively monitor the migration and localization of cells
in the whole heart in vivo [1]. This imaging modality relies on
extrinsic contrast agents, such as ultrasmall superparamagnetic
iron oxide (USPIO) particles. The superior relaxivity of USPIO
particles reduces signal emission in -weighted MRI [2]. In
other words, the signal attenuation created in -weighted MR
images localizes the cells containing a significant number of
USPIO particles.

Mammalian cells can be labeled with MRI contrast agents ei-
ther ex vivo or in vivo. In the ex vivo method, specific types of
cells are isolated, labeled with contrast agents in culture, and
then reintroduced. In vivo method, contrast agents are adminis-
tered intravenously. In the in vivo labeling is effective for cells
that can phagocytose or endocytose the contrast agents, and can
be conveniently applied in the clinical studies. We adopt in vivo
labeling in this study.

After USPIO particles are administered, circulating
macrophages can endocytose USPIO particles and become
USPIO-labeled macrophages. When rejection occurs, the la-
beled macrophages migrate to the rejecting tissue. Imaging
the transplant by -weighted MRI, dark pixels represent the
infiltration of macrophages labeled by USPIO particles and
identify the rejecting sites [3], [4]. For example, Fig. 1 shows
the left ventricular image of a rejecting cardiac allograft, where
the darker signal intensities in the myocardium reveal the
presence of USPIO-labeled cells, leading to the detection of the

0278-0062/$25.00 © 2008 IEEE

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 18:18 from IEEE Xplore.  Restrictions apply. 



1096 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 8, AUGUST 2008

macrophage accumulation. To identify such regions, the first
task is to classify the USPIO-labeled dark pixels in the image.

The usual method to classify USPIO-labeled pixels is
manual classification [4]–[7], or simple thresholding of the
image. Manual classification requires cardiologists to scrutinize
the entire image to determine the location of the USPIO-labeled
pixels. Manual classification is labor intensive and operator de-
pendent. In addition, the noise introduced during the imaging,
the blur induced by cardiac motion, and the partial volume
effect make dark and bright pixels difficult to distinguish.
Thresholding the intensities is the simplest algorithm to clas-
sify USPIO-labeled pixels; however, this method cannot handle
noise. Another drawback of thresholding is that the operator
has to adjust the threshold values, which may introduce incon-
sistent recordings. To reduce the labor involved with manual
classification, to make the process robust to noise, and to
achieve consistent results, we propose to develop an automatic
algorithm for classification of USPIO-labeled pixels.

To design an automatic classification algorithm, we face the
following challenges.

1) Macrophages accumulate in multiple regions without
known pattern. For example, Fig. 1 displays a rejecting
heart where the boundaries of macrophage accumulation
are manually determined. We can see that the macrophage
spread randomly throughout the myocardium. Since there
is no model describing how macrophages infiltrate, the
algorithm will rely solely on the MRI data.

2) Due to noise and cardiac motion, the boundaries between
the dark and bright pixels are diffuse and hard to distin-
guish; as such, any classification algorithm has to be robust
to noise.

3) There are a large number of pixels in the myocardium. For
instance, the heart shown in Fig. 1 has more than 2500
myocardial pixels. This means that we have to classify
more than 2500 pixels, which may involve estimating a
large number of parameters. To avoid estimating too many
parameters and design the classification algorithm in a
tractable way, we transform the problem into another one
that expresses the classifier in terms of a small number of
parameters.

4) There are two types of classifiers for our design: supervised
and unsupervised. Supervised classifiers need human op-
erators to label a subset of the pixels. The classifiers then
automatically propagate the human labels to the remaining
pixels. However, the human knowledge might be unreli-
able, so the classification results are sensitive to operators.
To avoid the classification inconsistency related to operator
dependence, the classifier will be unsupervised.

A. Overview of Our Approach

We formulate the task of classifying USPIO-labeled regions
as a problem of graph partitioning [8]. Given a heart image,
the first step is to represent the myocardium as a graph. We
treat all the myocardial pixels as the vertices of a graph, and
prescribe a way to assign edges connecting the vertices. Graph
partitioning is a method that separates the graph into discon-
nected subgraphs, for example, one representing the classified
USPIO-labeled region and the other representing the unlabeled

region of the myocardium. The goal in graph partitioning is to
find a small as possible subset of edges whose removal will sep-
arate out a large as possible subset of vertices. In graph theory
terminology, the subset of edges that disjoins the graph is called
a cut, and the measure to compare partitioned subsets of vertices
is the volume. Graph partitioning finds the minimal ratio of the
cut to the volume, which is called the isoperimetric number and
is also known as the Cheeger constant [9] of the graph. Evalu-
ating the Cheeger constant will determine the optimal edge cut.

The determination of the Cheeger constant, and hence of the
optimal edge cut, is a combinatorial problem. We can enumerate
all the possible combinations of two subgraphs partitioning
the original graph, and then choose the combination with the
smallest cut-to-volume ratio. However, when the number of
vertices is very large, the enumeration approach is infeasible. To
circumvent this obstacle, we adopt an optimization framework.
We introduce a classifier, or a classification function, that de-
termines to which class each pixel belongs, and derive from the
Cheeger constant an objective functional to be minimized with
respect to the classifier. The minimization leads to the optimal
classification.

If there is a complete set of basis functions on the graph, we
can represent the classifier by a linear combination of the basis.
There are various ways to obtain the basis functions, e.g., using
the Laplacian operator [10], the diffusion kernel [11], or the
Hessian eigenmap [12]. Among these, we choose the Laplacian.
The spectrum of the Laplacian operator has been used to obtain
upper and lower bounds on the Cheeger constant [8]; we utilize
these bounds to derive our objective functional. The eigenfunc-
tions of the Laplacian form a basis of the Hilbert space of square
integrable functions defined on the graph. Thus, we express the
classifierasa linearcombination of theLaplacianeigenfunctions.
Since the basis is known, the optimal classifier is determined by
the linear coefficients in the combination. The classifier can be
further approximated as a linear combination of only the most
relevant basis functions. The approximation reduces signifi-
cantly the problem of looking for a large number of coefficients
to estimating only a few of them. Once we determine the optimal
coefficients, the optimal classifier automatically partitions the
myocardial image into USPIO-labeled and unlabeled parts.

B. Paper Organization

This paper extends our work briefly presented in [13]. The
organization of this paper is as follows. Section II describes
how we represent a heart image by a graph and introduces the
Cheeger constant for graph partitioning. Section III details the
optimal classification algorithm in the framework of spectral
graph theory. In Section IV, we describe the algorithm imple-
mentation and show our experimental results for USPIO-en-
hanced MRI data on heart transplants. We contrast the proposed
method with the results of manual classification, thresholding,
another graph based algorithm, and the level set approach. Fi-
nally, Section V concludes this paper.

II. GRAPH REPRESENTATION AND GRAPH PARTITIONING

For a given USPIO-enhanced MR image, we first segment
the left ventricle. Then, the myocardial pixels are arranged
into a single column vector indexed by a set of integers

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 18:18 from IEEE Xplore.  Restrictions apply. 



CHANG et al.: AUTOMATIC DETECTION OF REGIONAL HEART REJECTION IN USPIO-ENHANCED MRI 1097

, where is the number of myocar-
dial pixels. The image intensity becomes a function .
We next describe how to represent the image as a graph.

A. Weighted Graph Representation

A graph has a set of vertices and a set of edges
linking the vertices. For the segmented myocardium, we treat
each myocardial pixel as a vertex . We next assign edges
connecting the vertices. In the graph representation, the vertices
with high possibility of being drawn from the same class are
linked together. There are two strategies to assign edges.

1) Connect vertices to geographically neighboring vertices
[14], because the neighborhood is usually drawn from
the same class.

2) Connect vertices with similar features [10], because
pixels in the same class generate the same features up
to noise.

We adopt both strategies to build up our graph representation of
the image.

With reference to Fig. 2(a), consider vertex corresponding
to pixel at coordinate . We connect to its four neigh-
boring vertices at coordinates , ,

, and . Fig. 2(a) illustrates the graph representa-
tion resulting from this rule of geographical neighborhood for a
4 4 image. In this figure, each square is a pixel, and hence a
vertex, and each line is an edge.

To account for strategy 2), we need features associated with
the vertices and need a metric to determine the similarity be-
tween pairs of features. To take into account noise, we treat each
pixel as a random variable and adopt the Mahalanobis distance,
[15], as similarity measure. We stack a block of pixels
centered at pixel into a column vector , which we treat as the
feature vector for the vertex . The Mahalanobis distance
between the features , of vertices , is, see [15]

(1)

where is the covariance matrix between and . When
the distance is below a predetermined threshold , the ver-
tices , are connected by an edge; otherwise, they are dis-
connected. Fig. 2(b) shows the final graph representation of the
4 4 image example using both geographical neighbors and
feature similarities.

In graph theory, we usually consider weighted graphs [8].
Since not all connected pairs of vertices have the same distances,
we capture this fact by using a weight function on the edges. We
adopt a Gaussian kernel, suggested by Belkin and Niyogi [10]
and used also by Coifman et al. [11], to compute the weights

on edges connecting vertices and

if there is edge

if no edge
(2)

where is the Gaussian kernel parameter. The larger is, the
more weight far away vertices will exert on the weighted graph.
The weight is large when the features of two linked vertices

, are similar.

Fig. 2. Illustration of the graph representation of a 4� 4 image. (a) Edge as-
signment according to the geographical neighbors. (b) Graph representation
using both geographical neighbors and feature similarities.

The weighted graph is equivalently represented by its
weighted adjacency matrix whose elements are

the edge weights in (2). Note that the matrix has a zero diag-
onal because we do not allow the vertices to be self-connected;
it is symmetric since .

B. Graph Partitioning and the Cheeger Constant

Classification is to partition the set of pixels into disjoint sets.
In graph terms, we divide the graph into two subgraphs.
The task is to find out a subset of edges, called an edge cut
such that removing this cut separates the graph into two
disconnected subgraphs and ,
where , , and . Taking
the example of the 4 4 image again, the dotted edges shown
in Fig. 3(a) assemble an edge cut for the graph. The removal
of this edge cut partitions the graph into two parts, as shown in
Fig. 3(b).
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Fig. 3. Conceptualization of an edge cut associated to the 4� 4 image in
Fig. 2(b). (a) Dotted edges assemble an edge cut. (b) Removal of the edge cut
partitions the graph.

In the framework of spectral graph theory [8], we define an
optimal edge cut by looking for the Cheeger constant of
the graph

(3)

assuming that . In (3), is the
sum of the edge weights in the cut

(4)

The volume of is defined as the sum of the vertex
degrees in

(5)

where the degree of the vertex is defined as

(6)

To denote the partition of the graph vertices, we introduce an
indicator vector for whose elements are defined as

if
if

(7)

In Appendix A, we derive the Cheeger constant in terms of the
indicator vector

(8)

where is the graph Laplacian defined in (46) and is the
vector collecting vertex degrees. The optimal graph partitioning
corresponds to the optimal indicator vector

(9)

C. Objective Functional for Cheeger Constant

In (8), the minimization of the cut-to-volume ratio is equiva-
lent to minimizing an objective functional

(10)

where is the weight. The objective is convex, be-
cause the graph Laplacian is positive semidefinite, see the
Appendix. In addition, the second term is
finite, so the minimizer exists.

Since at each vertex the indicator is either 1 or 0, see (7),
there are candidate indicator vectors. When the number
of pixels in the myocardium is large, it is not computation-
ally feasible to minimize the objective by enumerating all the
candidate indicator vectors. The next section proposes a novel
algorithm to avoid this combinatorial problem.

III. OPTIMAL CLASSIFICATION ALGORITHM

This section develops the optimal classifier that utilizes the
Cheeger constant.

A. Spectral Analysis of the Graph Laplacian

The spectral decomposition of the graph Laplacian , which
is defined in (46), gives the eigenvalues and eigen-
functions . By convention, we index the eigenvalues
in ascending order. Because the Laplacian is symmetric and
positive semidefinite, its spectrum is real and nonnegative
and its rank is . In the framework of spectral graph
theory [8], the eigenfunctions assemble a complete set
and span the Hilbert space of square integrable functions on the
graph. Hence, we can express any square integrable function on
the graph as a linear combination of the basis functions .
The domain of the eigenfunctions are vertices, so the eigenfunc-
tions are discrete and are represented by vectors. We note
that both the eigenfunctions and the vertices are indexed by the
set of integers . Eigenfunction is the
vector

(11)
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We list here the properties of the spectrum of the Laplacian
(see [8] for additional details) that will be utilized to develop the
classification algorithm.

1) For a connected graph, there is only one zero eigenvalue
, and the spectrum is

(12)

The first eigenvector is constant, i.e.,

(13)

where is the normalization factor for .
2) The eigenvectors with nonzero eigenvalues have zero

averages

(14)

The low-order eigenvectors correspond to low-frequency
harmonics.

3) For a connected graph, the Cheeger constant defined by
(8) is upper and lower bounded by the following inequality:

(15)

Due to the edge assignment strategy of geographical neighbor-
hood, see Section II, our graphs representing the heart images
are connected. Therefore, the spectral properties in (12) and (15)
hold in our case, besides the property (14) that holds in general.

B. Expression of Classifier

We now consider the graph that describes the my-
ocardium in an MRI heart image. The classifier partitioning
the graph vertex set into two classes and is defined as

if
if

(16)

Utilizing the spectral graph analysis, we express the classifier
in terms of the eigenbasis

(17)

where are the coordinates of the eigen representation,
is a vector stacking the coefficients, and

is a matrix collecting the eigenbasis

(18)

The design of the optimal classifier becomes now the problem
of estimating the linear combination coefficients .

C. Objective Functional for Classification

In (8), the Cheeger constant is expressed in terms of the set
indicator vector that takes 0 or 1 values. On the other hand,
the classifier defined in (16) takes values. We relate and

by the standard Heaviside function defined by

if
if

(19)

Hence, the indicator vector for the
set is given by

(20)

In (20), the indicator is a function of the classifier using
the Heaviside function . Furthermore, by (17), the classifier

is parametrized by the coefficient vector , so the objective
functional is parametrized by this vector , i.e.,

(21)

Minimizing with respect to gives the optimal coefficient
vector , which leads to the optimal classifier . Using
eigenbasis to represent the classifier transforms the problem of
the combinatorial optimization in (10) to estimating the real-
valued coefficient vector in (21).

To avoid estimating too many parameters, we relax the clas-
sification function to a smooth function, which simply requires
the first harmonics in its expression in terms of the eigenbasis.
The classifier is now

(22)

where and .
The estimation of the parameters in (17) is reduced to
the parameters in (22). As long as is chosen small
enough, the latter is more numerically tractable than the former.

Another concern in the objective functional (10) is the
weighting parameter . If we knew the Cheeger constant , we
could set and the objective function would be

(23)

The solution would correspond to , see (8). However,
we cannot set beforehand, since the Cheeger constant

is dependent on the unknown optimal indicator vector .
We can reasonably predetermine by using one of the spectral

properties of the graph Laplacian: The upper and lower bounds of
the Cheeger constant are related to the first nonzero eigenvalue

of the graph Laplacian, see (15). The bounds restrain the
range of values for the weight . For simplicity, we set to
the average of the Cheeger constant’s upper and lower bounds

(24)

D. Minimization Algorithm

Taking the gradient of , we obtain

(25)

In (25), the computation of is

(26)
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...
...

... (27)

Using the chain rule, the entries are

(28)

(29)

(30)

(31)

In (30), is the delta (generalized) function defined as the
derivative of the Heaviside function .

To facilitate numerical implementation, we use the regular-
ized Heaviside function and the regularized delta function

; they are defined, respectively, as

(32)

and

(33)

Replaced with the regularized delta function, the explicit expres-
sion of is

...
...

...

(34)

where we define

(35)

Substituting (34) into (25), the gradient of the objective has the
compact form

(36)

The optimal coefficient vector is obtained by looking for
. We have to solve the minimization numerically,

because the unknown is inside the matrix and the vector .
We adopt the gradient descent algorithm to iteratively find the
solution . The classifier is then determined by

(37)

The vertices with indicators correspond to
class and 0 correspond to class . To select the desired
USPIO-labeled regions, the operator simply chooses one of the
two classes.

E. Algorithm Summary

There are two major algorithms in the classifier development:
graph representation and classification. We summarize them in
Algorithms 1 and 2, respectively.

Algorithm 1 The graph representation algorithm

1: procedure GRAPHREP( ) Load the image

2: Segment the left ventricle

3: Index all the myocardial pixels by a set of integers

4: Initialize as an zero matrix

5: for all do

6: Compute Mahalanobis distance by (1)

7: if or are geographical neighbors then

8: Compute edge weight by (2)

9: end if

10: end for

11: return

12: end procedure

Algorithm 2 The classification algorithm

1: procedure CLASSIFIER( )

2: Compute graph Laplacian by (46)

3: Eigendecompose to obtain and

4: Compute coefficient by (24)

5: Initialize classifier coefficient and objective

6: repeat

7: Compute classifier by (22)

8: Compute indicator vector by (20)

9: Compute objective by (21)

10: Compute by (36)

11: until

12: return

13: end procedure

IV. EXPERIMENTS

This section presents the performance of the classifier with
experimentally obtained USPIO-enhanced MRI of phantoms
and of transplanted rat hearts. We implement our algorithm
with MATLAB on a computer with a 3-GHz CPU and 1 GB
RAM. After data acquisition, we normalize the heart image
intensities to range from 0 to 1 and manually segment the left
ventricle.
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1) Classifier Setting: There are several parameters needed
for running the classifier; their values are described in the
following.

• Each vertex is associated with a block of pixels
centered at pixel for computing the Mahalanobis distance;
see Section II-A. We set . If is 1, noise is not
taken into account. If is large, the graph takes better
account of the impact of the noise but the computational
time for constructing the graph increases. Our choice of

is a compromise between these two issues.
• To derive the image graph, we set when computing

the edge weights in (2). This choice of is suggested by
Shi and Malik [14], who indicate empirically that should
be set at 10% of the range of the image intensities.

• The parameter for the regularized Heaviside and delta
functions in (32) and (33), respectively, is set to 0.1. The
smaller the parameter is, the sharper these two regularized
functions are. For , the regularized functions are a
good approximation to the standard ones.

• To determine the number of lowest order eigenfunctions
used to represent the classifier , we tested values of from
5 to 20. We obtain the best results for .

• To reach the minimum of the objective functional, we solve
recursively. We stop the iterative process

when the norm of the gradient is smaller than or when
the minimization reaches 200 iterations. This number of
iterations led to convergence in all of our experiments, al-
though, in most cases, we observed convergence within the
first 100 iterations.

A. Phantom Study

We design a phantom to investigate how our algorithm
performs under various contrast-to-noise ratios (CNRs). The
phantom sample consists of three tubes that contain different
concentrations of iron–oxide particles and that are surrounded
by water. We imaged the phantom with a Bruker AVANCE
DRX 4.7-T system with a 5.5-cm home-built surface coil. By
adjusting the repetition time (TR), the echo time (TE), or the
number of signal averages (NEX), we can generate CNRs from
low to high. We run three series of scans.

• Series 1: fixed ms and ; varied
TE = 3–15 ms.

• Series 2: fixed ms and ms; varied
NEX = 1–12.

• Series 3: fixed ms and ; varied
TR = 300–1500 ms.

To compute CNR of an image, we begin with calculating
signal-to-noise ratios (SNRs) of USPIO-labeled and USPIO-un-
labeled regions:

(38)

(39)

Then, . The percentage of mis-
classified pixels is the criterion to evaluate the performance of
the classifier. Fig. 4 plots the percentage error versus CNR for

Fig. 4. Percentage error versus CNR on phantom experiments by varying TE,
NEX, and TR. (a) Varied TE. (b) Varied NEX. (c) Varied TR.

the three series of scans. With reference to Fig. 4(a)–(c), the pro-
posed algorithm achieves perfect classification when the CNR
is larger than 6, but the error increases considerably when the
CNR is below 5. This phantom study shows that the classifier
can perform without errors when CNR reaches 6 or above.

B. Cardiac Rejection Study

1) USPIO-Enhanced MRI of Heart Transplants: We have
studied the acute cardiac rejection of transplanted hearts using
our heterotopic working rat heart model. All rats were male in-
bred Brown Norway (BN; RT1n) and Dark Agouti (DA; RT1a),
obtained from Harlan (Indianapolis, IN), with body weight be-
tween 0.18 and 0.23 kg each. We transplanted DA hearts to BN
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TABLE I
SNR AND CNR VERSUS POD

hosts. Home-made dextran-coated USPIO particles [3] of 27 nm
in size were administered intravenously one day prior to MRI
with a dosage of 4.5 mg per kg bodyweight.

To investigate the acute cardiac progression, we have imaged
five different transplanted rat hearts on postoperation days
(PODs) 3, 4, 5, 6, and 7, individually. In our heterotopic rat
cardiac transplant model, mild acute rejection begins on POD
3, progresses to moderate rejection on PODs 4 and 5, severe
and very severe rejection on PODs 6 and 7, respectively [4].
Each heart was imaged with ten short-axis slices covering the
entire left ventricle. In vivo imaging was carried out on the
same machine in the phantom study. -weighted imaging was
acquired with gradient echo recall sequence. Respiratory as
well as electrocardiogram gating is used to control respiratory
and heart motion artifacts for MR imaging. The MRI pro-
tocol has the following parameters: TR one cardiac cycle
(about 180 ms); TE = 8–10 ms; NEX ; flip angle ;
field-of-view = 3–4 cm; slice thickness = 1–1.5 mm; in-plane
resolution = 117–156 m. The MRI protocol is optimized to
guarantee that the classifier works in a valid CNR range. Table I
summarizes the SNRs and CNRs in various POD data. The
CNRs are all greater than 6, which was the threshold for the
classifier to achieve perfect classification in the phantom study.

2) Automatic Classification Results: Fig. 5(a) shows dif-
ferent transplanted hearts imaged on PODs 3, 4, 5, 6, and 7. Each
image is the sixth slice out of ten acquired short-axis slices for
the heart; its location in the heart corresponds to the equator of
the left ventricle. Then, we apply our classification algorithm to
the images. Fig. 5(b) shows the detected USPIO-labeled areas
denoted by red (darker pixels). Unlike time-consuming manual
classification, our algorithm takes less than three minutes to
localize the regional macrophage accumulation for each image.

To take into account the macrophage accumulation in the 3-D
heart, we process multiple slices. Among ten acquired slices, we
ignore the first two and the last two slices because they do not
clearly contain the myocardium. The classification of rejection
on the slices 3–8 determines the volume of myocardial rejection
in the 3-D heart.

3) Validation With Manual Classification: Wu et al. [4] have
shown that the dark patches in the MR images are due to those
macrophages labeled with USPIO particles whose presence is
correlated histologically and immunologically with acute car-
diac rejection. Since the best validation option right now is to
compare with classification results by a human expert, we treat
manually determined USPIO-labeled pixels as the gold stan-
dard. In our data set, we can see that manual classification of the
heart slices is appropriate for all PODs, except POD5, as we will
discuss shortly. Manual classification of all the heart slices at all
PODs has been carried out before running the automatic clas-
sification. Fig. 5(c) shows the manually classified USPIO-la-
beled regions. Our automatically detected regions show good

Fig. 5. Application of our algorithm to rejecting heart transplants. Red
(darker) regions denote the classified USPIO-labeled pixels. Top to bottom:
POD3, POD4, POD5, POD6, and POD7. (a) USPIO-enhanced images. (b)
Automatically classified results. (c) Manually classified results.

agreement with the manual results in all slices and PODs, ex-
cept for POD5. This qualitative validation suggests that our au-
tomatic approach is useful in the study of heart rejection based
on USPIO-enhanced MRI data.

To quantitatively evaluate the quality of the automatic clas-
sification, we have compared the total area of USPIO-labeled
regions determined by the classifier and determined manually.
In Fig. 6(a), we plot the total macrophage accumulation per-
centage for slice 6 as a function of the PODs for the data used
in Fig. 5. Fig. 6(b) shows similar results but for the whole 3-D
heart.

To appreciate better how much the classifier deviates from
manual classification, we define the percentage error as

(40)
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Fig. 6. Immune cell accumulation of the heart transplants in Fig. 5. (a) Slice 6.
(b) Whole 3-D heart.

where is the USPIO-labeled area by automatic ap-
proach, the USPIO-labeled area by manual deter-
mination, and the whole myocardium area. The results
are shown in Fig. 7(a). The deviation of the classifier, usually
below 4%, shows the very good agreement between the classi-
fier and manual classification for all PODs, except POD5.

We now consider the discrepancy between the automatic clas-
sifier and the manual classification results in POD5. The five
slices in POD5 heart have percentage errors larger than 6%, with
one of them exceeding 10%. POD5 data sets are the most chal-
lenging among all POD data sets. This is because POD5 slices
are the most noisy, see Table I, and where the macrophages
spread dispersively, as rejection spreads from the periphery of
the heart (epicardium) to the whole heart. With reference to the
POD5 image (middle image) in Fig. 5(a), we see many dark
punctate blobs corresponding to the presence of macrophages.
Manual selection of these blobs is challenging to a human oper-
ator. By missing many of these, the lines displaying the manual
classification results (percentage area or percentage volume) in
Fig. 6(a) and (b), respectively, fail to be nondecreasing, showing
a dip at POD5. Were this true, the level of rejection would have
decreased from POD4 to POD5, clearly a contradiction, since
the animal models were not treated and rejection becomes more
prevalent as time progresses. In contrast, the corresponding plot

Fig. 7. Percentage deviation of various algorithms versus manual classification
results. (a) Automatic classification proposed by this paper. (b) Thresholding
method. (c) Level set approach.

lines for the classifier are monotonic—while they track well the
manual classification results everywhere else, they deviate from
the dip at POD5.

4) Comparisons With Other Classification Approaches: In
addition to manual classification, simple thresholding is the
common automatic method used for classification of USPIO-la-
beled regions. Fig. 8(a) shows the classification results obtained
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Fig. 8. Application of other algorithms to rejecting heart transplants. Red
(darker) regions denote the classified USPIO-labeled pixels. Top to bottom:
POD3, POD4, POD5, POD6, and POD7. (a) Thresholding method. (b) Isoperi-
metric algorithm. (c) Level set approach.

by thresholding the images in Fig. 5(a). Fig. 6(a) and (b) also
plot the macrophage accumulation curves using thresholding.
The error analysis of the thresholding classification is shown
in Fig. 7(b) using the same definition for percentage deviation
in (40). Although the classification results by our classifier and
by thresholding shown in Fig. 5(b) and Fig. 8(a), respectively,
are visually indistinguishable, the quantitative error analysis
shown in Fig. 7(b) demonstrates that the thresholding method
has higher error rates in most slices than automatic classifier.
Further, thresholding is not robust, with error rates that can
range from 0.5% to 18.5%, usually with error rates larger than
6%. Thresholding is prone to inconsistency because of the
subjectivity in choosing the thresholds and because it does not
account for the noise and motion blurring the images.

We provide another comparison by contrasting our algo-
rithm with an alternative classifier, namely, the isoperimetric
partitioning algorithm proposed by Grady and Schwartz [16].
The isoperimetric algorithm uses also a graph representation,
which includes a geographical neighborhood only, not taking
into account the noise for edge weights, as in our approach. The
isoperimetric algorithm tries to minimize the objective function

, where is the real-valued classification function and
is the graph Laplacian. The minimization is equivalent to

solving the linear system . We applied this method to
the images in Fig. 5(a). The classification results are shown in

Fig. 8(b). Comparing these results with the manual classifi-
cation results in Fig. 5(c), we conclude that the isoperimetric
partitioning algorithm fails completely on this data set. The
problems with this method are twofold. First, the objective
function captures the edge cut but ignores the volume enclosed
by the edge cut. This contrasts with our functional, the Cheeger
constant, that captures faithfully the goal of minimizing the
cut-to-volume ratio. Second, although the desired classifier of
the isoperimetric partitioning is a binary function, the actual
classifier it considers is a relaxed real-valued function. Our
approach addresses this issue via the Heaviside function.

The final comparison is between our proposed method and the
level set approach [17], [18], which has been applied success-
fully to segment the heart structures [19]. The level set method
finds automatically contours that are the zero level of a level set
function defined on the image and that are boundaries between
USPIO-labeled and -unlabeled pixels. The optimal level set is
obtained to meet the desired requirements: 1) the regions inside
and outside the contours have distinct statistical models; 2) the
contours capture sharp edges; and 3) the contours are as smooth
as possible. Finally, we can classify the pixels enclosed by the
optimal contours as USPIO-labeled areas. The experimental re-
sults using the level set approach are shown in Fig. 7(c) and
Fig. 8(c). In the heart images, macrophages are present not only
in large regions but also in small blobs with irregular shapes
whose edges do not provide strong forces to attract contours.
The contour evolution tends to pass small blobs and capture
large continua, leading to more misclassification than our pro-
posed method.

The performance of our proposed classifier may be affected
when artifacts are present in the MR images. Our method es-
tablishes the graphical representation of the images from geo-
graphical and intensity similarities among pixels. If a myocar-
dial region has hypointensity due to artifacts, its intensity fea-
tures are similar to those of USPIO-labeled pixels and the classi-
fier will have a hard time to distinguish correctly between the ar-
tifacts and the USPIO-labeled regions. Although artifacts were
not present in our data sets, the operator may need to invoke an
artifact removal algorithm before running our classifier.

5) Future Work: The classifier presented in this paper per-
forms binary classification of the myocardial pixels and then de-
termines the rejection severity by counting the number of pixels
per volume involved in USPIO-labeling. Since macrophage in-
filtration depends on the rejection severity, less for mild re-
jection, more for severe rejection, the USPIO-labeled rejecting
tissue does not contribute the same levels of MR signals. In
future work, we will extend this classifier to handle multiple
classes to provide an integrated mechanism to measure rejec-
tion severity.

From the results shown in Fig. 5(b), we see that the trans-
planted hearts have heterogeneous patterns of microphage infil-
tration consistent with the histological and immunological find-
ings reported in [4]. The results shown in Fig. 6 are in agree-
ment with the findings that more macrophages are infiltrated to
the transplanted hearts as acute rejection progresses, i.e., with
increasing number of days after transplantation. To confirm this
hypothesis, we will investigate the correlation between the dys-
functional heart motion [20], [21] and macrophage infiltration.
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Once this hypothesis is validated, the automatic classification of
USPIO-labeled regions has the potential to help determine the
severity of heart rejection in clinical studies.

Last, the application of our classifier can be extended to im-
ages enhanced by other contrast agents, for example gadolinium
or magnetic iron oxide compounds. As long as the agents create
positive contrast, we can apply the algorithm to localize the
presence of the contrast agents and to monitor other diseases,
such as myocardial scar and infarction.

V. CONCLUSION

This paper develops an automatic algorithm to classify
regional macrophage accumulation of allografts imaged by
USPIO-enhanced MRI. Automatic classification is desirable. It
lightens the manual work of an expert, prevents inconsistencies
resulting from different choices of thresholds that usually
plague classification by human operators, and, by accounting in
its design explicitly for noise, it is robust to noise. The classifier
developed in this paper can assist in studying rejection in heart
transplants.

We formulate the classification task as a graph partitioning
problem. We associate to an MR image a graph where the graph
vertices denote pixels and the graph edges connect neighboring
and similar pixels. We treat the classifier as a binary function on
the graph. The eigendecomposition of the graph Laplacian pro-
vides a basis to represent the classifier. The binary classifier is
relaxed to a smooth function by linearly combining several low
order eigenbasis functions. The optimal classifier is designed
to minimize an objective functional derived from the Cheeger
constant of the graph. Our experimental results with USPIO-en-
hanced MRI data of small animals’ cardiac allografts under-
going rejection show that the Cheeger graph partitioning based
classifier can determine accurately the regions of macrophage
infiltration. These experiments show that it presents better per-
formance than other methods like the commonly used thresh-
olding, the isoperimetric algorithm, and a level set based ap-
proach.

APPENDIX

EXPRESSION OF THE CHEEGER CONSTANT IN TERMS

OF THE INDICATOR VECTOR

We can rewrite the vertex degree , see (6), by considering
the vertices in either or ; i.e.,

(41)

Assuming that the vertex is in , the second term in (41) is
the contribution of made to the edge cut . Taking
into account all the vertices in , we have the edge cut

(42)

(43)

To write (43) in a more compact form, we use the indicator
vector for , defined in (7). It follows that the edge cut (43)
is

(44)

(45)

where is a diagonal matrix of
vertex degrees, and

(46)

is the Laplacian of the graph; see [8]. Because is diagonal
and is symmetric, is symmetric. Further, is positive
semidefinite since the row sums of are zeros.

Using the indicator vector , we express the volume
as

(47)

where is the column vector collecting all the vertex degrees.
Replacing (45) and (47) into the Cheeger constant (3), we write
the Cheeger constant in terms of the indicator vector

(48)
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