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Expedient Media Noise Modeling: Isolated and Interacting Transitions

Aleksandar Kav¢ié and José M. F. Moura
Data Storage Systems Center, Carnegie Mellon University, Pittsburgh, PA 15213-3890

Abstract— We propose the triangle zig-zag transi-
tion (TZ-ZT) model as a faster alternative to micro-
magnetic media modeling. We present equations that
relate the statistics of the TZ-ZT model to record-
ing process parameters. Both isolated and interacting
transitions are modeled. Simulation results show the
performance of the model.

I. INTRODUCTION

There is renewed interest in finding expedient media noise
models. Micromagnetic modeling (MM) [1], [2] is probably the
most accurate model for media (transition) noise. Although
accurate, MM is too expensive when generation of-thousands
of bits (transitions) is required (e.g., error rate predictions).
Generating a single MM transition on a 50x50 grain sample
takes 10-20 minutes on an average workstation, which is pro-
hibitive for signal processing purposes.

Alternative models can be deterministic, e.g., [3], or sta-
tistical. We consider statistical zig-zag models. These mod-
els capture the statistical essence of the random zig-zag line
(wall) that separates oppositely magnetized regions of the me-
dia. Arnoldussen and Tong [4], and Middleton and Miles [5]
suggest zig-zag patterns where the peak-to-peak distances are
the independent random variables of the model. This leads
to instability (a down-track wall drift) since the model is then
an independent increment random process [6]. Reference [7]
fixes this by deconvolving the peak-to-peak probability density
function (pdf) to obtain a zero-to-peak pdf. In this paper, we
circumvent this problem by presenting a model that involves
only zero-to-peak distances in the form of triangle heights,
rather than peak-to-peak distances. Thus, we solve the insta-
bility issue by avoiding altogether an independent increment
random process. Furthermore, the geometry of our model al-
lows us to find unique relationships between the model defin-
ing quantities and the recording process parameters (transition
profile and cross-track correlation width). We call our model
the triangle zig-zag transition (TZ-ZT) model. TZ-ZT model-
ing is 10* times faster than MM. We show results comparing
the TZ-ZT to MM. We also propose a modification to the TZ-
ZT model to incorporate high density nonlinearities.

II. TRIANGLE ZIG-ZAG TRANSITION MODELING

The triangle zig-zag transition (TZ-ZT) model is a stochas-
tic model of the zig-zag line that separates two oppositely mag-
netized regions of the magnetic medium. The TZ-ZT model
(see Figure 1) places side-by-side isosceles triangles of alternat-
ing orientations on the line representing the nominal transition
center. The triangle heights (hi, hz,...) are independent ran-
dom variables drawn from a pdf fu(h). The vertex angle §
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Fig. 1. The tria.ngl.e‘ zfig-zag transition model.

is chosen to be constant. This makes it possible to find a
relationship between 6 and the cross-track correlation width,
which we actually use to determine 6 for a given medium.

ITI. ISOLATED TRANSITIONS
A. Transition Profile and Jitter Noise Modeling

Denote by M.(z) the average down-track -magnetization
profile, where z denotes the down-track direction. We are as-
suming that for = > 0, Mz (z) > 0 and that M:(z) is odd, e.g.,
M.(z) = 2= . atan (f) or Mg(z) = M, - eff (7%), where

M, is the remanent magnetization.

Theorem 1 The average transition profile M. (z) is related
to the pdf of TZ-ZT heights fr(h) for an isolated transition
through

M (z)
T ML(0)

where MY (z) = & [ML(2)] = £ [M:(2)].

fa(h) = for h2>0, 1)

The proof of Theorem 1 escapes the length constraints of this
paper, see [6]. The tricky part in the proof is to relate the
zig-zag patterns to renewal theory. To avoid errors made in
previous attempts to derive similar relationships, we need to
recognize the paradox of residual life in renewal theory [8].
Due to this paradox, the pdf p(w) in equation (18) of refer-
ence 15 in [5] should be replaced by w - p(w)/E [w]. This will
change the relationship between the magnetization profile and
the sawtooth pdf p(w) in Equation (5) in [5] to its correct form.
See [6] for details.

The cross-track correlation width s (see [9]) is correlated
with the jitter in the readback signal. We find an expression
for the cross-track correlation width s, of the TZ-ZT model.

Theorem 2 Let B be the random variable that represents the
bases of the zig-zag triangles used in the TZ-ZT model. Then

Var (B)

T @

S =

where E [B] is the mean and Var (B) is the variance of B.
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a) Magnetization profile

b) Normalized jitter histograms

¢) Transition slope histograms
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Fig. 2. Comparison of TZ-ZT and micromagnetic statistics.

We relegate the proof to [10]. Equation (2) in Theorem 2
holds for other types of models too. In particular, in [10],
we apply Theorem 2 to the microtrack model of [11] to show
that the cross-track correlation width, as computed by (2),
equals the microtrack width. We interpret Equation (2). Let
B be the random variable representing the cross-track size of
a cluster. Let the magnetization of adjacent clusters point in
opposite down-track directions, both with intensity M,. Then
Equation (2) gives the cross-track correlation width. Since
the cross-track correlation width is correlated with the jitter
noise level, to have low jitter noise we either reduce the cluster
size variance Var (B) or increase the average cluster size E [B].
The latter, however, is not an option in high density recording
because it requires increasing the track width.

Corollary 2.1 The TZ-ZT modeled medium and the thin film
medium being modeled have the same cross-track correlation
width s if the TZ-ZT vertex angle 6 is

.

where H represents the random TZ-ZT heights.

s-E[H]

6 = 2atan [m(—m- (3)

Proof: From Figure 1, the bases b; are related to the heights
hi as b; = h; - 2tang. If we substitute B = H - 2tan? into (2)
and solve the resulting equation for 8, we get (3).

B. Modeling Results

We modeled a magnetic thin-film with the following char-
acteristics: remanent magnetization M, = 625emu/cm?, co-
ercivity H, = 16700e, media thickness § = 400A, orientation
ratio O.R.= 1.3. The chosen track width was TW = 4.8um.
We used a Karlqvist writing head with gap length g = 0.28um
and flying height (magnetic spacing) d = 0.1um.

Using the micromagnetic model we obtained 30 independent

isolated magnetization profiles (normalized to M,). We found
their average to be M.(z) ~ erf (7-";—0) , with o = 610A. Ap-
plying Theorem 1 to an erf magnetization profile, we find the
triangle heights pdf fz (h) to be a Rayleigh pdf

(

The shape of a Rayleigh pdf matches well the experimental
findings [4]. To find the vertex angle 6 of the TZ-ZT model,
we first calculate the sample magnetization variance &%;(x)

2

Mi(z)  h _h
202

) for h>0. (4)

from the same 30 isolated micromagnetic profiles. The mag-
netization variance o}, is related to the normalized magneti-
zation M through the equality o2 = A (1 -M 2), where s
is the cross-track correlation width [12]. By least-squares fit-
ting a parabola to the curve of &%, (x) versus M, (z), we obtain
s =197A. Corollary 2.1 yields then 6 = 50.7°, where we used
E[H] = oy/7/V2 and Var(H) = (2 — n/2)o® for a Rayleigh
distributed random variable H as in (4).

Figure 2 compares the statistical properties for isolated
pulses of the TZ-ZT model with those of the MM. The plots
are based on 500 independent runs of the MM and 50,000
runs of the TZ-ZT model. The transition shape and jitter his-
tograms match almost perfectly, see Figures 2-a and 2-b. The
transition slope variance shows a 30% mismatch, see Figure 2-
c. This is a second order effect with little impact on the total
noise power since the amplitude (slope) variations are weaker
than the jitter for isolated pulses [13].

IV. INTERACTING TRANSITIONS
A. Nonlinear Bit Shift and Amplitude Loss Modeling

We model nonlinear bit shift (NLBS) and partial signal era-
sure (percolation) by modifying the existing TZ-ZT model for
isolated transitions. Our model for interacting transitions re-
lies on results derived by Bertram [9]. Equation (9.7) in [9]
shows that the bit shift is

_ 4AM.5(d+6/2)°

Az TQH,.B*

) (5)
where B is the nominal separation between the current and
the previous transition and Q is the head-field gradient factor.
We apply this formula by writing the current transition closer
to the previous one by Az. »

A second effect observed at closely separated transitions is
that the down-track position of the transition varies with a
variance that is dependent on the distance between neighbor-
ing transitions. This variance is (equation (12.33) in [9])

=)

Here, o2, is the down-track position variance of an isolated
transition and ¢% is the variance of a transition whose near-
est neighboring transition is separated by B, where B is the
distance between neighboring transitions after the NLBS ad-
justment in (5), i.e., By = B~ Az. Applying (6) to the TZ-ZT

2

8M,.8d?
op —

" *B3QH,

2
Ooo-

(6)



Fig. 3. Left: two isolated transitions. Right: transitions with elon-
gated triangle heights (marked by the superscript ’) according to (7).

model is fairly easy. Suppose that we created a TZ-ZT transi-
tion with triangle heights ka1, h2,.... We write this transition
at a distance By = B— Az from the previous transition, where
the distance B is user defined and Az is calculated from (5).
The triangles of the created transition will have bases by, bz, . ..
that correspond to the heights hi, ho,... through the angle 0
given in (3), see also Figure 1. In order to change the variance
according to (6) and at the same time preserve the cross-track
correlation width s, we need to elongate the heights hi, ha, . . .,
while keeping the bases b1, b2, ... as they were for an isolated
transition. Thus, we set the elongated triangle heights to

2\ —1/2
SM’M) hi, 1=1,2,... )

!
A L el A
hi ( wB}QH.

A side effect of this elongation is that the angle 6 changes
- for interacting transitions, but that does not mean that the
cross-track correlation width changed since the triangle bases
remain equal to those generated for an isolated transition.
Equation (7) needs to be applied to both transitions located
at each end of their separation length B;. After the adjust-
ments described in equations (5) and (7), given a small enough
B, = B — Az, we will observe that the zig-zag patterns of the
neighboring transitions overlap at certain portions of the track.
In these portions of the track, we consider that the magnetiza-
tion has percolated, leaving islands of oppositely magnetized
regions in between the two closely separated transitions, see
Figure 3. We use this as our model for partial erasure.

B. Modeling Results

We wrote TZ-ZT dibits and read it with a Lindholm head for
different transition spacings. For each transition separation,
we obtained 500 independent dibit waveforms. After subtract-
ing their mean, we obtained the dibit media noise waveforms,
and calculated their empirical correlation function. We decom-
posed the correlation function into its principal components
(modes) using the Karhunen-Loeve decomposition (KLD) [13].
The KLD revealed that two basic noise modes (amplitude vari-
ation mode and shift in unison jitter mode) dominate the dibit
media noise. Their relative contribution to the total noise
power changes with transition separation, as shown in Fig-
ure 4. At large transition separations, jitter is the dominant
noise mode, while at short spacings the amplitude variations
dominate. This plot, obtained with TZ-ZT modeling, is similar
to experimental results obtained in [13]. Figure 4 also shows
the dibit amplitude as a function of inverse transition separa-
tion and the amplitude obtained by linear pulse superposition.

V. CONCLUSION

We presented a computationally efficient media and media
noise model. Magnetization transitions are represented as por-
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Fig. 4. Normalized dibit amplitude and normalized media noise
mode powers as a function of inverse transition spacing.

tions of a zig-zag line across the track. The zig-zag line is
a random process obtained by placing isosceles triangles on
a common basis line. Formulas are presented that link the
defining quantities of the model to recording parameters. For
isolated transitions, the transition shape and jitter noise are
accurately modeled. For interacting transitions, nonlinear am-
plitude loss and high density media noise are also incorporated.
The model can be applied to generate signals with high den-
sity nonlinearities and media noise, and is therefore useful for
statistical studies (error rate studies) of readback subsystems.
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