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Statistical Study of Zig-Zag Transition Boundaries
In Longitudinal Digital Magnetic Recording
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Abstract—In this paper, we study the statistics of zig-zag tran- the stochastic zig-zag models we describe in this paper, are
sition walls in digital magnetic recording and their relationship to  necessary in order to generate the large number of transitions

transition noise defining quantities. We provide analytic results yoqjired to provide statistical significance to the error rate
that link the statistics of zig-zag transitions to media/recording computations

parameters. The basis of our study is the triangle zig-zag transi- ! L .
tion (TZ-ZT) model due to its well-defined triangle zig-zag shape  In this paper, we present a statistical study of zig-zag
and its cross-track stability. The results we derive here, however, transition walls in longitudinal magnetic recording. Rather
are of a general nature, and given the right interpretation, apply  thananalyzingthe statistics of the zig-zag walls, we are more
to other zig-zag models as well, as we show in the paper. We alsoconcerned with thesynthesis Synthesis involves choosing

provide an interpretation of the cross-track correlation width, th t in th d . h that th
linking this quantity to the statistics of magnetized clusters in € parameters in theé random zig-zag process suc at the

thin-film magnetic media. The paper concludes by showing how Process is stable and such that these parameters can be related

these results can be used in media noise modeling. to macroscopic (measurable) media/recording properties. The
triangle zig-zag transition (TZ-ZT) model that we propose is
I. INTRODUCTION stable. We show how to relate its parameters to the media phys-

T HAS LONG been observed that most of the noise in thilr(l:al characteristics. Although the derivation of our theoretical

, ) . . . - rFsuIts is tied to the TZ-ZT model, the results are general
film magnetic recording media occurs in the transition

regions between two oppositely magnetized magnetizatiﬂ{ld can be applied to other similar models. In particular, we
patterns in the media [1], [2]. The source of this noise li ntion how to modify the model in [9], [10] to exhibit cross

in the ireqularity of the transition boundary. The zi _Zaet?ack stability. We also derive an alternative expression for the
9 y Y. 9 ross-track correlation width and show that it applies not only

boundary itself is a realization of a random process, Whi(Eo the TZ-ZT model but to such square-wave type models as
is why the observed media noise is indeed noise, i.e., rando[ F microtrack model in [15] and [16]

In the past, there have been many studies of zig-zag wa This paper is focused on the presentation of theoretical

shapes. Severall zig-zag models have 'b(.ae'n suggested. TPgélﬁtS for isolated transitions. Coupling these results for
models cluster in two groups: deterministic and stochasti

models. Examples of deterministic models are described |Is(|:10I_ated tr_ansitions with models for bit shiﬁ,_ transition position
[3]-6] While deterministic models are useful in understani—anance increase [15], [17], and percolation thresholds [16],
; : . i . . . 18], we can easily extend our TZ-ZT model to include the
ing the physical mechanisms involved in the recording process

they cannot explain the random character of noise. The s

podnlinear effects of interacting transitions [19].
) ) o Th ris organiz follows. ion Il reviews briefl
chastic models [7]-[11] model the zig-zag transition line % € paper is organized as follows. Sectio eviews briefly
a random process, thus accounting for the random charac

e TZ-ZT model as well as other proposed stochastic zig-
of media noise.

zgé transition models. Section Il derives novel analytic re-
Widely accepted models for describing the physics of th"?ﬁedia/recording quantities. While Section Ill is kept short,

. , . . X . "~ the proofs, discussions, and examples supporting the results
While micromagnetic models model the fine microphysics erived in Section Il are in the Appendix. Section IV gives

each particle (grain) of the recording media, stochastic zig-zgﬁ example of how the results derived in Section Ill can be

models rely on extracting only a few “’?‘”0.'0”‘ parameters frou ed to synthesize zig-zag transitions. Section V concludes the
macroscopic measurements and extrinsic media propertie er

accurately model the transitions and transition noise. The
tradeoff between the micromagnetic models and stochastic zig-
zag models is between accuracy and speed. The stochastic zig-
zag models are much faster, whereas micromagnetic modeldhe use ofstochasticzig-zag wall models as media noise

provide greater detail. In detection studies, fast models, likgodels in magnetic recording has first been suggested by

_ _ , _Arnoldussen and Tong [7]. Based on Lorentz-microscopy
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Fig. 1. Stochastic zig-zag transition model. Labeled are the sawtooth lengkig. 3. Microtrack model. The microtrack width is denoted with
and vertex angles.

and most important, the paradox of residual life in renewal
theory [21], [22] was not recognized, which misled the authors
into deriving an incorrect relationship between the sawtooth
lengths pdf and the magnetization profile.

Perhaps these hardships in dealing analytically with sto-
chastic zig-zag models led to the popularity of such simpler
stochastic square wave type models as the microtrack model
[15], [16]. In the microtrack model (see Fig. 3), the track is
divided into microtracks. The magnetization reversal in each
microtrack is a perfect step function, where the exact position
of the reversal is governed by the pdf of the square wave
Fig. 2. Stochastic zig-zag transition model. Labeled are zero-to-peak df"?éights (which is denoted b, ko, --- in Fig. 3). It is fairly
tances and vertex angles. . . .

easy to show that the pdf of the heiglitsin the microtrack

model in Fig. 3 equals the normalized first derivative of the
the vertex angleg, suffices for theanalysisof the zig-zag magnetization profile, whereas the microtrack width equals the
patterns, it does not provide a good tool for theynthesis cross-track correlation width of the model. At the same time,
The main reason is the instability of the model in [7]. If thehis answers the question of how to set the pdf oftkie and
sawtooth lengthsv;, we, -- - are used as independent randorthe microtrack width, which makes the model easy to use.
variables in the synthesis process, the resulting stochasti©ur goal in this paper is to derive relationships that will
zig-zag process is an independent increment random processe the stochastizig-zagtransition models just as easy to
[11], [20]. The variance of an independent increment randouse as the microtrack model. We derive formulas that link the
process grows with time (in this case with the cross-tragtatistics of a zig-zag transition to the magnetization profile
distance). This makes the synthesized zig-zag process unstable to the cross-track correlation width. However, before we
with a drift in the down-track direction due to the growth oflo that, we need a stochastic zig-zag model that is both stable
the variance with the cross-track distance. This problem hiaghe cross-track direction (nonindependent increment random
been recognized in a follow-up paper by Tang and Osse [8)ocess) and is analytically tractable. This model is the TZ-ZT
who suggest deconvolving the pdf of the sawtooth lengtigodel [11], [17], which we describe briefly next.
w; to obtain the pdf of the zero-to-peak lengths (denoted
by hy, ha, --- in Fig. 2). Using the zero-to-peak distances aA. Triangle Zig-Zag Transition Model

independent random variables stabilizes the model. Althoughthe TZ-ZT model is depicted in Fig. 4. The magnetization
stable, the model in [8] was impractical to use since it reliegk the media is allowed to be oriented only in the down-
on Lorentz microscopy pictures for the determination of theack direction, with a value-M,., where M, is the remanent
pdf's used. Obtaining the photographs of the transitions in thgagnetization. The regions of oppositely oriented magnetiza-
media is a lengthy process. tions are separated by a zig-zag line centered at the nominal
A more systematic approach was taken by Middleton arghnsition location. The zig-zag line is determined by the
Miles in their model described in [9] and [10]. These authotiseights of the vertices; and the vertex anglé. We choose
assume the vertex angke to be constant for all zig-zagsto be a constant, although a more complex model could treat
and derive a relationship between the pdf of the sawtooghas a random variable. The constant arfylaowever, makes
lengthswy , wo, --- and the media hysteresis loop. There ane model analytically tractable, which allows us to derive
several problems that remain with this model as well. Firstesults in Section Ill. The heights; are chosen to be samples
the question of how to choose the vertex angleemained of independent, identically distributed (iid) random variables.
unanswered. Second, the distinction betweemteredand Thus, the zig-zag line is obtained by truncating isosceles
noncenteredsawtooth lengths has not been made, and batfiengles of heightsh; on the same basis line, which is the
were inconsistently used in the figures and equations of [9] alige perpendicular to the recording direction at the nominal
[10], which leads to possible instability of the model. Thirdiransition location. The truncated triangles are of alternating
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The proof is presented in the Appendix.

Theorem 1 sets the triangle heights p@f(h) of the TZ-

ZT model to the desired magnetization profile of an isolated
transition M (z).

In [9] and [10], a relationship was derived between the
magnetization profile and the statistics of the saw-tooth zig-
zag model (see [10, eq. (5)]). This equation is not correct since
it neglects the residual life paradox of renewal theory [21],
see the Appendix for details. In [9] and [10], the distinction
betweerncenteredandnoncenterecdaw-tooth length$” is not
Fig. 4. Triangle zig-zag transition model. made either, making the model potentially unstable, depending
on the interpretation. If we modify the model in [10] to account

for the residual life paradox ancenteredsaw-tooth lengths,

orientation, one pointing up, the next one down, then up agajfle find that the true relationship linking the magnetization
and so on, until the whole track width has been swept. We reﬁ}r

. ; ofile to the saw-tooth pdf is very similar to (1). From this
to the model as the TZ-ZT model. Notice that the independeqt it is easy to derive the simple relationship between the

random variable in this model is the triangle height and n?rriangle heights and the saw-tooth length#, W = 2H.
the sawtooth length. If we start drawing a triangle at the basis ’

line, we would goh; in one direction and then come back by i ,
the same length; to finish at the nominal transition location.B- Cr0ss-Track Correlation Width and the Vertex Angle
This ensures that the zig-zag line does not drift away from The size of the vertex anglé will determine how much
the nominal transition location. Therefore, unlike independejitter there is in the readback signal, i.e., how much jitter in
increment random processes, the TZ-ZT model is stable. the readback signal is a result of the zig-zag transitions in the
media. If the angl® is small, that means that many zig-zags
IIl. STATISTICAL RELATIONSHIPS occur across the track width. Since the head senses the average

As described earlier, the inputs for the TZ-ZT model (whicﬁf al th_e Zig-zags across the tra_ck, Jitter Is not strong. If the
ngled is large, however, fewer zig-zags will occur across the

are restricted here only to isolated transitions) are the pdf of the . .
. ) : rack width, fewer zig-zags are therefore averaged across the
triangle heightsfir (k) and the vertex anglé. In the following - ; o :
X . : rack, and more jitter is present. This discussion shows that
subsections we show the relationships between these quantities
. . it 15 reasonable to make the vertex anglelependent on a
and the recording process parameters. In particular, we show

: - ) uantity directly tied to the amount of jitter media noise. This
that the pdff; (k) is related to the transition profile and thaguantity is the cross-track correlation width [15].

the vertex angl® is determined by the cross-track correlation o ition b . 0 Th
width of the modeled thin film medium. Let a magnetization transition be writtenzat= 0. The mag-
netization associated with that transition is a two dimensional

. . (2-D) random processn(zx, z), where z is the down-track
A. Triangle Heights pdffy (h) direction, andz is the cr(gss-t)rack direction. Let E denote the

This subsection links the statistics of the zig-zag trianglespectation operator (statistical average operator). Then, the
to the magnetization profile of an isolated transition. Assumrmalized cross-track magnetization autocorrelation function
that we have an infinitely wide track, across which we have;47) at x = 0 is defined as [15]
Zig-zag transition generated by the TZ-ZT model; see Fig. 4
for a picture of the TZ-ZT model. Lef;(h) be the pdf of the +(Z) =
triangle heights, and let/ () be the magnetization transition E[(1m(0, z) — E[m/(0, 2)])(m(0, z + Z) — E[m(0, z + Z)])]
profile of an isolated transition. We assume thé{x) is an M2
odd function, for exampleM(x) = M,.(2/7) atan(x/a) or "
M(z) = M, erf(x/+/20). By M,, we denote the remanent
magnetization. Lef'W denote the track width. Without loss of
generality, we will assume in the remainder of this subsecti
that M, = 1.

Theorem 1: The magnetization profild/(x) of an isolated
transition created by the TZ-ZT model on an infinitely wid
track (W — o) is related to the triangle heights pgf (h)

(2)

whereZ is the cross-track displacement. We are assuming that
Me magnetization process(z, z) is stationary in the cross-
track direction, which implies that the average magnetization
grofile

through M(x) = E[m(xv Z)] (3)
M"(h) for b > 0 is independent of. In addition, since we assumed that the
fu(h) = { o) O E (1) transition is written at: = 0, we haveM(0) = E[m(0, z)] =
0 for h <0 0. Therefore, (2) simplifies to
where M’(0) denotes the first derivative dff(x) atz = 0
(i.e., the slope of the transition profile), add”'(z) is the r(Z) = E[m(0, 2)m(0, z +Z)]_ )

second derivative of the transition profile. Mz
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The cross-track correlation widthis defined as the area under
the cross track correlation function

s= / r(Z) dZ. (5)
Z=—00

We now find an expression for the cross-track correlation
width of the TZ-ZT model. x

Theorem 2: The cross-track correlation widtyz-z1 of the
TZ-ZT model is related to the statistics of the triangle bases
B of the TZ-ZT model through

_ Var(B)
STZ-ZT = W (6) Zz

) . Fig. 5. Portion of a dc demagnetized medium showing magnetization clus-
whereVar(B) stands for the variance of the random trianglers. The magnetization of each cluster is assumed to be parallel to the

baseB, and E(B) stands for the expected value Bf r(_ecording direction with value either M- or'—Mr. The cross-track dimen-
The proof of Theorem 2 is in the Appendix. sions of a few clusters are denoted with,¢ = 1, ---, 4.
Although Theorem 2 is derived in the context of the TZ-ZT
model, its proof holds in a fairly general context. The theorethe microtrack width. Since the transition position (which is
gives an alternative interpretation of the cross-track correlatidenoted by, in Fig. 3) for each microtrack is independent of
width. Rewrite the equation in Theorem 2 in its general forihe transition position in any other microtrack, we have that
Var(C) the probability that the cluster size equalsis

E[C]

Here, s is the cross-track correlation width, antlis a random

variable representing the cross-track size of a magnetizatidaving the probability measure in (8), we calculate the mean
cluster in the dc demagnetized state of the medium. It @uster sizeE[C], the mean square cluster siZ¢C?], and the
assumed that the magnetization of each cluster is eitddy ~ cluster size varianc&ar(C) = E[C?] — E[C]* as

or —M, pointing along the recording direction. For a better

(7 1

understanding of what we mean by magnetization clusters, E[C] = ZWP{C =ip} = ZW% =2 9)
refer to Fig. 5, where a portion of a dc demagnetized medium =1 = 2

is shown in a simplified sketch. Note that clusters are not the oo oo 1

same as grains (there might be more than one grain per cluster)E[C?] = > (in)?P{C = in} = Z(iu)Qg =64" (10)
Equation (7) gives the relationship between the statistics of i=1 i=1

magnetization cluster sizes and the cross-track correlatio¥ar(C) =E[C?] — E[CT? = 61 — (2u)* = 2p4%. (11)

width. It clearly shows that the cross-track correlation width o )

is not the average cluster size, and it should not be confusePstituting (9) and (11) into (7), we get the cross-track

with the zig-zag half-wavelength (e.g., see [5] for the definitioRPrrelation width

of the zig-zag wavelength). Equation (7) says that the cross- Var(C) 242

track correlation width is the ratio between the variance and 5= E[C] - 2% -

the mean of the cluster sizes. Thus, a low noise (low cross-

track correlation width) medium has the cluster size variant- the cross-track correlation width of the microtrack model

Var(C) that is small compared with the cluster megj@]. In ~ €quals the microtrack widt. _ _

other words, it is not the average cluster size but the regularityGiven the result in Theorem 2, we find now an expression

of the cluster sizes (relative to the average size) that determiff@s the vertex anglef such that the cross-track correlation

the level of the media noise. width of the TZ-ZT model equals the cross-track correlation
To verify (7), we next apply it to an alternative mediavidth of the media we are modeling.

noise model [the microtrack media model [15], [16] (Fig. 3)], Corollary 2.1: The TZ-ZT modeled medium and the thin

to show that (7) correctly equates the cross-track correlatiifin medium being modeled have the same cross-track corre-

width to the microtrack width. Of course, for the microtrackation width s if the TZ-ZT vertex anglef is

(12)

model, the cross-track correlation width can be easily cal- s E[H]

culated using the integral definition (5). The objective here, 0 =2a t’m{m} (13)

however, is to demonstrate the validity of (7) in an example

involving a model different from the TZ-ZT model. where H is the random variable representing the TZ-ZT
To use (7), we need to determine the mean and variartoeights.

of the cross-track cluster siz&S for the microtrack model; Proof 2.1: The basesh, are related to the heights;

see Fig. 3 for a picture of the microtrack model. From Fig. 8 b; = 2h; - tan(6/2), see Fig. 4. If we substitutd? =
we see that the cross-track magnetization cluster size can oHly2 tan(f/2) into (6) and solve the resulting equation for
take valuesC = iu, wherei is a positive integer, ang is we get (13). Q.E.D.
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IV. MATCHING THE TZ-ZT MODEL TO PHYSICAL MEDIA 0.012 v .
We demonstrate through an example how the TZ-ZT defin- .~ 2
ing quantities (the triangle heights pdf and the vertex angle) g ool
are obtained from measurements of magnetization profiles § -1
of isolated transitions. We use transition profiles obtained §
by micromagnetic modeling. The same information can be  § g6
obtained from spin-stand measurements by deconvolving the 8
head transfer function from the isolated pulse shapes [19]. € 0.004 - )
Here, we demonstrate the extraction procedure for two types g empirical variance
of thin film media. The first one is an oriented medium with the 0002 4 7T least-squares fit
orientation ratio O.R= 1.3, The second one is an isotropic
medium with O.R.= 1.0. AR — 3

magnetization M(x)/M,
A. Oriented Thin-Film Medium _ o _ _ _ .- .
) ) ) . Fig. 6. Magnetization variance for the oriented medium. Solid line: empirical
Using the micromagnetic model of [14], we simulated aagnetization variancé;(«) versus the magnetizatioh/ () /M... Dotted
thin film magnetic medium with the following characteristicsine: Least-squares parabola fit.
media thicknessd = 250 A; coercivity Hc = 1770 Oe;

remanenceMr = 600 emu/crﬁ; orientation ratio O.R= 1.3. We obtain the empirica| magnetization Variar&ﬁ(x) from
We used a Karlquist write head with the following geometrneasurements as

magnetic spacing (flying height) = 0.1 xm; gap lengthy = 500

0.24 ym; track widthTW = 1.25 m. With this head-media 62,(z) = @ [Mi(z) — M(2)]. (20)
geometry, we wrote 500 independent transitiddgx),i = Pl

1, .-+, 500 and found the average transition profile

The plot of 53, versusM (z) is given in Fig. 6 as the solid

L line. The dotted line in Fig. 6 is obtained by least-squares

M(z) = 555 ZMi(w)- (14) fitting a parabola of the form in (18)—(20). The value for the
=1 cross-track correlation width that provides the fit is

500

We could use this averaged magnetization profiléz) di- _ g
rectly in Theorem 1 to obtain the pgf;(%). Instead, we first s = 146.86 A. (21)
find an analytic fit toM(z) Substituting (21) and (17) into (13) of Corollary 2.1, with
= 460 A, we obtain the vertex angle
M) My (z) = erf< i ) (15)
g =GR s EH] ] e
= an| ——— | ~ 50°. 22
0 2amn{2-Var(H) 50 (22)

The best fit in a least squares sense leads o 460 A.

With the analytic expression in (15), and using Theorem 1, With the triangle heights pdf in (16) and the vertex angle
we get the triangle heights pdf in (22), we generated 50000 independent transitions with the

TZ-ZT model. We next make a statistical comparison between

_ MJ(h) h exp <_h_2> h>0 the transitions created by the micromagnetic model and those
fu(h) =~ M (0) o2 202 - (16)  created with the TZ-zT model. Fig. 7 shows a very good

¢ 0 h<0 agreement between the average transition profiles of the micro-
which is the well-known Rayleigh pdf. The mean and varianggagnetic model and the TZ-ZT model. In Fig. 8, we plotted
of a Rayleigh-distributed random variable are the normalized histograms (empirical pdf's) of the position

jitter for the micromagnetic model and the TZ-ZT model. Here

E[H] = \/EO- and Var(H) = (2 — 1)02_ (17) we see a very good agreement as well. Although the TZ-
2 2 ZT model provides good matches for the average transition

To find the cross-track correlation width we use the profile and jitter noise, we see the limitations of the TZ-ZT
following relationship between the magnetization variand80del in Fig. 9, where we plotted the normalized histograms

oy (z) and the magnetization profil/(z) [23]. of the transition slopels.. The TZ-ZT model underestimate; the
variance of the transition slopes by about 30%. We believe

o2 (z) = > |1- M?(x) (1g) that the reason for this is that TZ-ZT models a perfect-step

M TW M2 | transition across the zig-zag boundary, whereas in real media

o . . ) the magnetization rotates across the wall with some finite wall
The magnetization variance is defined as

width.
2 _ i _ 2
() = M,?E[(m(x) Blm(x)])’] B. Isotropic Thin-Film Medium
= %E[(m(a:) — M(2))?]. (19) We simulated an isotropic medium (O.R. 1.0) with the

M following characteristics (same as for the oriented medium):
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down-track distance (A)

-2000 magnetization M(x)/M,

Fig. 10. Magnetization variance for the isotropic medium. Solid line: em-
Fig. 7. Average transition profiles for the oriented medium. Solid lingRirical magnetization variancés,(«) versus the magnetizatiah/ () /M, .
micromagnetic model. Dotted line: TZ-ZT model. Dotted line: Least-squares parabola fit.

medium to be

W i ) () = et 1) 29
g 0.005} with & = 530 A. The triangle heights pdf is then
£ My { P e <_h_2) hzo
3 oo ) =~30) =\ & w7) B2 @
= 00w Using the least-squares parabola-fitting procedure, we find the
0.001} cross-track correlation width to be
s =165.76 A. (25)

300 -200 100 0 100 200 300

iter value (A) Fig. 10 shows the plots of the empirical magnetization vari-
Fig. 8. Normalized jitter histograms (empirical pdf's) for the orientedance (solid line) and the parabola fit (dotted line) for the

medium. Solid line: micromagnetic model. Dotted line: TZ-ZT model. isotropic medium. The vertex angle obtained with (24) and

(25) is
2000 s - E[H]
6 = 2atan| —————| ~49°. 26
-t “ rm[2-Var(H) (26)
é 1600 With the TZ-ZT defining quantities given in (24) and (26),
2 T we created 50000 independent transitions using the TZ-ZT
g 1200 model and compared their statistics to the micromagnetic
§ T transitions. The average magnetization profile comparison
w800 is shown in Fig. 11. The normalized jitter histograms are
% + compared in Fig. 12. As in the case of the oriented medium,
§ 400 we see that, for the isotropic medium, the TZ-ZT model shows
- | very good agreement for the average transition profile and
2l el jitter noise but underestimates the transition slope variance;
0.001 0.0016 0.0022 0.0028 :
o see Fig. 13.
transition slope value (M/A)

Fig. 9. Normalized transition slope histograms (empirical pdf's) for the
oriented medium. Solid line: micromagnetic model. Dotted line: TZ-ZT model.

V. CONCLUSION

In this paper, we provided analytic tools for extracting the

defining quantities for stochastic zig-zag transition noise mod-

§ = 250 A; H, = 1700 Oe; M, = 600 emu/crd. This els in longitudinal magnetic recording. The particular model
was achieved at the expense of increasing the saturatiea used was the TZ-ZT model. We derived a relationship
magnetization of the isotropic medium by about 16% withinking the pdf of the triangle heights to an average transition
respect to the oriented medium. profile. We determined the zig-zag angle by matching the
Following the same procedure as for the isotropic mediuroross-track correlation width of the TZ-ZT model to the cross-
we found the average magnetization profile for the isotropirack correlation width of the real media. We also provide an
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1 cross-track @

.~ - _ %é\s
§ _bdown track %

s micromagnetic | [/ -M h
£ o R o et by 2 +,
£ o - TZ-ZT P 0/2 ! oy
g’ : H : H / ¥ :

g preee T

g) H T 212 & :

8 ez} | 2 !

2 . L

& .

L ; amp(hp x) =2 my (b, x)
2000  -1000 0 1000 2000 ;
down-track distance (A)

Fig. 11. Average transition profiles for the isotropic medium. Solid line: ' 'hI
micromagnetic model. Dotted line: TZ-ZT model. !
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Fig. 14. Top: portion of a track involving only two triangles. Middle:
magnetization profile in the stripe associated with the positive oriented
triangle. Bottom: magnetization profile in the stripe associated with the
negative oriented triangle.

jitter density (1/A)
[=} o
g 8

0.001}+

=300 -200 -160 0 160 200 300
ittor value (A) With the analytic tools that we have presented, the stochastic

Fig. 12. Normalized jitter histograms (empirical pdf's) for the isotropizig-zag transition models (particularly the TZ-ZT model)

medium. Solid line: micromagnetic model. Dotted line: TZ-ZT model. have been made to be much easier to use. Although not
explicitly discussed in this paper, extensions of the model to
incorporate nonlinear effects such as nonlinear transition shift
and percolation effects are also relatively easy to incorporate;
2000} PR v 4] ] see [19] and [24] for details. The stochastic zig-zag transi-
tion models are a much faster alternative to micromagnetic
modeling (for example, TZ-ZT modeling is approximately

four orders of magnitude faster than micromagnetic modeling).
This makes them very attractive in statistical studies like error

2500 v -

—— micromagnetic

transition slope density (A/M,)
8
(=)

1000F ] rate predictions, where thousands of statistically independent
transitions need to be created in a short time period.
500}
P d . hatS
0.001 0.0015 0.002 APPENDIX A
transition slope value (My/A)

PROOFS OFRELATIONSHIPS BETWEEN MAGNETIZATION

Fig. 13. Normalized transition slope histograms (empirical pdfs) for the CHARACTERISTICS AND ZIG-ZAG TRANSITION STATISTICS

isotropic medium. Solid line: micromagnetic model. Dotted line: TZ-ZT . . .
modeﬁ 9 Proof of Theorem 1:Consider two adjacent triangles of

opposite orientation, as in Fig. 14. The quantifieandh; are

o ) . _the base and height of the positively oriented triangle, whereas
linking this quantity to the statistics (mean and variancghe vertex anglef is constant,h; = 2h; tan(6#/2), for i

of the magnetization cluster sizes. Through two examples 1, 2. For h; drawn from a pdffx(h), it follows from

(one for oriented media and one for isotropic media), wis relationship that the pdf of the samplesis fz(b) =
demonstrated how these results can be used in statistical mgdjgx) f;(b/ K ), where K = 2 tan(6/2).

noise modeling. The magnetization profiles (normalizedité,) in the stripes
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defined byb; and b, are

mp(h1,z) =mp(b1, z)
-1 z<0

2 h
— h—1<x—?1> 0<z<h (27)
1 x> hy

My (he, ) =mp(be, )

~1 x< —hy i e >
l z z+Z ] z

ho 2
1

A

z>0. Fig. 15. Realization of an alternating renewal process(z).
The overall magnetization profile for an infinitely wide track
is given by the average . )
Using (33), we rewrite (32) as

Ma::l/oofbmb,a:db x < p.
(z) =3 A 3(b1)my(by, z) dby M(a:):l/ h- fu(h) dh 1/ h- fu(h)
L[ 2 Jo E[H] 2/, E[H]
+—/ fa(bo)mn(be, z) db (29) oo,
7 ), Jolba)mnlba, ) dbz 2yt dh+1/ heJuth) gy (3a

. . h 2 2 Jo E[H]
where f3(b;) is the pdf of encountering a bade of a = fr(h) 29 £ (h)
positively oriented triangle and likewise fgi;(b2). The up- = / ﬁ dh +a:/ E{,{H dh.  (35)
front factor of% in (29) follows because the positively and 0 [H] z 4]
negatively oriented triangles are equiprobable. The first derivative of (35) and its value at zero (the magne-

Note that fs(b) # fp(b) since fp(b) is the pdf of the tization profile slope) are

triangle bases, ands(b) is the pdf of encountering a base oo B
of length b by randomly choosing a point on the cross-track M'(z) = / fu(h) dh and M’'(0) = L (36)
basis line. If we randomly pick a point on the basis line, we are » E[H] E[H]

more likely to fall on a base of a larger triangle than a smallegj, e 12 fu(h)
hence, the two pdf's are different. Their exact relationship iﬁerivat?ve

Fa(b) = b EJE];(]ZJ)

dh = 1. Similarly, we obtain the second

30 " _ fH(x)

(30) M"() = — e 37)
where E[B] = [5° b- fp(b) db is the mean triangle base.gypstituting (36) into (37) and rearranging the equation, we get
Equation (30) is one of the main results describing the paradgy ;) = —[A7” () /M’(0)], for = 0. Since triangle heights

of residual life in renewal theory; see, e.g., [21] and [22]. Igre nonnegative lengths, the pdf;(h) has to be zero for
earlier work [9], [10], this paradox was not recognized as Hegative argumenta. Therefore, the last relationship leads
was erroneously assumed thét(b) = fg(b). directly to (1). Q.E.D.

We manipulate (29) to derive (1). Because the triangle  pyoof of Theorem 2:Assume, without loss of generality,
heights pdffy (h) is the same for both positively and negathat A7, = 1. Let mo(z) = m(0,z). The functionme(z)
tively oriented triangles) (z) is an odd function. Therefore, js 4 random renewal process [21] that takes values of either
it suffices to consider only the cage> 0. Since the triangle _1 or 1, whose realization is depicted in Fig. 15. The lengths
bases are proportional to the triangle heights with the sampgtween points where:o(z) changes sign are the “interarrival
constant of proportionality for all triangles, we hay@ - times” (interswitching intervals). They are equal to triangle
feI/E[B]} db = {[h - fu(R)]/E[H]} dh. Using this pasesinthe TZ-ZT model because the basisdige0 is where

relationship and substituting (30) into (29), we obtain the zig-zag triangles are placed. If a random triangle height
1 [ hy- fulh) is H, then the corresponding random triangle base3is=
M(z) = 5/ me(hl,x) dhy 2H tan(6/2). Since in the TZ-ZT model the triangle heights
;J By - frr(ho) are independent random variables, the interswitching intervals
+ —/ ————=—"m,(ha,x) dhy (31) (the triangle basesl are also independent. Furthermore, the
2000 E[H] interswitching intervalsB are identically distributed with a
_1 / heJulh) e ) 4 ma(hoa)] dh. (32) POF () = (1/K)fu(b/K), where K = 2 tan(6/2), and
2Jo E[H] fu(h) is the pdf of the triangle heights.
Notice that forz = 0 _ Accor_ding to (5), the cross-track correlation Widili\z_ZT _
is the integral of the cross-track autocorrelation function
mp(h,z) =1 and rrz-zr(Z), which is the autocorrelation of the cross-track
2 h magnetizationng(z), i.e., rrz-zr(Z) = E[mo(2)mo(z+ Z)).
mp(h,a:) = { E <.’IZ - 5) for h e (33) Define RTZ-ZT(f) = f;o:_oo 7’TZ-ZT(Z) G_jQﬂ—fZ dZ as the
1 for h<z. Fourier transform ofrrz-z1(Z). From the properties of the
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Fourier transform, we haverz-zr = Rrz-zr(0). We will ExpandFg(f) in a Taylor series
use this to prove Theorem 2.

The cross track correlation function is equal to (we are Fu(f) :/ fa(b)e 7210 db
assumingM,. = 1) b=—co
= o~ (—j2m fb)*
roz-zr(Z) = Elmo(2)mo(z + Z)] = 7. (Z) — 71,(Z). (38) = Z - fa(b) db
b==c0 \k=0 :
Here,7.(Z) is the probability that aevennumber of switches < (Zjor f)t
occurs between the pointsand z + Z for any z. Similarly, = Jil E(B’“) 47
7o(Z) is the probability of anodd number of switches oc- k=0 K
curring in the same interval. While a series expansion % h
rrz-zr(Z) = w(Z) — wo(Z) is given in [11], we take a en, we have
different approach here. Define the causal Laplace transform 1 — |Fs(f)[?
of g(t) asG(s) = [72,g(t)e*' dt. The alternating renewal (2nf)?
processes theory [21] gives the causal Laplace transforms 2 X (_iox A (27 FIF
I1.(s) and I1,(s) of m.(Z) andm,(Z) 1—22( = Iy k,f) E(B!) E(B¥)
{=0k=0 : :
oo _ 1 1 1— Fg(s) = 52
I(s) = (Z)e?2dZ == - : J2rf
() /ZZOW'( Je s s?E(B) 1+ Fg(s) oo ( )
(39) =CL+ ) Cu(2mf)*™ Y, (48)
eo 1 1-F n=
II,(s) = / To(Z)e™*? dZ = — . B(S). (40) ’
z=0 s?E(B) 1+ Fp(s) It is easy to verify that the first coefficient &, = E(B?) —

Here, Fiz(s) is the causal Laplace transform of the ggf(b). E(B)* = Var(B). Provided that the moments(5") exist

The causal Laplace transform of ;- 1(Z) is then, according for all n = 1 (which is satisfied by most pdf's, e.g., Gaussian,

to (38), Rayleigh, exponential, etc., with rare exceptions, e.g., the
Cauchy pdf), we then have one of the limits in (46)

1 2 1—Fg(s)
Rry- = He - HO =2~ ’ : -
12-21(8) (5) (5) s s?E(B) 14+ Fp (izll) )lflgb %?)({)P == V) “

Sincertz-zr(Z) is an even function (it is an autocorrelatiorPY straightforward substitution of = 0, we get the other

function), we have a relationship linking the Fourier transformit in (46)
Rrz-zr(f) to the causal Laplace transforRirz-z1(s) . 1 1 1 1 (50)
o 7 = 7= 21
Rrz-zr(f) = 5_1>i1£lﬂf[RTZ'ZT(3) + Rrz-zr(—s)] (42) =0 1+ Fp(f)l 1+ F5(0)] [1+1] 4
7 Notice thatFp(0) = [22__ fp(b) db =1 since fz(b) is a
= W pdf. Substituting (49) and (50) into (46), we get (6). Q.E.D.
1= Fp(j2nf) | 1-Fp(=j2nf) REFERENCES
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