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Statistical Study of Zig-Zag Transition Boundaries
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Abstract—In this paper, we study the statistics of zig-zag tran-
sition walls in digital magnetic recording and their relationship to
transition noise defining quantities. We provide analytic results
that link the statistics of zig-zag transitions to media/recording
parameters. The basis of our study is the triangle zig-zag transi-
tion (TZ-ZT) model due to its well-defined triangle zig-zag shape
and its cross-track stability. The results we derive here, however,
are of a general nature, and given the right interpretation, apply
to other zig-zag models as well, as we show in the paper. We also
provide an interpretation of the cross-track correlation width,
linking this quantity to the statistics of magnetized clusters in
thin-film magnetic media. The paper concludes by showing how
these results can be used in media noise modeling.

I. INTRODUCTION

I T HAS LONG been observed that most of the noise in thin
film magnetic recording media occurs in the transitional

regions between two oppositely magnetized magnetization
patterns in the media [1], [2]. The source of this noise lies
in the irregularity of the transition boundary. The zig-zag
boundary itself is a realization of a random process, which
is why the observed media noise is indeed noise, i.e., random.

In the past, there have been many studies of zig-zag wall
shapes. Several zig-zag models have been suggested. These
models cluster in two groups: deterministic and stochastic
models. Examples of deterministic models are described in
[3]–[6]. While deterministic models are useful in understand-
ing the physical mechanisms involved in the recording process,
they cannot explain the random character of noise. The sto-
chastic models [7]–[11] model the zig-zag transition line as
a random process, thus accounting for the random character
of media noise.

Widely accepted models for describing the physics of thin-
film magnetic media are the micromagnetic models [12]–[14].
While micromagnetic models model the fine microphysics of
each particle (grain) of the recording media, stochastic zig-zag
models rely on extracting only a few random parameters from
macroscopic measurements and extrinsic media properties to
accurately model the transitions and transition noise. The
tradeoff between the micromagnetic models and stochastic zig-
zag models is between accuracy and speed. The stochastic zig-
zag models are much faster, whereas micromagnetic models
provide greater detail. In detection studies, fast models, like
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the stochastic zig-zag models we describe in this paper, are
necessary in order to generate the large number of transitions
required to provide statistical significance to the error rate
computations.

In this paper, we present a statistical study of zig-zag
transition walls in longitudinal magnetic recording. Rather
thananalyzingthe statistics of the zig-zag walls, we are more
concerned with thesynthesis. Synthesis involves choosing
the parameters in the random zig-zag process such that the
process is stable and such that these parameters can be related
to macroscopic (measurable) media/recording properties. The
triangle zig-zag transition (TZ-ZT) model that we propose is
stable. We show how to relate its parameters to the media phys-
ical characteristics. Although the derivation of our theoretical
results is tied to the TZ-ZT model, the results are general
and can be applied to other similar models. In particular, we
mention how to modify the model in [9], [10] to exhibit cross
track stability. We also derive an alternative expression for the
cross-track correlation width and show that it applies not only
to the TZ-ZT model but to such square-wave type models as
the microtrack model in [15] and [16].

This paper is focused on the presentation of theoretical
results for isolated transitions. Coupling these results for
isolated transitions with models for bit shift, transition position
variance increase [15], [17], and percolation thresholds [16],
[18], we can easily extend our TZ-ZT model to include the
nonlinear effects of interacting transitions [19].

The paper is organized as follows. Section II reviews briefly
the TZ-ZT model as well as other proposed stochastic zig-
zag transition models. Section III derives novel analytic re-
sults linking the statistics of zig-zag patterns to measurable
media/recording quantities. While Section III is kept short,
the proofs, discussions, and examples supporting the results
derived in Section III are in the Appendix. Section IV gives
an example of how the results derived in Section III can be
used to synthesize zig-zag transitions. Section V concludes the
paper.

II. TRIANGLE ZIG-ZAG TRANSITION MODELING

The use ofstochasticzig-zag wall models as media noise
models in magnetic recording has first been suggested by
Arnoldussen and Tong [7]. Based on Lorentz-microscopy
pictures of zig-zag transitions in the media, they extracted the
probability density functions (pdf’s) of the sawtooth lengths
(which are denoted by in Fig. 1) and of the zig-
zag vertex angles (which are denoted by in Fig. 1).
While obtaining the pdf’s of the sawtooth lengths and of
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Fig. 1. Stochastic zig-zag transition model. Labeled are the sawtooth lengths
and vertex angles.

Fig. 2. Stochastic zig-zag transition model. Labeled are zero-to-peak dis-
tances and vertex angles.

the vertex angles suffices for theanalysisof the zig-zag
patterns, it does not provide a good tool for theirsynthesis.
The main reason is the instability of the model in [7]. If the
sawtooth lengths are used as independent random
variables in the synthesis process, the resulting stochastic
zig-zag process is an independent increment random process
[11], [20]. The variance of an independent increment random
process grows with time (in this case with the cross-track
distance). This makes the synthesized zig-zag process unstable
with a drift in the down-track direction due to the growth of
the variance with the cross-track distance. This problem has
been recognized in a follow-up paper by Tang and Osse [8],
who suggest deconvolving the pdf of the sawtooth lengths

to obtain the pdf of the zero-to-peak lengths (denoted
by in Fig. 2). Using the zero-to-peak distances as
independent random variables stabilizes the model. Although
stable, the model in [8] was impractical to use since it relied
on Lorentz microscopy pictures for the determination of the
pdf’s used. Obtaining the photographs of the transitions in the
media is a lengthy process.

A more systematic approach was taken by Middleton and
Miles in their model described in [9] and [10]. These authors
assume the vertex angle to be constant for all zig-zags
and derive a relationship between the pdf of the sawtooth
lengths and the media hysteresis loop. There are
several problems that remain with this model as well. First,
the question of how to choose the vertex angleremained
unanswered. Second, the distinction betweencenteredand
noncenteredsawtooth lengths has not been made, and both
were inconsistently used in the figures and equations of [9] and
[10], which leads to possible instability of the model. Third,

Fig. 3. Microtrack model. The microtrack width is denoted with�.

and most important, the paradox of residual life in renewal
theory [21], [22] was not recognized, which misled the authors
into deriving an incorrect relationship between the sawtooth
lengths pdf and the magnetization profile.

Perhaps these hardships in dealing analytically with sto-
chastic zig-zag models led to the popularity of such simpler
stochastic square wave type models as the microtrack model
[15], [16]. In the microtrack model (see Fig. 3), the track is
divided into microtracks. The magnetization reversal in each
microtrack is a perfect step function, where the exact position
of the reversal is governed by the pdf of the square wave
heights (which is denoted by in Fig. 3). It is fairly
easy to show that the pdf of the heights in the microtrack
model in Fig. 3 equals the normalized first derivative of the
magnetization profile, whereas the microtrack width equals the
cross-track correlation width of the model. At the same time,
this answers the question of how to set the pdf of the’s and
the microtrack width, which makes the model easy to use.

Our goal in this paper is to derive relationships that will
make the stochasticzig-zagtransition models just as easy to
use as the microtrack model. We derive formulas that link the
statistics of a zig-zag transition to the magnetization profile
and to the cross-track correlation width. However, before we
do that, we need a stochastic zig-zag model that is both stable
in the cross-track direction (nonindependent increment random
process) and is analytically tractable. This model is the TZ-ZT
model [11], [17], which we describe briefly next.

A. Triangle Zig-Zag Transition Model

The TZ-ZT model is depicted in Fig. 4. The magnetization
of the media is allowed to be oriented only in the down-
track direction, with a value where is the remanent
magnetization. The regions of oppositely oriented magnetiza-
tions are separated by a zig-zag line centered at the nominal
transition location. The zig-zag line is determined by the
heights of the vertices and the vertex angle We choose
to be a constant, although a more complex model could treat

as a random variable. The constant anglehowever, makes
the model analytically tractable, which allows us to derive
results in Section III. The heights are chosen to be samples
of independent, identically distributed (iid) random variables.
Thus, the zig-zag line is obtained by truncating isosceles
triangles of heights on the same basis line, which is the
line perpendicular to the recording direction at the nominal
transition location. The truncated triangles are of alternating
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Fig. 4. Triangle zig-zag transition model.

orientation, one pointing up, the next one down, then up again,
and so on, until the whole track width has been swept. We refer
to the model as the TZ-ZT model. Notice that the independent
random variable in this model is the triangle height and not
the sawtooth length. If we start drawing a triangle at the basis
line, we would go in one direction and then come back by
the same length to finish at the nominal transition location.
This ensures that the zig-zag line does not drift away from
the nominal transition location. Therefore, unlike independent
increment random processes, the TZ-ZT model is stable.

III. STATISTICAL RELATIONSHIPS

As described earlier, the inputs for the TZ-ZT model (which
are restricted here only to isolated transitions) are the pdf of the
triangle heights and the vertex angle In the following
subsections we show the relationships between these quantities
and the recording process parameters. In particular, we show
that the pdf is related to the transition profile and that
the vertex angle is determined by the cross-track correlation
width of the modeled thin film medium.

A. Triangle Heights pdf

This subsection links the statistics of the zig-zag triangles
to the magnetization profile of an isolated transition. Assume
that we have an infinitely wide track, across which we have a
zig-zag transition generated by the TZ-ZT model; see Fig. 4
for a picture of the TZ-ZT model. Let be the pdf of the
triangle heights, and let be the magnetization transition
profile of an isolated transition. We assume that is an
odd function, for example, or

By , we denote the remanent
magnetization. Let denote the track width. Without loss of
generality, we will assume in the remainder of this subsection
that 1.

Theorem 1: The magnetization profile of an isolated
transition created by the TZ-ZT model on an infinitely wide
track is related to the triangle heights pdf
through

for

for
(1)

where denotes the first derivative of at 0
(i.e., the slope of the transition profile), and is the
second derivative of the transition profile.

The proof is presented in the Appendix.
Theorem 1 sets the triangle heights pdf of the TZ-

ZT model to the desired magnetization profile of an isolated
transition

In [9] and [10], a relationship was derived between the
magnetization profile and the statistics of the saw-tooth zig-
zag model (see [10, eq. (5)]). This equation is not correct since
it neglects the residual life paradox of renewal theory [21],
see the Appendix for details. In [9] and [10], the distinction
betweencenteredandnoncenteredsaw-tooth lengths is not
made either, making the model potentially unstable, depending
on the interpretation. If we modify the model in [10] to account
for the residual life paradox andcenteredsaw-tooth lengths,
we find that the true relationship linking the magnetization
profile to the saw-tooth pdf is very similar to (1). From this
pdf, it is easy to derive the simple relationship between the
triangle heights and the saw-tooth lengths

B. Cross-Track Correlation Width and the Vertex Angle

The size of the vertex angle will determine how much
jitter there is in the readback signal, i.e., how much jitter in
the readback signal is a result of the zig-zag transitions in the
media. If the angle is small, that means that many zig-zags
occur across the track width. Since the head senses the average
of all the zig-zags across the track, jitter is not strong. If the
angle is large, however, fewer zig-zags will occur across the
track width, fewer zig-zags are therefore averaged across the
track, and more jitter is present. This discussion shows that
it is reasonable to make the vertex angledependent on a
quantity directly tied to the amount of jitter media noise. This
quantity is the cross-track correlation width [15].

Let a magnetization transition be written at 0. The mag-
netization associated with that transition is a two dimensional
(2-D) random process where is the down-track
direction, and is the cross-track direction. Let E denote the
expectation operator (statistical average operator). Then, the
normalized cross-track magnetization autocorrelation function

at 0 is defined as [15]

(2)

where is the cross-track displacement. We are assuming that
the magnetization process is stationary in the cross-
track direction, which implies that the average magnetization
profile

(3)

is independent of In addition, since we assumed that the
transition is written at 0, we have

Therefore, (2) simplifies to

(4)
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The cross-track correlation widthis defined as the area under
the cross track correlation function

(5)

We now find an expression for the cross-track correlation
width of the TZ-ZT model.

Theorem 2: The cross-track correlation width - of the
TZ-ZT model is related to the statistics of the triangle bases

of the TZ-ZT model through

- (6)

where stands for the variance of the random triangle
base , and stands for the expected value of.

The proof of Theorem 2 is in the Appendix.
Although Theorem 2 is derived in the context of the TZ-ZT

model, its proof holds in a fairly general context. The theorem
gives an alternative interpretation of the cross-track correlation
width. Rewrite the equation in Theorem 2 in its general form

(7)

Here, is the cross-track correlation width, andis a random
variable representing the cross-track size of a magnetization
cluster in the dc demagnetized state of the medium. It is
assumed that the magnetization of each cluster is either
or pointing along the recording direction. For a better
understanding of what we mean by magnetization clusters,
refer to Fig. 5, where a portion of a dc demagnetized medium
is shown in a simplified sketch. Note that clusters are not the
same as grains (there might be more than one grain per cluster).
Equation (7) gives the relationship between the statistics of
magnetization cluster sizes and the cross-track correlation
width. It clearly shows that the cross-track correlation width
is not the average cluster size, and it should not be confused
with the zig-zag half-wavelength (e.g., see [5] for the definition
of the zig-zag wavelength). Equation (7) says that the cross-
track correlation width is the ratio between the variance and
the mean of the cluster sizes. Thus, a low noise (low cross-
track correlation width) medium has the cluster size variance

that is small compared with the cluster mean In
other words, it is not the average cluster size but the regularity
of the cluster sizes (relative to the average size) that determines
the level of the media noise.

To verify (7), we next apply it to an alternative media
noise model [the microtrack media model [15], [16] (Fig. 3)],
to show that (7) correctly equates the cross-track correlation
width to the microtrack width. Of course, for the microtrack
model, the cross-track correlation width can be easily cal-
culated using the integral definition (5). The objective here,
however, is to demonstrate the validity of (7) in an example
involving a model different from the TZ-ZT model.

To use (7), we need to determine the mean and variance
of the cross-track cluster sizes for the microtrack model;
see Fig. 3 for a picture of the microtrack model. From Fig. 3
we see that the cross-track magnetization cluster size can only
take values where is a positive integer, and is

Fig. 5. Portion of a dc demagnetized medium showing magnetization clus-
ters. The magnetization of each cluster is assumed to be parallel to the
recording direction with value either+Mr or �Mr. The cross-track dimen-
sions of a few clusters are denoted withCi; i = 1; � � � ; 4.

the microtrack width. Since the transition position (which is
denoted by in Fig. 3) for each microtrack is independent of
the transition position in any other microtrack, we have that
the probability that the cluster size equals is

(8)

Having the probability measure in (8), we calculate the mean
cluster size the mean square cluster size and the
cluster size variance as

(9)

(10)

(11)

Substituting (9) and (11) into (7), we get the cross-track
correlation width

(12)

i.e., the cross-track correlation width of the microtrack model
equals the microtrack width

Given the result in Theorem 2, we find now an expression
for the vertex angle such that the cross-track correlation
width of the TZ-ZT model equals the cross-track correlation
width of the media we are modeling.

Corollary 2.1: The TZ-ZT modeled medium and the thin
film medium being modeled have the same cross-track corre-
lation width if the TZ-ZT vertex angle is

(13)

where is the random variable representing the TZ-ZT
heights.

Proof 2.1: The bases are related to the heights
as see Fig. 4. If we substitute

into (6) and solve the resulting equation for
we get (13). Q.E.D.
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IV. M ATCHING THE TZ-ZT MODEL TO PHYSICAL MEDIA

We demonstrate through an example how the TZ-ZT defin-
ing quantities (the triangle heights pdf and the vertex angle)
are obtained from measurements of magnetization profiles
of isolated transitions. We use transition profiles obtained
by micromagnetic modeling. The same information can be
obtained from spin-stand measurements by deconvolving the
head transfer function from the isolated pulse shapes [19].

Here, we demonstrate the extraction procedure for two types
of thin film media. The first one is an oriented medium with the
orientation ratio O.R. 1.3, The second one is an isotropic
medium with O.R. 1.0.

A. Oriented Thin-Film Medium

Using the micromagnetic model of [14], we simulated a
thin film magnetic medium with the following characteristics:
media thickness 250 Å; coercivity 1770 Oe;
remanence 600 emu/cm3; orientation ratio O.R. 1.3.
We used a Karlquist write head with the following geometry:
magnetic spacing (flying height) 0.1 m; gap length
0.24 m; track width 1.25 m. With this head-media
geometry, we wrote 500 independent transitions

and found the average transition profile

(14)

We could use this averaged magnetization profile di-
rectly in Theorem 1 to obtain the pdf Instead, we first
find an analytic fit to

(15)

The best fit in a least squares sense leads to 460 Å.
With the analytic expression in (15), and using Theorem 1,

we get the triangle heights pdf

(16)

which is the well-known Rayleigh pdf. The mean and variance
of a Rayleigh-distributed random variable are

(17)

To find the cross-track correlation width we use the
following relationship between the magnetization variance

and the magnetization profile [23].

(18)

The magnetization variance is defined as

(19)

Fig. 6. Magnetization variance for the oriented medium. Solid line: empirical
magnetization variancê�M (x) versus the magnetizationM(x)=Mr. Dotted
line: Least-squares parabola fit.

We obtain the empirical magnetization variance from
measurements as

(20)

The plot of versus is given in Fig. 6 as the solid
line. The dotted line in Fig. 6 is obtained by least-squares
fitting a parabola of the form in (18)–(20). The value for the
cross-track correlation width that provides the fit is

Å (21)

Substituting (21) and (17) into (13) of Corollary 2.1, with
460 Å, we obtain the vertex angle

(22)

With the triangle heights pdf in (16) and the vertex angle
in (22), we generated 50 000 independent transitions with the
TZ-ZT model. We next make a statistical comparison between
the transitions created by the micromagnetic model and those
created with the TZ-ZT model. Fig. 7 shows a very good
agreement between the average transition profiles of the micro-
magnetic model and the TZ-ZT model. In Fig. 8, we plotted
the normalized histograms (empirical pdf’s) of the position
jitter for the micromagnetic model and the TZ-ZT model. Here
we see a very good agreement as well. Although the TZ-
ZT model provides good matches for the average transition
profile and jitter noise, we see the limitations of the TZ-ZT
model in Fig. 9, where we plotted the normalized histograms
of the transition slopes. The TZ-ZT model underestimates the
variance of the transition slopes by about 30%. We believe
that the reason for this is that TZ-ZT models a perfect-step
transition across the zig-zag boundary, whereas in real media
the magnetization rotates across the wall with some finite wall
width.

B. Isotropic Thin-Film Medium

We simulated an isotropic medium (O.R. 1.0) with the
following characteristics (same as for the oriented medium):
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Fig. 7. Average transition profiles for the oriented medium. Solid line:
micromagnetic model. Dotted line: TZ-ZT model.

Fig. 8. Normalized jitter histograms (empirical pdf’s) for the oriented
medium. Solid line: micromagnetic model. Dotted line: TZ-ZT model.

Fig. 9. Normalized transition slope histograms (empirical pdf’s) for the
oriented medium. Solid line: micromagnetic model. Dotted line: TZ-ZT model.

250 Å; 1700 Oe; 600 emu/cm3. This
was achieved at the expense of increasing the saturation
magnetization of the isotropic medium by about 16% with
respect to the oriented medium.

Following the same procedure as for the isotropic medium,
we found the average magnetization profile for the isotropic

Fig. 10. Magnetization variance for the isotropic medium. Solid line: em-
pirical magnetization variancê�M (x) versus the magnetizationM(x)=Mr.
Dotted line: Least-squares parabola fit.

medium to be

(23)

with 530 Å. The triangle heights pdf is then

(24)

Using the least-squares parabola-fitting procedure, we find the
cross-track correlation width to be

Å (25)

Fig. 10 shows the plots of the empirical magnetization vari-
ance (solid line) and the parabola fit (dotted line) for the
isotropic medium. The vertex angle obtained with (24) and
(25) is

(26)

With the TZ-ZT defining quantities given in (24) and (26),
we created 50 000 independent transitions using the TZ-ZT
model and compared their statistics to the micromagnetic
transitions. The average magnetization profile comparison
is shown in Fig. 11. The normalized jitter histograms are
compared in Fig. 12. As in the case of the oriented medium,
we see that, for the isotropic medium, the TZ-ZT model shows
very good agreement for the average transition profile and
jitter noise but underestimates the transition slope variance;
see Fig. 13.

V. CONCLUSION

In this paper, we provided analytic tools for extracting the
defining quantities for stochastic zig-zag transition noise mod-
els in longitudinal magnetic recording. The particular model
we used was the TZ-ZT model. We derived a relationship
linking the pdf of the triangle heights to an average transition
profile. We determined the zig-zag angle by matching the
cross-track correlation width of the TZ-ZT model to the cross-
track correlation width of the real media. We also provide an
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Fig. 11. Average transition profiles for the isotropic medium. Solid line:
micromagnetic model. Dotted line: TZ-ZT model.

Fig. 12. Normalized jitter histograms (empirical pdf’s) for the isotropic
medium. Solid line: micromagnetic model. Dotted line: TZ-ZT model.

Fig. 13. Normalized transition slope histograms (empirical pdf’s) for the
isotropic medium. Solid line: micromagnetic model. Dotted line: TZ-ZT
model.

alternative interpretation of the cross-track correlation width,
linking this quantity to the statistics (mean and variance)
of the magnetization cluster sizes. Through two examples
(one for oriented media and one for isotropic media), we
demonstrated how these results can be used in statistical media
noise modeling.

Fig. 14. Top: portion of a track involving only two triangles. Middle:
magnetization profile in the stripe associated with the positive oriented
triangle. Bottom: magnetization profile in the stripe associated with the
negative oriented triangle.

With the analytic tools that we have presented, the stochastic
zig-zag transition models (particularly the TZ-ZT model)
have been made to be much easier to use. Although not
explicitly discussed in this paper, extensions of the model to
incorporate nonlinear effects such as nonlinear transition shift
and percolation effects are also relatively easy to incorporate;
see [19] and [24] for details. The stochastic zig-zag transi-
tion models are a much faster alternative to micromagnetic
modeling (for example, TZ-ZT modeling is approximately
four orders of magnitude faster than micromagnetic modeling).
This makes them very attractive in statistical studies like error
rate predictions, where thousands of statistically independent
transitions need to be created in a short time period.

APPENDIX A
PROOFS OFRELATIONSHIPS BETWEEN MAGNETIZATION

CHARACTERISTICS AND ZIG-ZAG TRANSITION STATISTICS

Proof of Theorem 1:Consider two adjacent triangles of
opposite orientation, as in Fig. 14. The quantitiesand are
the base and height of the positively oriented triangle, whereas

and correspond to the negatively oriented triangle. Since
the vertex angle is constant, for

1, 2. For drawn from a pdf it follows from
this relationship that the pdf of the samples is

where
The magnetization profiles (normalized to in the stripes
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defined by and are

(27)

(28)

The overall magnetization profile for an infinitely wide track
is given by the average

(29)

where is the pdf of encountering a base of a
positively oriented triangle and likewise for The up-
front factor of in (29) follows because the positively and
negatively oriented triangles are equiprobable.

Note that since is the pdf of the
triangle bases, and is the pdf of encountering a base
of length by randomly choosing a point on the cross-track
basis line. If we randomly pick a point on the basis line, we are
more likely to fall on a base of a larger triangle than a smaller;
hence, the two pdf’s are different. Their exact relationship is

(30)

where is the mean triangle base.
Equation (30) is one of the main results describing the paradox
of residual life in renewal theory; see, e.g., [21] and [22]. In
earlier work [9], [10], this paradox was not recognized as it
was erroneously assumed that

We manipulate (29) to derive (1). Because the triangle
heights pdf is the same for both positively and nega-
tively oriented triangles, is an odd function. Therefore,
it suffices to consider only the case≥ 0. Since the triangle
bases are proportional to the triangle heights with the same
constant of proportionality for all triangles, we have

Using this
relationship and substituting (30) into (29), we obtain

(31)

(32)

Notice that for ≥ 0

for

for
(33)

Fig. 15. Realization of an alternating renewal processm0(z):

Using (33), we rewrite (32) as

(34)

(35)

The first derivative of (35) and its value at zero (the magne-
tization profile slope) are

and (36)

since 1. Similarly, we obtain the second
derivative

(37)

Substituting (36) into (37) and rearranging the equation, we get
, for ≥ 0. Since triangle heights

are nonnegative lengths, the pdf has to be zero for
negative arguments Therefore, the last relationship leads
directly to (1). Q.E.D.

Proof of Theorem 2:Assume, without loss of generality,
that Let The function
is a random renewal process [21] that takes values of either

1 or 1, whose realization is depicted in Fig. 15. The lengths
between points where changes sign are the “interarrival
times” (interswitching intervals). They are equal to triangle
bases in the TZ-ZT model because the basis line0 is where
the zig-zag triangles are placed. If a random triangle height
is then the corresponding random triangle base is

Since in the TZ-ZT model the triangle heights
are independent random variables, the interswitching intervals
(the triangle bases) are also independent. Furthermore, the
interswitching intervals are identically distributed with a
pdf where and

is the pdf of the triangle heights.
According to (5), the cross-track correlation width -

is the integral of the cross-track autocorrelation function
- which is the autocorrelation of the cross-track

magnetization i.e., -
Define - - as the
Fourier transform of - From the properties of the
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Fourier transform, we have - - We will
use this to prove Theorem 2.

The cross track correlation function is equal to (we are
assuming 1)

- (38)

Here, is the probability that anevennumber of switches
occurs between the pointsand for any Similarly,

is the probability of anodd number of switches oc-
curring in the same interval. While a series expansion of

- is given in [11], we take a
different approach here. Define the causal Laplace transform
of as The alternating renewal
processes theory [21] gives the causal Laplace transforms

and of and

d

(39)

d (40)

Here, is the causal Laplace transform of the pdf
The causal Laplace transform of - is then, according
to (38),

-

(41)

Since - is an even function (it is an autocorrelation
function), we have a relationship linking the Fourier transform

- to the causal Laplace transform -

- - - (42)

(43)

Here, is the causal Laplace transform of
evaluated at Since 0 for < 0, we have that
the Fourier transform of equals
Furthermore, because is a pdf and thus a real function,
we have where the superscript denotes
complex conjugation. Thus, (43) takes its final form

- (44)

We now prove (6) by taking the limit of (44) as 0

- - -

(45)

(46)

Expand in a Taylor series

d

d

(47)

Then, we have

(48)

It is easy to verify that the first coefficient is
Provided that the moments exist

for all ≥ 1 (which is satisfied by most pdf’s, e.g., Gaussian,
Rayleigh, exponential, etc., with rare exceptions, e.g., the
Cauchy pdf), we then have one of the limits in (46)

(49)

By straightforward substitution of 0, we get the other
limit in (46)

(50)

Notice that d since is a
pdf. Substituting (49) and (50) into (46), we get (6). Q.E.D.
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