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This paper describes a new type of regular structured low-density parity-check (LDPC) code: the partition-and-shift LDPC (PS-LDPC)
code. PS-LDPC codes can be easily designed to have large girth. The code construction is simple to explain: we divide the bit and check
nodes in the Tanner graph into subsets and connect nodes in these subsets according to a set of parameters called shifts. We derive
a general theorem on the shifts to prevent cycles that are harmful to LDPC decoding. This theorem provides a methodology to design
PS-LDPC codes with arbitrary column weight and large girth . Simulation results over EPR4 channels demonstrate the good bit-error
rate performance of PS-LDPC codes.

Index Terms—Error floor, girth, low-density parity-check (LDPC).

I. INTRODUCTION

H IGH-RATE low-density parity-check (LDPC) codes
are the focus of intense research in magnetic recording

because, when decoded by the iterative sum-product algorithm,
they show performance close to the Shannon Capacity [1].
LDPC codes can be described by a bipartite graph called a
Tanner graph [2]. The length of the shortest cycle in a Tanner
graph is referred to as its girth . Since large girth improves
the bit-error performance of the codes, leads to more efficient
decoding, and guarantees large minimum distance [2], LDPC
codes with large girth are particularly desired.

Structured LDPC codes reduce the encoder and decoder com-
plexities. We only discuss here a few typical techniques to de-
sign structured LDPC codes. Reference [3] designs LDPC codes
based on finite geometries. Codes constructed in this way have
girth 6. Another well-known method to construct structured reg-
ular LDPC codes is based on balanced incomplete block designs
(BIBD) [4], [5]. BIBD-based codes are well structured, free of
4-cycles, i.e., their girth is , and achieve a very high code
rate. For a more expansive review of work on structured LDPC
codes, please refer to the overviews in [6] and [7].

In this paper, we describe a class of structured regular
LDPC codes with large girth and high code rates, called par-
tition-and-shift LDPC (PS-LDPC) codes, and explore their
error-correcting performance in magnetic recording channels.

II. CODE CONSTRUCTION

We briefly introduce PS-LDPC codes. For their detailed con-
struction please refer to [8] and [9]. Let be the set of all check
nodes and the set of all bit nodes in a Tanner graph. Divide

into disjoint subsets of equal size provided that the code
block length , where is a natural number (not neces-
sarily a prime number). We index the check nodes in each subset
from 0 to . Similarly, partition into disjoint subsets
of equal size and index the bit nodes in each subset from 0 to

.
PS-LDPC codes, as defined in [8] and [9], are LDPC codes

that satisfy the following assumptions.
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Fig. 1. Tanner graph for PS-LDPC code.

(a) (b)

Fig. 2. (a) Closed path in shift matrix S. (b) Six-cycle in Tanner graph with
six associated shifts S ; S ; S ; S ; S ; S .

1) Check nodes: Each check node is connected to bit
nodes in different bit node subsets. The check nodes in
the same check node subset are connected to distinct bit
nodes in the same bit node subsets.

2) Bit nodes: Each bit node is connected to check nodes in
different check node subsets. The bit nodes in the same

bit node subset are connected to distinct check nodes in
the same check node subsets.

3) Shifts: Every check node, indexed by in the th check
node subset, is connected to the bit node indexed by

in the th bit node subset, where and
.

The operator in assumption 3) represents modulo- addition.

Similarly, we represent modulo- subtraction by . The param-
eters in assumption 3) are
called shifts. We collect all the shifts in an matrix
called the shift matrix . For example, Fig. 2(a) shows
a shift matrix. Fig. 1 shows the Tanner graph for a PS-LDPC
code where all the check nodes are divided into three check node
subsets and all the bit nodes are partitioned into four-bit node
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subsets. In each subset (check node subset or bit node subset),
there are three nodes.

Code Rate: We can design PS-LDPC codes with any desired
values for the column weight and the row weight . For a
regular code, ignoring the effect of a few linearly dependent
parity-check equations, the code rate is well approximated by

, which means that we can generate PS-LDPC
codes with any practical desired code rate by simply choosing
appropriate values for and . For example, if a
and column-weight-3 PS-LDPC code is desired, set and

.

III. CYCLES AND SHIFTS

By construction, PS-LDPC codes are characterized by shifts
. Since our goal is to elimi-

nate those short cycles in Tanner graphs, we first relate cycles
in Tanner graphs to shifts .

Before presenting this relationship, we first introduce nota-
tion. A closed path in is defined to be a sequence of connected
alternating vertical and horizontal lines such that the last line in
the sequence terminates at the beginning of the first line and ver-
tices of the closed path are entries of . The length of a closed
path is the number of lines it contains. As an illustration,
Fig. 2(a) depicts a closed path (solid line) in a shift matrix . Its
six vertices are , and . Since this
closed path contains six lines, its length is six.

Next, we show the correspondence between cycles in Tanner
graphs and shifts in the following theorem.

Theorem 1 (2t-CYCLE): The Tanner graph for a PS-LDPC
code contains at least one cycle if and only if there exists
a closed path of length in the shift matrix such that
its vertices satisfy the shift condition

Proof: We omit the proof here. For details, please refer to
[8].

We illustrate Theorem 1 with an example. As shown in
Fig. 2(a), the six shifts , and
are corners of a closed path of length six (solid line) in

. By Theorem 1, if the shift condition is violated, i.e.,

, then
the six-cycle shown in Fig. 2(b) does not exist in the Tanner
graph. Similarly, by choosing appropriate shifts for

and that violate the shift
condition in Theorem 1, we can eliminate cycles with length

.
When and , where and are column and row

weights of the parity-check matrix, respectively, by choosing
appropriate shifts we can design PS-LDPC codes with
girth up to 12. For larger and , we can generate PS-LDPC
codes with higher girth [8].

Fig. 3. Constructing S matrix: Step 1.

Fig. 4. Constructing S matrix: Step 2.

Fig. 5. Constructing S matrix: Step 3.

Fig. 6. H for a (6075, 3, 27) PS-LDPC code with rate 8/9 and girth 8.

IV. DESIGN OF PS-LDPC CODES WITH LARGE GIRTH

We present next an example to illustrate how to find a shift
matrix that avoids cycles of length up to .

We want to build a 3 6 shift matrix whose associate
PS-LDPC code (its Tanner graph) has girth 10. The size of
each node subset is set to be 150.

Initially, all the 18 shifts in the shift matrix are undeter-
mined, as shown in Fig. 3.

In the next step, we randomly choose values in between 0 and
149 for the entries in the first row and first column of . Next,
we determine the value of . Since forms a length-four
closed path (solid line in Fig. 4) with the already existing shifts

, and , we need to check whether the four shifts
, and violate the shift condition in Theorem

1. For instance, we choose , then
. Hence, the shift

condition is met. We have to choose another value of . Say

this time we choose , then
. Hence, the shift

condition is violated. We fix the value of to be 85. This
process is shown in Fig. 4.

This process is repeated until we finally generate a shift ma-
trix that is free of cycles shorter than ten, as shown in Fig. 5.

After finding a shift matrix , we can construct a PS-LDPC
code from the resulting matrix.

Similarly, Fig. 6 shows the 675 6075 parity-check matrix
for a (6075, 3, 27) PS-LDPC code with rate and girth
8. The matrix is developed from a 3 27 matrix generated
by the method described above.

As stated before, PS-LDPC codes can be designed with large
girth and any desired code rate. However, by forcing PS-LDPC
codes to have large girth, we lose some flexibility in choosing
the block size. A PS-LDPC code with column weight , row
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Fig. 7. BER performance: PS-LDPC code, column weight 3, girth 8, and rate
8/9 versus same size random LDPC code free of four cycles.

Fig. 8. BER performance: PS-LDPC code, column weight 4, girth 8, and rate
8/9 versus same size random LDPC code free of four cycles.

weight , girth , and block size should follow the bound
proposed in [10]: . The exact
value of code block size can be found by computer search.

V. SIMULATION RESULTS

We study by simulation the bit-error rate (BER) of large-girth
PS-LDPC codes in EPR4 channels. For the purpose of compar-
ison, we also show the BER of random LDPC codes free of
four cycles [1] that have the same size and same code rate as
the PS-LDPC codes we constructed. The signal-to-noise ratio
(SNR) definition we use is , where
denotes the user bit energy and is the two-sided power
spectral density.

Fig. 7 shows the BER of a PS-LDPC code with girth 8 and
the BER of a fiour-cycle free-random LDPC code in an EPR4
channel. Both codes have column weight , block length
6075, and code rate 8/9. In the high SNR, the PS-LDPC code
outperforms the random LDPC code when BER is less than
10 . The plots show that in this region the performance of the
random code has shown the omen of an error floor, while the
PS-LDPC code has not yet reached the error floor at this BER.
We also notice that at low to moderate SNR, PS-LDPC codes

have a performance comparable to that of a random LDPC codes
free of four cycles.

We have studied in Fig. 7 PS-LDPC codes with column
weight . Next, we study PS-LDPC codes with column
weight . The plot in Fig. 8 compares the BER performance
for a column weight PS-LDPC code with girth 8 (solid
line) with a random LDPC code (no four cycles) with column
weight 4 (dashed line). Both codes have the same block length
32 760 and the same code rate 8/9. The slope of the BER curve
for the PS-LDPC code decreases faster with SNR than that of
random LDPC code. At low to moderate SNR, both codes have
similar BER performance.

VI. CONCLUSION

We present PS-LDPC codes in this paper. They are particu-
larly suitable for future high-density data storage systems due
to the following reasons demonstrated in the paper.

1) They can be systematically constructed with high code
rates and large girth.

2) Their parity-check matrix is based on a much smaller ma-
trix—the shift matrix , which reduces the memory re-
quirements in hardware implementation.

3) Their BER performance outperforms random codes at
high SNR. We observe that they can alleviate the error
floor.
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