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Structured LDPC Codes for High-Density Recording:
Large Girth and Low Error Floor

J. Lu and J. M. F. Moura

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh PA 15213–3890 USA

High-rate low-density parity-check (LDPC) codes are the focus of intense research in magnetic recording because, when decoded by
the iterative sum-product algorithm, they show decoding performance close to the Shannon capacity. However, cycles, especially short cy-
cles, are harmful to LDPC codes. The paper describes the partition-and-shift LDPC (PS-LDPC) codes, a new class of regular, structured
LDPC codes that can be designed with large girth and arbitrary large minimum distance. Large girth leads to more efficient iterative
decoding and codes with better error-floor properties than random LDPC codes. PS-LDPC codes can be designed for any desired column
weight and with flexible code rates. The paper details the girth and distance properties of the codes and their systematic construction
and presents analytical and simulation performance results that show that, in the high signal-to-noise ratio region, PS-LDPC codes out-
perform random codes, alleviating the error floor phenomenon.

Index Terms—Girth, LDPC code.

I. INTRODUCTION

LOW-DENSITY PARITY-CHECK (LDPC) codes [1] can
be described by their corresponding Tanner graphs [2].

The length of the shortest cycle in a Tanner graph is referred
to as girth of the graph. Tanner graphs with large girth are
particularly desirable due to the following two reasons. In
LDPC decoding, the sum-product algorithm yields its optimal
a posteriori probability solution only for the first
iterations [1]. In successive iterations, short cycles in the Tanner
graph tax the computing effort of the decoding algorithm and
prevent it from converging to the optimal decoding result [3].
Hence, the larger the girth , the more the optimal decoding
iterations. A second reason for designing LDPC codes with
large girth relates to the minimum distance of the code. Tanner
[2] derives a lower bound on the minimum distance ;
this lower bound increases exponentially with the girth of
the code. Therefore, LDPC codes with large girth imply good
codes.

Among different types of LDPC codes, cyclic and
quasi-cyclic LDPC codes are promising in applications since
they have low-complexity encoding and decoding algorithms
and simplify hardware implementation. Typical work includes
finite-geometry codes [4], BIBD codes [5], algebraic construc-
tion [6], Fossorier’s work [7], etc. For more literature on cyclic
and quasi-cyclic codes, refer to [8], [9]. However, Fossorier [7]
proved that the girth of cyclic and quasi-cyclic codes whose
parity-check matrix has no zero blocks is at most 12. Hence,
the girth of such codes will not follow the log relationship

, [1], where is the column weight,
is the row weight, and is the code block length. By the
above analysis, cyclic and quasi-cyclic codes perform poorly
at very long code block lengths. Their small girths limit their
applications when very long codes are desired.

As far as we know, designing regular structured LDPC
codes with arbitrary large girth and flexible code rates is still
an interesting problem not yet solved. We solve this problem
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by proposing a novel type of structured LDPC codes—par-
tition-and-shift LDPC (PS-LDPC) codes that facilitates the
systematic design of LDPC codes with arbitrary large girth,
arbitrary column weight, and flexible code rates.

II. LDPC CODES: PARTITION-AND-SHIFT DESIGNS

We construct an LDPC code from its Tanner graph. Let be
the set containing all check nodes and the set containing
all bit nodes. Partition into disjoint subsets of the same
size provided that . Similarly, partition
into disjoint subsets of the same size provided that

. We require that and where and
are the degrees of the bit nodes and check nodes, respectively.

Elements in each subset are indexed from 0 to . We also
index the subsets in from 1 to and the subsets in from 1
to . We name the parameter the cardinality of each subset.

We say a check node subset is connected to a bit node
subset if:

1) each of the check nodes in is connected to a bit node
in ;

2) different check nodes in are connected to different bit
nodes in .

Hence, the connection between two subsets sets up a one to
one relationship between nodes of the two subsets. To construct
a regular LDPC code with uniform check node degree and
bit node degree , we let each check node subset connect to
bit node subsets and each bit node subset connect to check
node subsets. We further enforce the following constraint: Every
check node, indexed by in the th check node subset is con-
nected to the bit node indexed by in the th bit node subset,

where where and rep-
resents modulo- addition. We call LDPC codes defined in this
way partition-and-shift LDPC (PS-LDPC) codes. Fig. 1 shows
the Tanner graph for a PS-LDPC code. There are six subsets of
bit nodes that a check node can be connected to but each check
node is connected to only three of them.

The parameters , in
the above definition are called shifts. Check nodes in the same
subset of check nodes are connected to bit nodes in the same

0018-9464/$20.00 © 2006 IEEE



LU AND MOURA: STRUCTURED LDPC CODES FOR HIGH-DENSITY RECORDING 209

Fig. 1. Tanner graph for a PS-LDPC code.

subset of bit nodes by using the same shift . We collect
all the shifts in an matrix called the shift ma-
trix . The th row of stores those shifts associ-
ated with the th subset of check nodes; the th column of
stores those shifts associated with the th subset of bit nodes.
Hence, the entry in row and column in is the shift
that determines how to connect the th check node subset to the

th bit node subset. If there is no connection between the th
check node subset and the th bit node subset, we represent the
corresponding entry by “ ” on the shift matrix . Since each
check node subset is only connected to bit node subsets and
there are totally check node subsets, there exist only
non-“ ” shifts. For example, (1) shows the shift matrix that
corresponds to the Tanner graph shown in Fig. 1:

(1)

Code rate By the above construction, there are no limitations on
the column weight and row weight of a PS-LDPC code. We
can design PS-LDPC codes with arbitrary column weight and
row weight . For a regular code, the code rate if
we omit a few linearly dependent parity-check equations. There-
fore, we can generate PS-LDPC codes with any desired code
rate by tuning the values of and . for example, if a
and column-weight-3 PS-LDPC code is desired, set and

.

III. PS-LDPC CODES: CYCLES AND SHIFTS

Since our goal is to eliminate short cycles that are harmful to
LDPC decoding, we first relate cycles in the Tanner graphs of
PS-LDPC codes to closed paths in the shift matrix .

Theorem 1 (2t-CYCLE): The Tanner graph for a PS-LDPC
code does NOT contain -cycles if and only if any
closed path of length in the shift matrix with
corners violates the Cycle Condition

( represents
modulo- subtraction).

Proof: if: We prove an equivalent proposition of the if part:
If there exists a -cycle in the Tanner graph, there must exist a
closed path in the corresponding shift matrix whose corners

satisfy the Cycle Condition in the
Theorem.

Fig. 2. Top: Closed path in S. Bottom: A 6-cycle in the Tanner graph.

If a -cycle exists in the Tanner graph, it can be represented
by a vertex sequence where the first and
the last vertices are the same. Without loss of generality, as-
sume is a check node with index . Then, by this choice,

, are check nodes and ,
are bit nodes.

Let represent the index for the vertex
. By our code construction, there exists shift

and such that

(2)

(3)

Particularly, we have

(4)

Summing the above equations and cancelling the terms that
appear on both sides of the equation, we have

(5)

hence

(6)

In addition, we observe that the shifts
associated with the -cycle are actually consecutive corners
of a closed path of length in the shift matrix . For ex-
ample, Fig. 2 on the bottom shows a 6-cycle. Its six associated
shifts , , and are the six corners of
a closed path of length 6 (bold line) in , as shown on the top
in Fig. 2. According to the above observation and (6), we con-
clude that there must exist a closed path in whose corners

satisfy the Cycle Condition in the
Theorem.

only if The only if part can be similarly proved. The details
are omitted here. This completes the proof.

IV. GIRTH BOUND

Theorem 1 presents the Cycle Condition to prevent -cycles.
However, Theorem 1 does not tell us whether or not we can
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actually find a shift matrix where all closed paths of length
violate the Cycle Condition. The answer to the above question
is addressed in this section in Theorems 2 and 3.

A. Upper Bound on Girth

Theorem 2: Every PS-LDPC code constructed from a shift
matrix has girth
where and are any two arbitrary closed paths in and

.
Proof: Let

and ,
be two closed paths in that share cor-

ners . Consider the closed path
represented by the following corner sequence

where the corner
sequences

,
and . The length of is

.
We compute the summation

(7)

for all the corners of . We notice that each distinct shift
appears exactly twice in (7) with different plus and minus signs.
For example, is contained both in and . When

is even, the contained by is with the minus sign
in (7) and the contained by is with the plus sign
in (7). Hence, the summation (7) is always zero regardless of the
choice of the shifts in , which means the Cycle Condition in
Theorem 1 is satisfied for any possible choice of the shifts in .
By Theorem 1, we derive that there must exist a cycle of length

in the Tanner graph. Therefore, the girth of the Tanner
graph is less than or equal to

. This completes the proof.

B. Achieving the Girth Bound

We will show next that the upper bound on girth in
Theorem 2 is achievable.

Theorem 3: We can construct PS-LDPC codes with any girth
based on a

shift matrix where and denote two arbitrary closed
paths in and .

Proof: The proof is given in Appendix A.
By Theorem 3, we derive the following Corollary.
Corollary 1: We can construct PS-LDPC codes with any de-

sired girth from a small PS-LDPC code with girth .
Proof: Represent the parity-check matrix of the girth

PS-LDPC code by . Let be the incidence matrix of the shift
matrix . Since has girth , then every closed path in has
length at least . Let and be two closed paths in and

. We have

and (8)

We also notice that composes a closed
path in when . Hence

(9)

Summing inequalities (8) and (9) together, we have

(10)

By Theorem 3 and inequality (10), we can construct a PS-LDPC
code with any girth . This completes the proof.

V. PS-LDPC CODES: ARBITRARY GIRTH

By Corollary 1, we can translate a difficult problem of de-
signing PS-LDPC codes with girth into a much easier task
of designing PS-LDPC codes with girth . If PS-LDPC codes
with girth is still difficult to construct, we can further reduce
the girth requirement to . Keep decreasing the girth re-
quirement in this way, we will eventually come to the problem
of designing PS-LDPC codes with girth , By Corollary 1,
PS-LDPC codes with column weight , row weight , and girth

can be designed according to a all “1” matrix.
We use Corollary 1 to describe an algorithm that finds a

PS-LDPC code with girth based on a PS-LDPC code
with girth . Algorithm 1 is as follows:

The way we search for shifts in Algorithm 1 is similar to the
progressive edge growth (PEG) method [10].

We then propose our main algorithm to construct PS-LDPC
codes with arbitrary girth based on Algorithm 1. Algorithm 2
is as follows:
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VI. MINIMUM DISTANCE ANALYSIS

By Corollary 1, large PS-LDPC codes with large girth can be
constructed iteratively from smaller codes with small girth. In
this way, we can construct PS-LDPC codes with arbitrary large
girth .

In addition, Tanner [2] proved the following lower bound on
in terms of girth and bit node degree

is even (11)

is odd (12)

Combining Corollary 1 and inequalities (11) and (12) together,
we see that PS-LDPC codes can be designed to have arbitrary
large minimum distance .

VII. PS-LDPC CODES: PERFORMANCE STUDY

As an illustration, we apply Algorithms 1 and 2 to construct
a PS-LDPC code with column weight , row weight ,
and girth 14. By Algorithm 2, we need to construct a 3 4
matrix that avoids 4-cycles first. Using Algorithm 1, we choose
the cardinality and construct the following 3 4 shift
matrix that avoids cycles with length 4

(13)

Based on , we then construct a 15 20 parity-check matrix
with girth 6, as shown on the left in Fig. 3.

Next, according to , we build a PS-LDPC code with
, cardinality , and girth 14 by Algorithm 1.

The above process results in a
PS-LDPC code with girth 14 and whose structure is described
by the 9105 12 140 matrix shown on the right in Fig. 3.

We evaluate by simulation the bit error rate (BER) of the
PS-LDPC codes. The codes are decoded with the sum-product
algorithm [3], and we adopt the signal-to-noise ratio (SNR)
defined in [11]: where denotes

Fig. 3. Left: Parity-check matrixH with girth 6. Right: Parity-check matrix
H for a (12140, 3, 4) PS-LDPC code with girth 14.

Fig. 4. A PS-LDPC code with girth 8 versus random LDPC code with the same
code parameters.

Fig. 5. BER performance comparison I in EPR4 channels.

the user bit energy and is the two-sided power spectral
density.

The plot in Fig. 4 shows the BER performance for a column
weight PS-LDPC code with girth 8 (solid line) in an
AWGN channel. For comparison, we also show the BER per-
formance of a randomly constructed LDPC code (no 4-cycles)
(dashed line). Both codes have the same block length 4536 and
the same code rate . In the high SNR, the PS-LDPC code
outperforms the random LDPC code by dB at

where the performance of the random code
has bottomed while the PS-LDPC code has not yet reached the
error floor at this BER.
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Fig. 6. BER performance comparison II in EPR4 channels.

We also carry on simulations in more realistic chan-
nels—EPR4 channels. The BCJR algorithm is used in the
channel detector and the reliability information is exchanged
between the LDPC decoder and the soft-in-soft-output channel
detector to increase the coding gain. The plot in Fig. 5 shows the
BER performance for a PS-LDPC
code with girth 8 in an EPR4 channel. For comparison, we also
show the BER performance of a same size random LDPC code
(no 4-cycles) and a type-II 3-D finite geometry LDPC code
[4] with code length 4599 and code rate 0.92. In the high SNR
region, the PS-LDPC code outperforms the random code. More
importantly, the slope of the BER curve for the random LDPC
code tends to be flat in the high SNR region, implying that for
this code the error floor will occur soon, which is not the case
for the PS-LDPC code with girth 8. The finite geometry LDPC
code shows no error floor as our PS-LDPC code.

The plot in Fig. 6 compares the BER performance for a
PS-LDPC code with column weight 4, code rate , code
length 32760, and girth 8 in an EPR4 channel. We also show
the BERs of a (32760, 4, 36) random LDPC code (no 4-cycles)
and an extended type-I 2-D finite geometry LDPC code [4]
with code length 32 760 and code rate 0.875. The slope of the
BER curve for the PS-LDPC code decreases faster with SNR
than that of random LDPC code; PS-LDPC code and the finite
geometry LDPC code have similar BER performance.

VIII. CONCLUSION

The paper proposes a new type of regular structured LDPC
codes—partition-and-shift LDPC codes. It presents methods to
construct PS-LDPC codes with arbitrarily specified girth and
arbitrarily specified degrees and for the check nodes and bit
nodes, and hence to design flexible code rate PS-LDPC codes.
In addition, their parity-check matrix is obtained from a much
smaller matrix—the shift matrix , which reduces their storage
memory requirements; they also exhibit good BER performance
as shown by simulations—a low error floor. All these character-
istics make PS-LDPC codes particularly attractive in high-den-
sity magnetic recording.

APPENDIX A
PROOF OF THEOREM 3

Define unacceptable values for an entry of the shift ma-
trix as follows: is unacceptable if it leads to a cycle of
length or smaller. We prove the Theorem by arguing that
the number of candidate values for can be made greater
than the number of unacceptable values for .

By Theorem 1, we first count the number of closed paths with
length that start and end at . Let the closed path start
with a vertical line at . There are at most entries
where this first vertical line can terminate, as there are only
non-“ ” entries in the column of and the vertical line can
not end at the starting corner . Any horizontal line from
any one of these non-“ ” entries can terminate at most
at entries of , namely the non-“ ” entries in
the corresponding row other than the entry where the horizontal
line starts. Hence, there are paths of length 2 that
start with a vertical line at . Similarly, we derive that there
are paths of length that start with a
vertical line at . Recall that we need to construct a closed
path of length ending at . Hence, the th line must
terminate at the th row of and the th line must terminate
at the entry . Thus, there are closed
paths of length that start with a vertical line at .

Let be the total number of closed paths with length
, that pass through the entry . Thus,

is bounded by

(14)

By Theorem 1, each of the closed paths with length
, is associated with a Cycle Condition
, which determines an unacceptable value for . Therefore,

the total number of unacceptable values for is the same as
.

By our code construction, the entry
can take values from 0 to . If we let

by
inequality (14), the number of unacceptable values for is
less than the number of candidate values for . Thus, there
exist at least one candidate value for that is allowable.
Hence, we can construct a shift matrix that avoids cycles up
to the length . This completes the proof.
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